ON NCV8403ASTT1G Self-protected low side driver with temperature and current limit Datasheet

NCV8403, NCV8403A
Self-Protected Low Side
Driver with Temperature
and Current Limit
42 V, 14 A, Single N−Channel, SOT−223
NCV8403/A is a three terminal protected Low-Side Smart Discrete
device. The protection features include overcurrent, overtemperature,
ESD and integrated Drain-to-Gate clamping for overvoltage protection.
This device offers protection and is suitable for harsh automotive
environments.
http://onsemi.com
VDSS
(Clamped)
RDS(on) TYP
ID MAX
(Limited)
42 V
53 mW @ 10 V
15 A
Drain
Features
•
•
•
•
•
•
•
•
•
•
Short Circuit Protection
Thermal Shutdown with Automatic Restart
Over Voltage Protection
Integrated Clamp for Inductive Switching
ESD Protection
dV/dt Robustness
Analog Drive Capability (Logic Level Input)
AEC−Q101 Qualified and PPAP Capable
NCV Prefix for Automotive and Other Applications Requiring
Unique Site and Control Change Requirements
These Devices are Pb−Free and are RoHS Compliant
Overvoltage
Protection
Gate
Input
ESD Protection
Temperature
Limit
Current
Sense
Source
Typical Applications
• Switch a Variety of Resistive, Inductive and Capacitive Loads
• Can Replace Electromechanical Relays and Discrete Circuits
• Automotive / Industrial
Current
Limit
4
1
2
DRAIN
4
3
SOT−223
CASE 318E
STYLE 3
4
1 2
MARKING
DIAGRAM
3
DPAK
CASE 369C
AYW
xxxxxG
G
1
2
3
SOURCE
GATE
DRAIN
YWW
xxxxxG
A
= Assembly Location
Y
= Year
W, WW = Work Week
xxxxx = V8403 or 8403A
G or G = Pb−Free Package
(Note: Microdot may be in either location)
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 10 of this data sheet.
© Semiconductor Components Industries, LLC, 2011
November, 2011 − Rev. 5
1
Publication Order Number:
NCV8403/D
NCV8403, NCV8403A
MAXIMUM RATINGS (TJ = 25°C unless otherwise noted)
Rating
Symbol
Value
Unit
Drain−to−Source Voltage Internally Clamped
VDSS
42
Vdc
Gate−to−Source Voltage
VGS
"14
Vdc
Drain Current
Continuous
ID
Total Power Dissipation
@ TA = 25°C (Note 1)
@ TA = 25°C (Note 2)
PD
Thermal Resistance − SOT−223 Version
Junction−to−Case
Junction−to−Ambient (Note 1)
Junction−to−Ambient (Note 2)
Thermal Resistance − DPAK Version
Junction−to−Case
Junction−to−Ambient (Note 1)
Junction−to−Ambient (Note 2)
Internally Limited
1.13
1.56
W
°C/W
RqJC
RqJA
RqJA
12
110
80
RqJC
RqJA
RqJA
2.5
95
50
Single Pulse Inductive Load Switching Energy
(VDD = 25 Vdc, VGS = 5.0 V, IL = 2.8 A, L = 120 mH, RG = 25 W)
EAS
470
mJ
Load Dump Voltage (VGS = 0 and 10 V, RI = 2.0 W, RL = 4.5 W, td = 400 ms)
VLD
55
V
Operating Junction Temperature
TJ
−40 to 150
°C
Storage Temperature
Tstg
−55 to 150
°C
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. Surface mounted onto minimum pad size (0.412″ square) FR4 PCB, 1 oz cu.
