TI MSP430F2254IDAR Mixed signal microcontroller Datasheet

SLAS504A − JULY 2006 − REVISED DECEMBER 2006
D Low Supply Voltage Range 1.8 V to 3.6 V
D Ultralow-Power Consumption
D
D
D
D
D
D
D
− Active Mode: 270 µA at 1 MHz, 2.2 V
− Standby Mode: 0.7 µA
− Off Mode (RAM Retention): 0.1 µA
Ultrafast Wake-Up From Standby Mode in
Less Than 1 µs
16-Bit RISC Architecture, 62.5 ns
Instruction Cycle Time
Basic Clock Module Configurations:
− Internal Frequencies up to 16MHz With
Four Calibrated Frequencies to ±1%
− Internal Very Low Power LF Oscillator
− 32-kHz Crystal
− High-Frequency Crystal up to 16 MHz
− Resonator
− External Digital Clock Source
− External resistor
16-Bit Timer_A With Three
Capture/Compare Registers
16-Bit Timer_B With Three
Capture/Compare Registers
Universal Serial Communication Interface
− Enhanced UART supporting
Auto-Baudrate Detection (LIN)
− IrDA Encoder and Decoder
− Synchronous SPI
− I2Ct
10-Bit, 200-ksps A/D Converter With
Internal Reference, Sample-and-Hold,
Autoscan, and Data Transfer Controller
D Two Configurable Operational Amplifiers
D
D
D
D
D
D
(MSP430x22x4 only)
Brownout Detector
Serial Onboard Programming,
No External Programming Voltage Needed
Programmable Code Protection by
Security Fuse
Bootstrap Loader
On Chip Emulation Module
Family Members Include:
MSP430F2232: 8KB + 256B Flash Memory
512B RAM
MSP430F2252: 16KB + 256B Flash Memory
512B RAM
MSP430F2272: 32KB + 256B Flash Memory
1KB RAM
MSP430F2234: 8KB + 256B Flash Memory
512B RAM
MSP430F2254: 16KB + 256B Flash Memory
512B RAM
MSP430F2274: 32KB + 256B Flash Memory
1KB RAM
Available in a 38-Pin Plastic Small-Outline
Thin (TSSOP) Package and 40-Pin QFN
Package
For Complete Module Descriptions, Refer
to the MSP430x2xx Family User’s Guide
description
The Texas Instruments MSP430 family of ultralow-power microcontrollers consist of several devices featuring
different sets of peripherals targeted for various applications. The architecture, combined with five low-power
modes is optimized to achieve extended battery life in portable measurement applications. The device features
a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code
efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less
than 1 µs.
The MSP430x22xx series is an ultralow-power mixed signal microcontroller with two built-in 16-bit timers, a
universal serial communication interface, 10-bit A/D converter with integrated reference and data transfer
controller (DTC), two general purpose operational amplifiers in the MSP430x22x4 devices, and 32 I/O pins.
Typical applications include sensor systems that capture analog signals, convert them to digital values, and then
process the data for display or for transmission to a host system. Stand alone RF sensor front end is another
area of application.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2006 Texas Instruments Incorporated
!"# $"%&! '#(
'"! ! $#!! $# )# # # "#
'' *+( '"! $!#, '# #!#&+ !&"'#
#, && $##(
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
AVAILABLE OPTIONS
PACKAGED DEVICES
PLASTIC
38-PIN TSSOP
(DA)
PLASTIC
40-PIN QFN
(RHA)
−40°C to 85°C
MSP430F2232IDA
MSP430F2252IDA
MSP430F2272IDA
MSP430F2234IDA
MSP430F2254IDA
MSP430F2274IDA
MSP430F2232IRHA
MSP430F2252IRHA
MSP430F2272IRHA
MSP430F2234IRHA
MSP430F2254IRHA
MSP430F2274IRHA
−40°C to 105°C
MSP430F2232TDA†
MSP430F2252TDA†
MSP430F2272TDA†
MSP430F2234TDA
MSP430F2254TDA
MSP430F2274TDA
MSP430F2232TRHA†
MSP430F2252TRHA†
MSP430F2272TRHA†
MSP430F2234TRHA
MSP430F2254TRHA
MSP430F2274TRHA
TA
† Product Preview
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
MSP430x22x2 device pinout, DA package
TEST/SBWTCK
1
38
P1.7/TA 2/TDO /TDI
DVCC
2
37
P1.6/TA 1/TDI
P2.5/Rosc
3
36
