IRF IRHNA58160 Radiation hardened power mosfet surface mount (smd-2) Datasheet

PD - 91860H
IRHNA57160
JANSR2N7469U2
100V, N-CHANNEL
RADIATION HARDENED
POWER MOSFET
SURFACE MOUNT (SMD-2)
REF: MIL-PRF-19500/673
5
TECHNOLOGY
™
Product Summary
Part Number Radiation Level
IRHNA57160 100K Rads (Si)
RDS(on)
0.012Ω
IRHNA53160
300K Rads (Si)
0.012Ω
75*A JANSF2N7469U2
IRHNA54160
600K Rads (Si)
0.012Ω
75*A JANSG2N7469U2
0.013Ω
75*A JANSH2N7469U2
IRHNA58160 1000K Rads (Si)
ID
QPL Part Number
75*A JANSR2N7469U2
SMD-2
International Rectifier’s R5 TM technology provides
high performance power MOSFETs for space
applications. These devices have been characterized
for Single Event Effects (SEE) with useful performance
up to an LET of 80 (MeV/(mg/cm2)). The combination
of low RDS(on) and low gate charge reduces the
power losses in switching applications such as DC
to DC converters and motor control. These devices
retain all of the well established advantages of
MOSFETs such as voltage control, fast switching,
ease of paralleling and temperature stability of
electrical parameters.
Features:
n
n
n
n
n
n
n
n
n
Single Event Effect (SEE) Hardened
Ultra Low RDS(on)
Low Total Gate Charge
Simple Drive Requirements
Ease of Paralleling
Hermetically Sealed
Surface Mount
Ceramic Package
Light Weight
Absolute Maximum Ratings
Pre-Irradiation
Parameter
ID @ VGS = 12V, TC = 25°C
ID @ VGS = 12V, TC = 100°C
IDM
PD @ TC = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
T STG
Continuous Drain Current
Continuous Drain Current
Pulsed Drain Current À
Max. Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy Á
Avalanche Current À
Repetitive Avalanche Energy À
Peak Diode Recovery dv/dt Â
Operating Junction
Storage Temperature Range
Pckg. Mounting Surface Temp.
Weight
Units
75*
69
300
250
2.0
±20
363
75
25
6.0
-55 to 150
A
W
W/°C
V
mJ
A
mJ
V/ns
o
C
300 (for 5s)
3.3 (Typical)
g
* Current is limited by package
For footnotes refer to the last page
www.irf.com
1
06/09/04
IRHNA57160, JANSR2N7469U2
Pre-Irradiation
Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)
Parameter
Min
Drain-to-Source Breakdown Voltage
100
—
—
V
—
0.115
—
V/°C
—
—
0.012
Ω
2.0
42
—
—
—
—
—
—
4.0
—
10
25
V
S( )
∆BV DSS /∆T J Temperature Coefficient of Breakdown
Voltage
RDS(on)
Static Drain-to-Source On-State
Resistance
VGS(th)
Gate Threshold Voltage
g fs
Forward Transconductance
IDSS
Zero Gate Voltage Drain Current
Typ Max Units
µA
IGSS
IGSS
Qg
Q gs
Q gd
td(on)
tr
td(off)
tf
LS + LD
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain (‘Miller’) Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Inductance
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
4.0
100
-100
160
55
65
35
125
75
50
—
Ciss
C oss
C rss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
—
—
—
6440
1660
60
—
—
—
Test Conditions
VGS = 0V, ID = 1.0mA
Reference to 25°C, I D = 1.0mA
VGS = 12V, ID = 69A
Ã
Ω
BVDSS
nA
nC
VDS = VGS, ID = 1.0mA
VDS ≥ 15V, IDS = 69A Ã
VDS= 80V ,VGS=0V
VDS = 80V,
VGS = 0V, TJ = 125°C
VGS = 20V
VGS = -20V
VGS =12V, ID = 45A
VDS = 50V
VDD = 50V, ID = 45A,
VGS =12V, RG = 2.35Ω
ns
nH
Measured from the center of
drain pad to center of source pad
pF
VGS = 0V, VDS = 25V
f = 1.0MHz
Source-Drain Diode Ratings and Characteristics
Parameter
Min Typ Max Units
IS
ISM
Continuous Source Current (Body Diode)
Pulse Source Current (Body Diode) À
—
—
—
—
75*
300
A
VSD
t rr
Q RR
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
—
—
—
—
—
—
1.2
300
2.2
V
nS
µC
ton
Forward Turn-On Time
Test Conditions
Tj = 25°C, IS = 75A, VGS = 0V Ã
Tj = 25°C, IF = 45A, di/dt ≤ 100A/µs
VDD ≤ 25V Ã
Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.