2. Mounted onto 1″ square pad size (1.127″ square) FR4 PCB, 1 oz cu.
+
ID
DRAIN
IG
+
VDS
GATE
SOURCE
VGS
−
−
Figure 1. Voltage and Current Convention
http://onsemi.com
2
NCV8403, NCV8403A
MOSFET ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
42
40
46
45
51
51
Vdc
Vdc
−
−
0.6
2.5
5.0
−
−
50
125
mAdc
1.0
−
1.7
5.0
2.2
−
Vdc
mV/°C
−
−
53
95
68
123
−
−
63
105
76
135
−
0.95
1.1
OFF CHARACTERISTICS
Drain−to−Source Clamped Breakdown Voltage
(VGS = 0 Vdc, ID = 250 mAdc)
(VGS = 0 Vdc, ID = 250 mAdc, TJ = −40°C to 150°C) (Note 3)
V(BR)DSS
Zero Gate Voltage Drain Current
(VDS = 32 Vdc, VGS = 0 Vdc)
(VDS = 32 Vdc, VGS = 0 Vdc, TJ = 150°C) (Note 3)
IDSS
Gate Input Current
(VGS = 5.0 Vdc, VDS = 0 Vdc)
IGSS
mAdc
ON CHARACTERISTICS
Gate Threshold Voltage
(VDS = VGS, ID = 1.2 mAdc)
Threshold Temperature Coefficient (Negative)
VGS(th)
Static Drain−to−Source On−Resistance (Note 4)
(VGS = 10 Vdc, ID = 3.0 Adc, TJ @ 25°C)
(VGS = 10 Vdc, ID = 3.0 Adc, TJ @ 150°C) (Note 3)
RDS(on)
Static Drain−to−Source On−Resistance (Note 4)
(VGS = 5.0 Vdc, ID = 3.0 Adc, TJ @ 25°C)
(VGS = 5.0 Vdc, ID = 3.0 Adc, TJ @ 150°C) (Note 3)
RDS(on)
Source−Drain Forward On Voltage
(IS = 7.0 A, VGS = 0 V)
VSD
mW
mW
V
SWITCHING CHARACTERISTICS (Note 3)
Turn−ON Time (10% VIN to 90% ID)
Turn−OFF Time (90% VIN to 10% ID)
Turn−ON Time (10% VIN to 90% ID)
Turn−OFF Time (90% VIN to 10% ID)
Slew−Rate ON (20% VDS to 50% VDS)
VIN = 0 V to 5 V, VDD = 25 V
ID = 1.0 A, Ext RG = 2.5 W
tON
44
tOFF
84
VIN = 0 V to 10 V, VDD = 25 V,
ID = 1.0 A, Ext RG = 2.5 W
tON
15
tOFF
116
−dVDS/dtON
2.43
dVDS/dtOFF
0.83
Vin = 0 to 10 V, VDD = 12 V,
RL = 4.7 W
Slew−Rate OFF (80% VDS to 50% VDS)
ms
V/ms
SELF PROTECTION CHARACTERISTICS (TJ = 25°C unless otherwise noted) (Note 5)
Current Limit
VGS = 5.0 V, VDS = 10 V
VGS = 5.0 V, TJ = 150°C (Note 3)
ILIM
10
5.0
15
10
20
15
Adc
Current Limit
VGS = 10 V, VDS = 10 V
VGS = 10 V, TJ = 150°C (Note 3)
ILIM
12
8.0
17
13
22
18
Adc
VGS = 5.0 Vdc (Note 3)
TLIM(off)
150
175
200
°C
VGS = 5.0 Vdc
DTLIM(on)
−
15
−
°C
VGS = 10 Vdc (Note 3)
TLIM(off)
150
165
185
°C
VGS = 10 Vdc
DTLIM(on)
−
15
−
°C
VGS = 5 V ID = 1.0 A
IGON
Temperature Limit (Turn−off)
Thermal Hysteresis
Temperature Limit (Turn−off)
Thermal Hysteresis
GATE INPUT CHARACTERISTICS (Note 3)
Device ON Gate Input Current
400
VGS = 10 V ID = 1.0 A
Current Limit Gate Input Current
VGS = 5 V, VDS = 10 V
IGCL
VGS = 5 V, VDS = 10 V
mA
0.1
0.6
VGS = 10 V, VDS = 10 V
Thermal Limit Fault Gate Input Current
mA
50
IGTL
mA
0.45
1.5
VGS = 10 V, VDS = 10 V
ESD ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted) (Note 3)
Electro−Static Discharge Capability
Human Body Model (HBM)
ESD
4000
−
−
V
Electro−Static Discharge Capability
Machine Model (MM)