P1.5/TA 0/TMS
DVSS
4
35
P1.4/SMCLK /TCK
XOUT /P2.7
5
34
P1.3/TA 2
XIN /P2.6
6
33
P1.2/TA 1
7
32
P1.1/TA 0
P2.0/ACLK /A0
8
31
P1.0/TACLK /ADC 10 CLK
P2.1/TAINCLK /SMCLK /A1
9
30
P2.4/TA 2/A4/VREF +/VeREF +
RST /NMI /SBWTDIO
P2.2/TA 0/A2
10
29
P2.3/TA 1/A3/VREF −/VeREF −
P3.0/UCB 0STE /UCA 0CLK /A5
11
28
P3.7/A7
P3.1/UCB 0SIMO /UCB 0SDA
12
27
P3.6/A6
P3.2/UCB 0SOMI /UCB 0SCL
13
26
P3.5/UCA 0RXD /UCA 0SOMI
P3.3/UCB 0CLK /UCA 0STE
14
25
P3.4/UCA 0TXD /UCA 0SIMO
AVSS
15
24
P4.7/TBCLK
AVCC
16
23
P4.6/TBOUTH /A15
P4.0/TB 0
17
22
P4.5/TB 2/A14
P4.1/TB 1
18
21
P4.4/TB 1/A13
P4.2/TB 2
19
20
P4.3/TB 0/A12
MSP430x22x4 device pinout, DA package
TEST /SBWTCK
1
38
P1.7/TA 2/TDO /TDI
DVCC
2
37
P1.6/TA 1/TDI
P2.5/Rosc
3
36
P1.5/TA 0/TMS
DVSS
4
35
P1.4/SMCLK /TCK
XOUT /P2.7
5
34
P1.3/TA 2
XIN /P2.6
6
33
P1.2/TA 1
RST /NMI /SBWTDIO
7
32
P1.1/TA 0
P2.0/ACLK /A0/OA 0I0
8
31
P1.0/TACLK /ADC 10 CLK
P2.1/TAINCLK /SMCLK /A1/OA 0O
9
30
P2.4/TA 2/A4/VREF +/VeREF +/OA 1I0
P2.2/TA 0/A2/OA 0I1
10
29
P2.3/TA 1/A3/VREF −/VeREF −/OA 1I1/OA 1O
P3.0/UCB 0STE /UCA 0CLK /A5
11
28
P3.7/A7/OA 1I2
P3.1/UCB 0SIMO /UCB 0SDA
12
27
P3.6/A6/OA 0I2
P3.2/UCB 0SOMI /UCB 0SCL
13
26
P3.5/UCA 0RXD /UCA 0SOMI
P3.3/UCB 0CLK /UCA 0STE
14
25
P3.4/UCA 0TXD /UCA 0SIMO
AVSS
15
24
P4.7/TBCLK
AVCC
16
23
P4.6/TBOUTH /A15 /OA 1I3
P4.0/TB 0
17
22
P4.5/TB 2/A14 /OA 0I3
P4.1/TB 1
18
21
P4.4/TB 1/A13 /OA 1O
P4.2/TB 2
19
20
P4.3/TB 0/A12 /OA 0O
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
39 38 37 36 35 34 33 32
P1.2/TA1
P1.3/TA2
P1.4/SMCLK/TCK
P1.5/TA0/TMS
P1.6/TA1/TDI/TCLK
P1.7/TA2/TDO/TDI
TEST/SBWTCK
DVCC
DVCC
P2.5/Rosc
MSP430x22x2 device pinout, RHA package
DVSS
1
XOUT /P2.7
2
29
P1.0/TACLK /ADC 10 CLK
XIN /P2.6
3
28
P2.4/TA 2/A4/VREF +/VeREF +
DVSS
4
27
P2.3/TA 1/A3/VREF −/VeREF −
RST /NMI /SBWTDIO
5
26
P3.7/A7
P2.0/ACLK /A0
6
25
P3.6/A6
P2.1/TAINCLK /SMCLK /A1
7
24
P3.5/UCA 0RXD /UCA 0SOMI
P2.2/TA 0/A2
8
23
P3.4/UCA 0TXD /UCA 0SIMO
P3.0/UCB 0STE /UCA 0CLK /A5
9
22
P4.7/TBCLK
21
P4.6/TBOUTH /A15
P3.1/UCB 0SIMO /UCB 0SDA
10
30
4
POST OFFICE BOX 655303
P4.5/TB2/A14
P4.4/TB1/A13
P4.3/TB0/A12
P4.2/TB2
P4.1/TB1
P4.0/TB0
AVCC
AVSS
P3.3/UCB0CLK/UCA0STE
P3.2/UCB0SOMI/UCB0SCL
12 13 14 15 16 17 18 19
• DALLAS, TEXAS 75265
P1.1/TA 0
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
39 38 37 36 35 34 33 32
P1.2/TA1
P1.3/TA2
P1.4/SMCLK/TCK
P1.5/TA0/TMS
P1.6/TA1/TDI/TCLK
TEST/SBWTCK
P1.7/TA2/TDO/TDI
DVCC
DVCC
P2.5/Rosc
MSP430x22x4 device pinout, RHA package
DVSS
1
XOUT /P2.7
2
29
P1.0/TACLK /ADC 10 CLK
XIN /P2.6
3
28
P2.4/TA 2/A4/VREF +/VeREF +/OA 1I0
30
P1.1/TA 0
DVSS
4
27
P2.3/TA 1/A3/VREF −/VeREF −/OA 1I1/OA 1O
RST /NMI /SBWTDIO
5
26
P3.7/A7/OA 1I2
P2.0/ACLK /A0/OA 0I0
6
25
P3.6/A6/OA 0I2
P2.1/TAINCLK /SMCLK /A1/OA 0O
7
24
P3.5/UCA 0RXD /UCA 0SOMI
P2.2/TA 0/A2/OA 0I1
8
23
P3.4/UCA 0TXD /UCA 0SIMO
P3.0/UCB 0STE /UCA 0CLK /A5
9
22
P4.7/TBCLK
21
P4.6/TBOUTH /A15 /OA 1I3
10
POST OFFICE BOX 655303
P4.5/TB2/A14/OA0I3
P4.4/TB1/A13/OA1O
P4.3/TB0/A12/OA0O
P4.2/TB2
P4.1/TB1
P4.0/TB0
AVSS
AVCC
P3.3/UCB0CLK/UCA0STE
12 13 14 15 16 17 18 19
P3.2/UCB0SOMI/UCB0SCL
P3.1/UCB 0SIMO /UCB 0SDA
• DALLAS, TEXAS 75265
5
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
MSP430x22x2 functional block diagram
VCC
VSS
P1.x/P2.x
2x8
P3.x/P4.x
2x8
XOUT
XIN
Basic Clock
System+
ACLK
SMCLK
MCLK
Flash
RAM
32kB
16kB
8kB
1kB
512B
512B
ADC10
10−Bit
Ports P1/P2
Ports P3/P4
2x8 I/O
Interrupt
capability,
pull−up/down
resistors
12
Channels,
Autoscan,
DTC
2x8 I/O
pull−up/down
resistors
MAB
16MHz
CPU
incl. 16
Registers
MDB
Emulation
(2BP)
Timer_B3
JTAG
Interface
Watchdog
WDT+
Brownout
Protection
15/16−Bit
Timer_A3
3 CC
Registers
Spy−Bi Wire
3 CC
Registers,
Shadow
Reg
USCI_A0:
UART/LIN,
IrDA, SPI
USCI_B0:
SPI, I2C
RST/NMI