* Current is limited by package
Thermal Resistance
Parameter
RthJC
RthJ-PCB
Junction-to-Case
Junction-to-PC board
Min Typ Max
—
—
—
1.6
0.5
—
Units
°C/W
Test Conditions
soldered to a 2” square copper-clad board
Note: Corresponding Spice and Saber models are available on International Rectifier Web site.
For footnotes refer to the last page
2
www.irf.com
Radiation Characteristics
IRHNA57160, JANSR2N7469U2
International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability.
The hardness assurance program at International Rectifier is comprised of two radiation environments.
Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both
pre- and post-irradiation performance are tested and specified using the same drive circuitry and test
conditions in order to provide a direct comparison.
Table 1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation ÄÅ
Parameter
BVDSS
VGS(th)
IGSS
IGSS
IDSS
RDS(on)
RDS(on)
VSD
Up to 600K Rads(Si)1 1000K Rads (Si)2 Units
Min
Max
Min
Max
Drain-to-Source Breakdown Voltage
Gate Threshold Voltage
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Zero Gate Voltage Drain Current
Static Drain-to-Source Ã
On-State Resistance (TO-3)
Static Drain-to-Source Ã
On-State Resistance (SMD-2)
Diode Forward Voltage Ã
Test Conditions
100
2.0
—
—
—
—
—
4.0
100
-100
10
0.013
100
1.5
—
—
—
—
—
4.0
100
-100
25
0.014
µA
Ω
VGS = 0V, ID = 1.0mA
VGS = VDS, ID = 1.0mA
VGS = 20V
VGS = -20 V
VDS =80V, VGS =0V
VGS = 12V, ID = 45A
—
0.012
—
0.013
Ω
VGS = 12V, ID = 45A
—
1.2
—
1.2
V
VGS = 0V, IS = 45A
V
nA
1. Part numbers IRHNA57160 ( JANSR2N7469U2 ), IRHNA53160 ( JANSF2N7469U2 ) and IRHNA54160 ( JANSG2N7469U2 )
2. Part number IRHNA58160 ( JANSH2N7469U2 )
International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for
Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.
Table 2. Single Event Effect Safe Operating Area
Ion
Br
I
Au
LET
MeV/(mg/cm2))
36.7
59.8
82.3
VDS (V)
Range
(µm) @VGS=0V @VGS=-5V @VGS=-10V @VGS=-15V @VGS=-20V
39.5
100
100
100
100
100
32.5
100
100
100
35
25
28.4
100
100
80
25
—
Energy
(MeV)
309
341
350
120
VGS
100
80
Br
60
I
40
Au
20
0
0
-5
-10
-15
-20
VDS
Fig a. Single Event Effect, Safe Operating Area
For footnotes refer to the last page
www.irf.com
3
IRHNA57160, JANSR2N7469U2
1000
Pre-Irradiation
1000
VGS
15V
12V
10V
9.0V
8.0V
7.0V
6.0V
BOTTOM 5.0V
100
100
5.0V
10
5.0V
10
20µs PULSE WIDTH
TJ = 25 °C
1
0.1
1
10
2.0
V DS = 50V
15
25V WIDTH
20µs PULSE
6.0
7.0
8.0
9.0
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
4
RDS(on) , Drain-to-Source On Resistance
(Normalized)
I D , Drain-to-Source Current (A)
TJ = 25 ° C
10
100
Fig 2. Typical Output Characteristics
1000
100
1
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
TJ = 150 ° C
20µs PULSE WIDTH
TJ = 150 °C
1
0.1
100
VDS , Drain-to-Source Voltage (V)
10
5.0
VGS
15V
12V
10V
9.0V
8.0V
7.0V
6.0V
BOTTOM 5.0V
TOP
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
TOP
ID = 75A