ESD
400
−
−
V
3. Not subject to production testing.
4. Pulse Test: Pulse Width = 300 ms, Duty Cycle = 2%.
5. Fault conditions are viewed as beyond the normal operating range of the part.
http://onsemi.com
3
NCV8403, NCV8403A
TYPICAL PERFORMANCE CURVES
1000
10
TJstart = 25°C
Emax (mJ)
ILmax (A)
TJstart = 25°C
TJstart = 150°C
1
10
100
100
10
100
L (mH)
L (mH)
Figure 2. Single Pulse Maximum Switch−off
Current vs. Load Inductance
Figure 3. Single−Pulse Maximum Switching
Energy vs. Load Inductance
100
1000
TJstart = 25°C
Emax (mJ)
ILmax (A)
TJstart = 150°C
10
TJstart = 25°C
TJstart = 150°C
TJstart = 150°C
1
10
TIME IN CLAMP (ms)
Figure 4. Single Pulse Maximum Inductive
Switch−off Current vs. Time in Clamp
Figure 5. Single−Pulse Maximum Inductive
Switching Energy vs. Time in Clamp
6V
7V
8V
20
9V
−40°C
VDS = 10 V
10 V
20
ID (A)
1
TIME IN CLAMP (ms)
25
25°C
15
5V
4V
15
Ta = 25°C
10
100°C
10
150°C
3V
5
5
0
100
10
ID (A)
1
VGS = 2.5 V
0
1
2
3
4
0
5
1.0
1.5
2.0
2.5
3.0
3.5
VDS (V)
VGS (V)
Figure 6. On−state Output Characteristics
Figure 7. Transfer Characteristics
http://onsemi.com
4
4.0
NCV8403, NCV8403A
TYPICAL PERFORMANCE CURVES
100
150
150°C
125
80
100
100°C
75
25°C
70
100°C, VGS = 5 V
100°C, VGS = 10 V
60
25°C, VGS = 5 V
50
25°C, VGS = 10 V
−40°C, VGS = 5 V
30
−40°C
3
150°C, VGS = 10 V
40
50
25
150°C, VGS = 5 V
90
RDS(on) (mW)
RDS(on) (mW)
ID = 3 A
4
5
6
7
8
9
20
10
1
3
2
5
4
−40°C, VGS = 10 V
7
9
8
10
6
VGS (V)
ID (A)
Figure 8. RDS(on) vs. Gate−Source Voltage
Figure 9. RDS(on) vs. Drain Current
25
2.00
−40°C
ID = 5 A
20
1.25
VGS = 5 V
15
100°C
1.00
150°C
10
VGS = 10 V
0.75
0.50
−40 −20
VDS = 10 V
0
20
60
40
80
100
120
5
140
5
6
7
8
9
T (°C)
VGS (V)
Figure 10. Normalized RDS(on) vs. Temperature
Figure 11. Current Limit vs. Gate−Source
Voltage
25
100
VDS = 10 V
VGS = 10 V
150°C
1
IDSS (mA)
VGS = 5 V
15
0.1
100°C
0.01
25°C
0.001
10
10
VGS = 0 V
10
20
ILIM (A)
25°C
1.50
ILIM (A)
NORMALIZED RDS(on)
1.75
−40°C
0.0001
5
−40 −20
0
20
40
60
80
100
120
0.00001
140
10
15
20
25
30
35
TJ (°C)
VDS (V)
Figure 12. Current Limit vs. Junction
Temperature
Figure 13. Drain−to−Source Leakage Current
http://onsemi.com
5
40
NCV8403, NCV8403A
TYPICAL PERFORMANCE CURVES
1.0
ID = 1.2 mA
VDS = VGS
1.1
VSD (V)
1.0
0.9
0.7
0.8
25°C
0.7
100°C
0.6
150°C
0
20
40
80
60
100
0.5
120 140
DRAIN−SOURCE VOLTAGE SLOPE (V/ms)
100
td(off)
50
tf
tr
td(on)
4
5
6
7
8
9
10
7
9
8
10
3.0
VDD = 25 V
ID = 5 A
RG = 0 W
2.5
−dVDS/dt(on)
2.0
1.5
1.0
dVDS/dt(off)
0.5
0
3
4
5
6
7
8
9
10
Figure 16. Resistive Load Switching Time vs.