NOTE: See port schematics section for detailed I/O information.
MSP430x22x4 functional block diagram
VCC
VSS
P1.x/P2.x
2x8
2x8
XOUT
XIN
Basic Clock
System+
ACLK
16MHz
CPU
incl. 16
Registers
Flash
RAM
32kB
16kB
8kB
1kB
512B
512B
ADC10
10−Bit
Ports P1/P2
Ports P3/P4
OA0, OA1
SMCLK
MCLK
12
Channels,
Autoscan,
DTC
2 Op Amps
JTAG
Interface
2x8 I/O
Interrupt
capability,
pull−up/down
resistors
2x8 I/O
pull−up/down
resistors
MAB
MDB
Emulation
(2BP)
Timer_B3
Brownout
Protection
Watchdog
WDT+
15/16−Bit
Timer_A3
3 CC
Registers
Spy−Bi Wire
RST/NMI
NOTE: See port schematics section for detailed I/O information.
6
P3.x/P4.x
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3 CC
Registers,
Shadow
Reg
USCI_A0:
UART/LIN,
IrDA, SPI
USCI_B0:
SPI, I2C
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
Terminal Functions, MSP430x22x2
TERMINAL
DA
RHA
NO.
NO.
P1.0/TACLK/
ADC10CLK
31
29
I/O
General-purpose digital I/O pin
Timer_A, clock signal TACLK input
ADC10, conversion clock
P1.1/TA0
32
30
I/O
General-purpose digital I/O pin
Timer_A, capture: CCI0A input, compare: OUT0 output/BSL transmit
P1.2/TA1
33
31
I/O
General-purpose digital I/O pin
Timer_A, capture: CCI1A input, compare: OUT1 output
P1.3/TA2
34
32
I/O
General-purpose digital I/O pin
Timer_A, capture: CCI2A input, compare: OUT2 output
P1.4/SMCLK/
TCK
35
33
I/O
General-purpose digital I/O pin / SMCLK signal output
Test Clock input for device programming and test
P1.5/TA0/
TMS
36
34
I/O
General-purpose digital I/O pin / Timer_A, compare: OUT0 output
Test Mode Select input for device programming and test
P1.6/TA1/
TDI/TCLK
37
35
I/O
General-purpose digital I/O pin / Timer_A, compare: OUT1 output
Test Data Input or Test Clock Input for programming and test
P1.7/TA2/
TDO/TDI†
38
36
I/O
General-purpose digital I/O pin / Timer_A, compare: OUT2 output
Test Data Output or Test Data Input for programming and test
P2.0/ACLK/A0
8
6
I/O
General-purpose digital I/O pin / ACLK output
ADC10, analog input A0
P2.1/TAINCLK/SMCLK/A1
9
7
I/O
General-purpose digital I/O pin
Timer_A, clock signal at INCLK, SMCLK signal output
ADC10, analog input A1
P2.2/TA0/A2
10
8
I/O
General-purpose digital I/O pin
Timer_A, capture: CCI0B input/BSL receive, compare: OUT0 output
ADC10, analog input A2
P2.3/TA1/
A3/VREF−/VeREF−
29
27
I/O
General-purpose digital I/O pin
Timer_A, capture CCI1B input, compare: OUT1 output
ADC10, analog input A3 / negative reference voltage output/input
P2.4/TA2/
A4/VREF+/VeREF+
30
28
I/O
General-purpose digital I/O pin / Timer_A, compare: OUT2 output
ADC10, analog input A4 / positive reference voltage output/input
P2.5/
ROSC
3
40
I/O
General-purpose digital I/O pin
Input for external DCO resistor to define DCO frequency
XIN/P2.6
6
3
I/O
Input terminal of crystal oscillator
General-purpose digital I/O pin
XOUT/P2.7
5
2
I/O
Output terminal of crystal oscillator
General-purpose digital I/O pin
P3.0/
UCB0STE/UCA0CLK/
A5
11
9
I/O
General-purpose digital I/O pin
USCI_B0 slave transmit enable / USCI_A0 clock input/output
ADC10, analog input A5
P3.1/
UCB0SIMO/UCB0SDA
12
10
I/O
General-purpose digital I/O pin
USCI_B0 slave in/master out in SPI mode, SDA I2C data in I2C mode
P3.2/
UCB0SOMI/UCB0SCL
13
11
I/O
General-purpose digital I/O pin
USCI_B0 slave out/master in in SPI mode, SCL I2C clock in I2C mode
P3.3/
UCB0CLK/UCA0STE
14
12
I/O
General-purpose digital I/O pin
USCI_B0 clock input/output / USCI_A0 slave transmit enable
P3.4/
UCA0TXD/UCA0SIMO
25
23
I/O
General-purpose digital I/O pin
USCI_A0 transmit data output in UART mode, slave in/master out in SPI mode
NAME
DESCRIPTION
I/O
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
Terminal Functions, MSP430x22x2 (Continued)
TERMINAL
DA
RHA
NO.