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 12V
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
www.irf.com
IRHNA57160, JANSR2N7469U2
Pre-Irradiation
VGS = 0V,
f = 1MHz
Ciss = Cgs + Cgd , Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
C, Capacitance (pF)
8000
Ciss
6000
Coss
4000
2000
20
VGS , Gate-to-Source Voltage (V)
10000
ID = 45A
75A
VDS = 80V
VDS = 50V
VDS = 20V
16
12
8
4
Crss
0
1
10
0
100
FOR TEST CIRCUIT
SEE FIGURE 13
0
80
120
160
200
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000
ISD , Reverse Drain Current (A)
40
QG , Total Gate Charge (nC)
VDS , Drain-to-Source Voltage (V)
1000
OPERATION IN THIS AREA LIMITED
BY R DS(ON)
ID, Drain Current (A)
100
100
TJ = 150 ° C
10
TJ = 25 ° C
100us
10
1ms
1
Tc = 25°C
Tj = 150°C
Single Pulse
V GS = 0 V
0.1
0.2
0.6
1.0
1.4
VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
www.irf.com
10ms
1
1.8
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
5
IRHNA57160, JANSR2N7469U2
Pre-Irradiation
120
RD
VDS
LIMITED BY PACKAGE
VGS
100
D.U.T.
ID , Drain Current (A)
RG
+
-V DD
80
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
60
40
Fig 10a. Switching Time Test Circuit
VDS
20
0
90%
25
50
75
100
125
150
TC , Case Temperature ( °C)
Fig 9. Maximum Drain Current Vs.
Case Temperature
10%
VGS
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
1
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
SINGLE PULSE
(THERMAL RESPONSE)
PDM
0.01
t1
t2
0.001
0.00001
Notes:
1. Duty factor D = t1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
6
www.irf.com
IRHNA57160, JANSR2N7469U2
Pre-Irradiation
15V
L
VDS
D.U.T.
RG
VGS
20V
IAS
DRIVER
+
- VDD
0.01Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
A
EAS , Single Pulse Avalanche Energy (mJ)
750
TOP
600
BOTTOM
ID
34A
47A
75A
450
300
150
0
25
50
75
100
125
Starting TJ , Junction Temperature ( °C)
150
tp
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
I AS
Current Regulator
Same Type as D.U.T.
Fig 12b. Unclamped Inductive Waveforms
50KΩ
QG
12 V
QGS
.3µF
D.U.T.
QGD
+
V
- DS
VGS
VG
3mA
Charge
Fig 13a. Basic Gate Charge Waveform
www.irf.com
12V
.2µF
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
7
IRHNA57160, JANSR2N7469U2
Pre-Irradiation
Footnotes:
À Repetitive Rating; Pulse width limited by
maximum junction temperature.
Á VDD = 50V, starting TJ = 25°C, L= 0.13mH
Peak IL = 75A, VGS = 12V
 ISD ≤ 75A, di/dt ≤ 340A/µs,
VDD ≤ 100V, TJ ≤ 150°C
à Pulse width ≤ 300 µs; Duty Cycle ≤ 2%
Ä Total Dose Irradiation with VGS Bias.
12 volt VGS applied and V DS = 0 during
irradiation per MIL-STD-750, method 1019, condition A.
Å Total Dose Irradiation with VDS Bias.
80 volt VDS applied and V GS = 0 during
irradiation per MlL-STD-750, method 1019, condition A.
Case Outline and Dimensions — SMD-2
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
IR LEOMINSTER : 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.
Data and specifications subject to change without notice. 06/2004
8
www.irf.com
Similar pages