Gate−Source Voltage
Figure 17. Resistive Load Switching
Drain−Source Voltage Slope vs. Gate−Source
Voltage
75
VDD = 25 V
ID = 5 A
td(off), VGS = 5 V
tf, VGS = 5 V
tf, VGS = 10 V
tr, VGS = 5 V
td(on), VGS = 5 V td(on), VGS = 10 V
0
6
VGS (V)
td(off), VGS = 10 V
0
5
VGS (V)
100
25
4
Figure 15. Source−Drain Diode Forward
Characteristics
150
50
3
Figure 14. Normalized Threshold Voltage vs.
Temperature
VDD = 25 V
ID = 5 A
RG = 0 W
3
2
IS (A)
200
0
1
T (°C)
250
TIME (ms)
−40°C
VGS = 0 V
0.6
−40 −20
TIME (ms)
0.9
0.8
500
1000
tr, VGS = 10 V
1500
2000
DRAIN−SOURCE VOLTAGE SLOPE (V/ms)
NORMALIZED VGS(th) (V)
1.2
2.50
−dVDS/dt(on), VGS = 10 V
2.25
2.00
VDD = 25 V
ID = 5 A
1.75
1.50
1.25
dVDS/dt(off), VGS = 5 V
1.00
dVDS/dt(off), VGS = 10 V
0.75
0.50
−dVDS/dt(on), VGS = 5 V
0
500
1000
1500
2000
RG (W)
RG (W)
Figure 18. Resistive Load Switching Time vs.
Gate Resistance
Figure 19. Drain−Source Voltage Slope during
Turn On and Turn Off vs. Gate Resistance
http://onsemi.com
6
NCV8403, NCV8403A
150
150
125
125
RqJA (°C/W)
RqJA (°C/W)
TYPICAL PERFORMANCE CURVES
100
PCB Cu thickness, 1.0 oz
75
100
75
PCB Cu thickness, 2.0 oz
PCB Cu thickness, 1.0 oz
50
50
25
25
PCB Cu thickness, 2.0 oz
0
100
200
300
400
500
600
700
800
0
100
200
300
400
500
600
700
COPPER HEAT SPREADER AREA (mm2)
COPPER HEAT SPREADER AREA (mm2)
Figure 20. RqJA vs. Copper Area − SOT−223
Figure 21. RqJA vs. Copper Area − DPAK
800
1000
R(t) °C/W
100
10
1
50% Duty Cycle
20%
10%
5%
2%
1%
0.1
0.01
Single Pulse
0.000001 0.00001
0.0001
0.001
0.01
0.1
1
10
100
1000
10
100
1000
PULSE TIME (sec)
Figure 22. Transient Thermal Resistance − SOT−223 Version
100
50% Duty Cycle
R(t) °C/W
10
20%
10%
5%
1
2%
1%
0.1
0.01
Single Pulse
0.000001 0.00001
0.0001
0.001
0.01
0.1
1
PULSE TIME (sec)
Figure 23. Transient Thermal Resistance − DPAK Version
http://onsemi.com
7
NCV8403, NCV8403A
TEST CIRCUITS AND WAVEFORMS
RL
VIN
+
D
RG
VDD
G DUT
−
S
IDS
Figure 24. Resistive Load Switching Test Circuit
90%
VIN
10%
td(ON)
tr
td(OFF)
tf
90%
10%
IDS
Figure 25. Resistive Load Switching Waveforms
http://onsemi.com
8
NCV8403, NCV8403A
TEST CIRCUITS AND WAVEFORMS
L
VDS
VIN
D
RG
+
VDD
G DUT
−
S
tp
IDS
Figure 26. Inductive Load Switching Test Circuit
5V
VIN
0V
Tav
Tp
V(BR)DSS
Ipk
VDD
VDS
VDS(on)
IDS
0
Figure 27. Inductive Load Switching Waveforms
http://onsemi.com
9
NCV8403, NCV8403A
ORDERING INFORMATION
Package
Shipping†
NCV8403STT1G
SOT−223
(Pb−Free)
1000 / Tape & Reel
NCV8403STT3G
SOT−223
(Pb−Free)
4000 / Tape & Reel
NCV8403DTRKG
DPAK
(Pb−Free)
2500 / Tape & Reel
NCV8403ASTT1G
SOT−223
(Pb−Free)
1000 / Tape & Reel
NCV8403ASTT3G
SOT−223
(Pb−Free)
4000 / Tape & Reel
NCV8403ADTRKG
DPAK
(Pb−Free)
2500 / Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
http://onsemi.com
10
NCV8403, NCV8403A
PACKAGE DIMENSIONS
SOT−223 (TO−261)
CASE 318E−04
ISSUE N
D
b1
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: INCH.