NO.
P3.5/
UCA0RXD/UCA0SOMI
26
24
I/O
General-purpose digital I/O pin
USCI_A0 receive data input in UART mode, slave out/master in in SPI mode
P3.6/A6
27
25
I/O
General-purpose digital I/O pin
ADC10 analog input A6
P3.7/A7
28
26
I/O
General-purpose digital I/O pin
ADC10 analog input A7
P4.0/TB0
17
15
I/O
General-purpose digital I/O pin
Timer_B, capture: CCI0A input, compare: OUT0 output
P4.1/TB1
18
16
I/O
General-purpose digital I/O pin
Timer_B, capture: CCI1A input, compare: OUT1 output
P4.2/TB2
19
17
I/O
General-purpose digital I/O pin
Timer_B, capture: CCI2A input, compare: OUT2 output
P4.3/TB0/
A12
20
18
I/O
General-purpose digital I/O pin
Timer_B, capture: CCI0B input, compare: OUT0 output
ADC10 analog input A12
P4.4/TB1
A13
21
19
I/O
General-purpose digital I/O pin
Timer_B, capture: CCI1B input, compare: OUT1 output
ADC10 analog input A13
P4.5/TB2
A14
22
20
I/O
General-purpose digital I/O pin
Timer_B, compare: OUT2 output
ADC10 analog input A14
P4.6/TBOUTH
A15
23
21
I/O
General-purpose digital I/O pin
Timer_B, switch all TB0 to TB3 outputs to high impedance
ADC10 analog input A15
P4.7/TBCLK
24
22
I/O
General-purpose digital I/O pin
Timer_B, clock signal TBCLK input
RST/NMI/SBWTDIO
7
5
I
Reset or nonmaskable interrupt input
Spy-Bi-Wire test data input/output during programming and test
TEST/SBWTCK
1
37
I
Selects test mode for JTAG pins on Port1. The device protection fuse is
connected to TEST.
Spy-Bi-Wire test clock input during programming and test
DVCC
2
38, 39
Digital supply voltage
AVCC
DVSS
16
14
Analog supply voltage
4
1, 4
Digital ground reference
AVSS
QFN Pad
15
13
Analog ground reference
NA
Package
Pad
NAME
DESCRIPTION
I/O
NA
QFN package pad; connection to DVSS recommended.
† TDO or TDI is selected via JTAG instruction.
NOTE: If XOUT/P2.7/CA7 is used as an input, excess current will flow until P2SEL.7 is cleared. This is due to the oscillator output driver
connection to this pad after reset.
8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
Terminal Functions, MSP430x22x4
TERMINAL
DA
RHA
NO.
NO.
P1.0/TACLK/
ADC10CLK
31
29
I/O
General-purpose digital I/O pin
Timer_A, clock signal TACLK input
ADC10, conversion clock
P1.1/TA0
32
30
I/O
General-purpose digital I/O pin
Timer_A, capture: CCI0A input, compare: OUT0 output/BSL transmit
P1.2/TA1
33
31
I/O
General-purpose digital I/O pin
Timer_A, capture: CCI1A input, compare: OUT1 output
P1.3/TA2
34
32
I/O
General-purpose digital I/O pin
Timer_A, capture: CCI2A input, compare: OUT2 output
P1.4/SMCLK/
TCK
35
33
I/O
General-purpose digital I/O pin / SMCLK signal output
Test Clock input for device programming and test
P1.5/TA0/
TMS
36
34
I/O
General-purpose digital I/O pin / Timer_A, compare: OUT0 output
Test Mode Select input for device programming and test
P1.6/TA1/
TDI/TCLK
37
35
I/O
General-purpose digital I/O pin / Timer_A, compare: OUT1 output
Test Data Input or Test Clock Input for programming and test
P1.7/TA2/
TDO/TDI†
38
36
I/O
General-purpose digital I/O pin / Timer_A, compare: OUT2 output
Test Data Output or Test Data Input for programming and test
P2.0/ACLK/A0/OA0I0
8
6
I/O
General-purpose digital I/O pin / ACLK output
ADC10, analog input A0 / OA0, analog input I0
P2.1/TAINCLK/SMCLK/
A1/OA0O
9
7
I/O
General-purpose digital I/O pin / Timer_A, clock signal at INCLK
SMCLK signal output
ADC10, analog input A1 / OA0, analog output
P2.2/TA0/
A2/OA0I1
10
8
I/O
General-purpose digital I/O pin
Timer_A, capture: CCI0B input/BSL receive, compare: OUT0 output
ADC10, analog input A2 / OA0, analog input I1
P2.3/TA1/
A3/VREF−/VeREF−
/OA1I1/OA1O
29
27
I/O
General-purpose digital I/O pin
Timer_A, capture CCI1B input, compare: OUT1 output
ADC10, analog input A3 / negative reference voltage output/input
OA1, analog input I1 / OA1, analog output
P2.4/TA2/
A4/VREF+/VeREF+
/OA1I0
30
28
I/O
General-purpose digital I/O pin / Timer_A, compare: OUT2 output
ADC10, analog input A4 / positive reference voltage output/input
OA1, analog input I0
P2.5/
ROSC
3
40
I/O
General-purpose digital I/O pin
Input for external DCO resistor to define DCO frequency
XIN/P2.6
6
3
I/O
Input terminal of crystal oscillator
General-purpose digital I/O pin
XOUT/P2.7
5
2
I/O
Output terminal of crystal oscillator
General-purpose digital I/O pin
P3.0/
UCB0STE/UCA0CLK/
A5
11
9
I/O
General-purpose digital I/O pin
USCI_B0 slave transmit enable / USCI_A0 clock input/output
ADC10, analog input A5
P3.1/
UCB0SIMO/UCB0SDA
12
10
I/O
General-purpose digital I/O pin
USCI_B0 slave in/master out in SPI mode, SDA I2C data in I2C mode
P3.2/
UCB01SOMI/UCB0SCL
13
11
I/O
General-purpose digital I/O pin
USCI_B0 slave out/master in in SPI mode, SCL I2C clock in I2C mode
P3.3/
UCB0CLK/UCA0STE
14
12
I/O
General-purpose digital I/O pin
USCI_B0 clock input/output / USCI_A0 slave transmit enable
P3.4/
UCA0TXD/UCA0SIMO
25
23
I/O
General-purpose digital I/O pin
USCI_A0 transmit data output in UART mode, slave in/master out in SPI mode
NAME
DESCRIPTION
I/O
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
Terminal Functions, MSP430x22x4 (Continued)
TERMINAL
DA
RHA
NO.
NO.
P3.5/
UCA0RXD/UCA0SOMI
26
24
I/O
General-purpose digital I/O pin
USCI_A0 receive data input in UART mode, slave out/master in in SPI mode
P3.6/A6/OA0I2
27
25
I/O
General-purpose digital I/O pin
ADC10 analog input A6 / OA0 analog input I2
P3.7/A7/OA1I2
28
26
I/O
General-purpose digital I/O pin
ADC10 analog input A7 / OA1 analog input I2
P4.0/TB0
17
15
I/O
General-purpose digital I/O pin
Timer_B, capture: CCI0A input, compare: OUT0 output
P4.1/TB1
18
16
I/O
General-purpose digital I/O pin
Timer_B, capture: CCI1A input, compare: OUT1 output
P4.2/TB2
19
17
I/O
General-purpose digital I/O pin
Timer_B, capture: CCI2A input, compare: OUT2 output
P4.3/TB0/
A12/OA0O
20
18
I/O
General-purpose digital I/O pin
Timer_B, capture: CCI0B input, compare: OUT0 output
ADC10 analog input A12 / OA0 analog output
P4.4/TB1
A13/OA1O
21
19
I/O
General-purpose digital I/O pin
Timer_B, capture: CCI1B input, compare: OUT1 output
ADC10 analog input A13 / OA1 analog output
P4.5/TB2
A14/OA0I3
22
20
I/O
General-purpose digital I/O pin
Timer_B, compare: OUT2 output
ADC10 analog input A14 / OA0 analog input I3
P4.6/TBOUTH
A15/OA1I3
23
21
I/O
General-purpose digital I/O pin
Timer_B, switch all TB0 to TB3 outputs to high impedance
ADC10 analog input A15 / OA1 analog input I3
P4.7/TBCLK
24
22
I/O
General-purpose digital I/O pin
Timer_B, clock signal TBCLK input
RST/NMI/SBWTDIO
7
5
I
Reset or nonmaskable interrupt input
Spy-Bi-Wire test data input/output during programming and test
TEST/SBWTCK
1
37
I
Selects test mode for JTAG pins on Port1. The device protection fuse is
connected to TEST.
Spy-Bi-Wire test clock input during programming and test
DVCC
2
38, 39
Digital supply voltage
AVCC
DVSS
16
14
Analog supply voltage
4
1, 4
Digital ground reference
AVSS
QFN Pad
15
13
Analog ground reference
NA
Package
Pad
NAME
DESCRIPTION
I/O
NA
QFN package pad connection to DVSS recommended.