4
HE
1
2
3
b
e1
e
A1
C
q
A
0.08 (0003)
DIM
A
A1
b
b1
c
D
E
e
e1
L
L1
HE
E
q
L
STYLE 3:
PIN 1.
2.
3.
4.
L1
MIN
1.50
0.02
0.60
2.90
0.24
6.30
3.30
2.20
0.85
0.20
1.50
6.70
0°
GATE
DRAIN
SOURCE
DRAIN
SOLDERING FOOTPRINT
3.8
0.15
2.0
0.079
2.3
0.091
2.3
0.091
6.3
0.248
2.0
0.079
1.5
0.059
SCALE 6:1
http://onsemi.com
11
MILLIMETERS
NOM
MAX
1.63
1.75
0.06
0.10
0.75
0.89
3.06
3.20
0.29
0.35
6.50
6.70
3.50
3.70
2.30
2.40
0.94
1.05
−−−
−−−
1.75
2.00
7.00
7.30
10°
−
mm Ǔ
ǒinches
MIN
0.060
0.001
0.024
0.115
0.009
0.249
0.130
0.087
0.033
0.008
0.060
0.264
0°
INCHES
NOM
0.064
0.002
0.030
0.121
0.012
0.256
0.138
0.091
0.037
−−−
0.069
0.276
−
MAX
0.068
0.004
0.035
0.126
0.014
0.263
0.145
0.094
0.041
−−−
0.078
0.287
10°
NCV8403, NCV8403A
PACKAGE DIMENSIONS
DPAK (SINGLE GAUGE)
CASE 369C
ISSUE D
A
E
b3
c2
B
Z
D
1
L4
A
4
L3
b2
e
2
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. CONTROLLING DIMENSION: INCHES.
3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD
FLASH, PROTRUSIONS, OR BURRS. MOLD
FLASH, PROTRUSIONS, OR GATE BURRS SHALL
NOT EXCEED 0.006 INCHES PER SIDE.
5. DIMENSIONS D AND E ARE DETERMINED AT THE
OUTERMOST EXTREMES OF THE PLASTIC BODY.
6. DATUMS A AND B ARE DETERMINED AT DATUM
PLANE H.
C
H
DETAIL A
3
c
b
0.005 (0.13)
M
H
C
L2
GAUGE
PLANE
C
L
SEATING
PLANE
A1
L1
DETAIL A
ROTATED 905 CW
DIM
A
A1
b
b2
b3
c
c2
D
E
e
H
L
L1
L2
L3
L4
Z
INCHES
MIN
MAX
0.086 0.094
0.000 0.005
0.025 0.035
0.030 0.045
0.180 0.215
0.018 0.024
0.018 0.024
0.235 0.245
0.250 0.265
0.090 BSC
0.370 0.410
0.055 0.070
0.108 REF
0.020 BSC
0.035 0.050
−−− 0.040
0.155
−−−
MILLIMETERS
MIN
MAX
2.18
2.38
0.00
0.13
0.63
0.89
0.76
1.14
4.57
5.46
0.46
0.61
0.46
0.61
5.97
6.22
6.35
6.73
2.29 BSC
9.40 10.41
1.40
1.78
2.74 REF
0.51 BSC
0.89
1.27
−−−
1.01
3.93
−−−
SOLDERING FOOTPRINT*
6.20
0.244
2.58
0.102
5.80
0.228
3.00
0.118
1.60
0.063
6.17
0.243
SCALE 3:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
http://onsemi.com
12
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
NCV8403/D
Similar pages