† TDO or TDI is selected via JTAG instruction.
NOTE: If XOUT/P2.7/CA7 is used as an input, excess current will flow until P2SEL.7 is cleared. This is due to the oscillator output driver
connection to this pad after reset.
10
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
short-form description
CPU
The MSP430 CPU has a 16-bit RISC architecture
that is highly transparent to the application. All
operations, other than program-flow instructions,
are performed as register operations in
conjunction with seven addressing modes for
source operand and four addressing modes for
destination operand.
Program Counter
PC/R0
Stack Pointer
SP/R1
SR/CG1/R2
Status Register
Constant Generator
The CPU is integrated with 16 registers that
provide reduced instruction execution time. The
register-to-register operation execution time is
one cycle of the CPU clock.
Four of the registers, R0 to R3, are dedicated as
program counter, stack pointer, status register,
and constant generator respectively. The
remaining registers are general-purpose
registers.
Peripherals are connected to the CPU using data,
address, and control buses, and can be handled
with all instructions.
instruction set
The instruction set consists of 51 instructions with
three formats and seven address modes. Each
instruction can operate on word and byte data.
Table 1 shows examples of the three types of
instruction formats; the address modes are listed
in Table 2.
CG2/R3
General-Purpose Register
R4
General-Purpose Register
R5
General-Purpose Register
R6
General-Purpose Register
R7
General-Purpose Register
R8
General-Purpose Register
R9
General-Purpose Register
R10
General-Purpose Register
R11
General-Purpose Register
R12
General-Purpose Register
R13
General-Purpose Register
R14
General-Purpose Register
R15
Table 1. Instruction Word Formats
Dual operands, source-destination
e.g., ADD R4,R5
R4 + R5 −−−> R5
Single operands, destination only
e.g., CALL
PC −−> (TOS), R8−−> PC
Relative jump, un/conditional
e.g., JNE
R8
Jump-on-equal bit = 0
Table 2. Address Mode Descriptions
ADDRESS MODE
S D
SYNTAX
EXAMPLE
OPERATION
Register
F F
MOV Rs,Rd
MOV R10,R11
Indexed
F F
MOV X(Rn),Y(Rm)
MOV 2(R5),6(R6)
Symbolic (PC relative)
F F
MOV EDE,TONI
M(EDE) −−> M(TONI)
Absolute
F F
MOV &MEM,&TCDAT
M(MEM) −−> M(TCDAT)
R10
−−> R11
M(2+R5)−−> M(6+R6)
Indirect
F
MOV @Rn,Y(Rm)
MOV @R10,Tab(R6)
M(R10) −−> M(Tab+R6)
Indirect
autoincrement
F
MOV @Rn+,Rm
MOV @R10+,R11
M(R10) −−> R11
R10 + 2−−> R10
F
MOV #X,TONI
MOV #45,TONI
Immediate
NOTE: S = source
#45
−−> M(TONI)
D = destination
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
operating modes
The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt
event can wake up the device from any of the five low-power modes, service the request and restore back to
the low-power mode on return from the interrupt program.
The following six operating modes can be configured by software:
D Active mode AM;
−
All clocks are active
D Low-power mode 0 (LPM0);
−
CPU is disabled
ACLK and SMCLK remain active. MCLK is disabled
D Low-power mode 1 (LPM1);
−
CPU is disabled
ACLK and SMCLK remain active. MCLK is disabled
DCO’s dc-generator is disabled if DCO not used in active mode
D Low-power mode 2 (LPM2);
−
CPU is disabled
MCLK and SMCLK are disabled
DCO’s dc-generator remains enabled
ACLK remains active
D Low-power mode 3 (LPM3);
−
CPU is disabled
MCLK and SMCLK are disabled
DCO’s dc-generator is disabled
ACLK remains active
D Low-power mode 4 (LPM4);
−
12
CPU is disabled
ACLK is disabled
MCLK and SMCLK are disabled
DCO’s dc-generator is disabled
Crystal oscillator is stopped
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
interrupt vector addresses
The interrupt vectors and the power-up starting address are located in the address range of 0FFFFh−0FFC0h.
The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence.
If the reset vector (located at address 0FFFEh) contains 0FFFFh (e.g., flash is not programmed) the CPU will
go into LPM4 immediately after power-up.
INTERRUPT SOURCE
INTERRUPT FLAG
SYSTEM INTERRUPT
WORD ADDRESS
PRIORITY
Power-up
External reset
Watchdog
Flash key violation
PC out-of-range (see Note 1)
PORIFG
RSTIFG
WDTIFG
KEYV
(see Note 2)
Reset
0FFFEh
31, highest
NMI
Oscillator fault
Flash memory access violation
NMIIFG
OFIFG
ACCVIFG
(see Notes 2 & 4)
(non)-maskable,
(non)-maskable,
(non)-maskable
0FFFCh
30
Timer_B3
TBCCR0 CCIFG (see Note 3)
maskable
0FFFAh
29
Timer_B3
TBCCR1 and TBCCR2
CCIFGs, TBIFG
(see Notes 2 & 3)
maskable
0FFF8h
28
0FFF6h
27
Watchdog Timer
WDTIFG
maskable
0FFF4h
26
Timer_A3
TACCR0 CCIFG (see Note 3)
maskable
0FFF2h
25
Timer_A3
TACCR1 CCIFG.
TACCR2 CCIFG
TAIFG (see Notes 2 & 3)
maskable
0FFF0h
24
USCI_A0/USCI_B0 Receive
UCA0RXIFG, UCB0RXIFG
(see Notes 2)
maskable
0FFEEh
23
USCI_A0/USCI_B0 Transmit
UCA0TXIFG, UCB0TXIFG
(see Notes 2)
maskable
0FFECh
22
ADC10
ADC10IFG (see Note 3)
maskable
0FFEAh
21
0FFE8h
20
I/O Port P2
(eight flags)
P2IFG.0 to P2IFG.7
(see Notes 2 & 3)
maskable
0FFE6h
19
I/O Port P1
(eight flags)
P1IFG.0 to P1IFG.7
(see Notes 2 & 3)
maskable
0FFE4h
18
0FFE2h
17
0FFE0h
16
(see Note 5)
0FFDEh
15
(see Note 6)
0FFDCh ... 0FFC0h
14 ... 0, lowest
NOTES: 1. A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h−01FFh) or from
within unused address ranges.
2. Multiple source flags
3. Interrupt flags are located in the module
4. (non)-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot.
Nonmaskable: neither the individual nor the general interrupt-enable bit will disable an interrupt event.
5. This location is used as bootstrap loader security key (BSLSKEY).
A 0AA55h at this location disables the BSL completely.
A zero (0h) disables the erasure of the flash if an invalid password is supplied.
6. The interrupt vectors at addresses 0FFDCh to 0FFC0h are not used in this device and can be used for regular program code if
necessary.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
13
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
special function registers
Most interrupt and module enable bits are collected into the lowest address space. Special function register bits
not allocated to a functional purpose are not physically present in the device. Simple software access is provided
with this arrangement.
interrupt enable 1 and 2
Address
7
6
00h
WDTIE
5
4
ACCVIE
rw−0
1
0
NMIIE
OFIE
WDTIE
rw−0
rw−0
rw−0
Oscillator fault enable
NMIIE
(Non)maskable interrupt enable
ACCVIE
Flash access violation interrupt enable
7
6
5
01h
14
2
Watchdog Timer interrupt enable. Inactive if watchdog mode is selected. Active if Watchdog Timer is configured
in interval timer mode.
OFIE
Address
3
UCA0RXIE
USCI_A0 receive-interrupt enable
UCA0TXIE
USCI_A0 transmit-interrupt enable
UCB0RXIE
USCI_B0 receive-interrupt enable
UCB0TXIE
USCI_B0 transmit-interrupt enable
POST OFFICE BOX 655303
4
3
2
1
0
UCB0TXIE
UCB0RXIE
UCA0TXIE
UCA0RXIE
rw−0
rw−0
rw−0
rw−0
• DALLAS, TEXAS 75265
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
interrupt flag register 1 and 2
Address
7
6
5
02h
WDTIFG
4
3
2
1
0
NMIIFG
RSTIFG
PORIFG
OFIFG
WDTIFG
rw−0
rw−(0)
rw−(1)
rw−1
rw−(0)
Set on Watchdog Timer overflow (in watchdog mode) or security key violation.
Reset on VCC power-up or a reset condition at RST/NMI pin in reset mode.
OFIFG
Flag set on oscillator fault
RSTIFG
External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on VCC power-up
PORIFG
Power-On interrupt flag. Set on VCC power-up.
NMIIFG
Set via RST/NMI-pin
Address
7
6
5
4
03h
UCA0RXIFG
USCI_A0 transmit-interrupt flag
UCB0RXIFG
USCI_B0 receive-interrupt flag
UCB0TXIFG
USCI_B0 transmit-interrupt flag
rw:
rw-0,1:
rw-(0,1):
2
1
0
UCB0
TXIFG
UCB0
RXIFG
UCA0
TXIFG
UCA0
RXIFG
rw−1
rw−0
rw−1
rw−0
USCI_A0 receive-interrupt flag
UCA0TXIFG
Legend
3
Bit can be read and written.
Bit can be read and written. It is Reset or Set by PUC.
Bit can be read and written. It is Reset or Set by POR.
SFR bit is not present in device
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
memory organization
MSP430F223x
MSP430F225x
MSP430F227x
Memory
Main: interrupt vector
Main: code memory
Size
Flash
Flash
8KB Flash
0FFFFh−0FFC0h
0FFFFh−0E000h
16KB Flash
0FFFFh−0FFC0h
0FFFFh−0C000h
32KB Flash
0FFFFh−0FFC0h
0FFFFh−08000h
Information memory
Size
Flash
256 Byte
010FFh−01000h
256 Byte
010FFh−01000h
256 Byte
010FFh−01000h
Boot memory
Size
ROM
1KB
0FFFh−0C00h
1KB
0FFFh−0C00h
1KB
0FFFh−0C00h
Size
512 Byte
03FFh−0200h
512 Byte
03FFh−0200h
1KB
05FFh−0200h
16-bit
8-bit
8-bit SFR
01FFh−0100h
0FFh−010h
0Fh−00h
01FFh−0100h
0FFh−010h
0Fh−00h
01FFh−0100h
0FFh−010h
0Fh−00h
RAM
Peripherals
bootstrap loader (BSL)
The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial
interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete
description of the features of the BSL and its implementation, see the application report, Features of the
MSP430 Bootstrap Loader, TI literature number SLAA089.
BSL Function
DA Package Pins
RHA Package Pins
Data Transmit
32 − P1.1
30 − P1.1
Data Receive
10 − P2.2
8 − P2.2
flash memory
The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The
CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:
D Flash memory has n segments of main memory and four segments of information memory (A to D) of
64 bytes each. Each segment in main memory is 512 bytes in size.
D Segments 0 to n may be erased in one step, or each segment may be individually erased.
D Segments A to D can be erased individually, or as a group with segments 0−n.
Segments A to D are also called information memory.
D Segment A contains calibration data. After reset, segment A is protected against programming or erasing.
It can be unlocked, but care should be taken not to erase this segment if the calibration data is required.
16
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
peripherals
Peripherals are connected to the CPU through data, address, and control busses and can be handled using
all instructions. For complete module descriptions, refer to the MSP430x2xx Family User’s Guide.
oscillator and system clock
The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal
oscillator, an internal very low power, low frequency oscillator, an internal digitally-controlled oscillator (DCO),
and a high frequency crystal oscillator. The basic clock module is designed to meet the requirements of both
low system cost and low power consumption. The internal DCO provides a fast turn-on clock source and
stabilizes in less than 1 µs. The basic clock module provides the following clock signals:
D Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal, a high frequency crystal, or the internal very
D
D
low power LF oscillator.
Main clock (MCLK), the system clock used by the CPU.
Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.
DCO Calibration Data (provided from factory in flash info memory segment A, see Note)
DCO Frequency
Calibration Register
Size
1 MHz
CALBC1_1MHZ
byte
010FFh
CALDCO_1MHZ
byte
010FEh
8 MHz
12 MHz
16 MHz
Address
CALBC1_8MHZ
byte
010FDh
CALDCO_8MHZ
byte
010FCh
CALBC1_12MHZ
byte
010FBh
CALDCO_12MHZ
byte
010FAh
CALBC1_16MHZ
byte
010F9h
CALDCO_16MHZ
byte
010F8h
brownout
The brownout circuit is implemented to provide the proper internal reset signal to the device during power on
and power off.
digital I/O
There are four 8-bit I/O ports implemented—ports P1, P2, P3, and P4:
D
D
D
D
D
All individual I/O bits are independently programmable.
Any combination of input, output, and interrupt conditions is possible.
Edge-selectable interrupt input capability for all the eight bits of port P1 and P2.
Read/write access to port-control registers is supported by all instructions.
Each I/O has an individually programmable pullup/pulldown resistor.
WDT+ watchdog timer
The primary function of the watchdog timer (WDT+) module is to perform a controlled system restart after a
software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog
function is not needed in an application, the module can be configured as an interval timer and can generate
interrupts at selected time intervals.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
17
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
timer_A3
Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple
capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities.
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare
registers.
Timer_A3 Signal Connections
Input
Pin Number
DA
RHA
31 - P1.0
29 - P1.0
Device
Input Signal
Module
Input Name
TACLK
TACLK
ACLK
ACLK
SMCLK
SMCLK
Timer
Module
Output Signal
Output
Pin Number
DA
RHA
NA
9 - P2.1
7 - P2.1
TAINCLK
INCLK
32 - P1.1
30 - P1.1
TA0
CCI0A
32 - P1.1
30 - P1.1
10 - P2.2
8 - P2.2
TA0
CCI0B
10 - P2.2
8 - P2.2
36 - P1.5
34 - P1.5
33 - P1.2
31 - P1.2
29 - P2.3
27 - P2.3
37 - P1.6
35 - P1.6
TA2
VCC
CCI2A
34 - P1.3
32 - P1.3
ACLK (internal)
CCI2B
30 - P2.4
28 - P2.4
38 - P1.7
36 - P1.7
33 - P1.2
31 - P1.2
29 - P2.3
27 - P2.3
34 - P1.3
32 - P1.3
VSS
VCC
TA1
VCC
CCI1A
TA1
CCI1B
VSS
VCC
GND
VSS
VCC
18
Module
Block
GND
GND
CCR0
CCR1
CCR2
VCC
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TA0
TA1
TA2
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
timer_B3
Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple
capture/compares, PWM outputs, and interval timing. Timer_B3 also has extensive interrupt capabilities.
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare
registers.
Timer_B3 Signal Connections
Input
Pin Number
DA
RHA
24 - P4.7
22 - P4.7
Device
Input Signal
Module
Input Name
TBCLK
TBCLK
ACLK
ACLK
SMCLK
SMCLK
Module
Block
Timer
Module
Output Signal
Output
Pin Number
DA
RHA
NA
24 - P4.7
22 - P4.7
TBCLK
INCLK
17 - P4.0
15 - P4.0
TB0
CCI0A
17 - P4.0
15 - P4.0
20 - P4.3
18 - P4.3
TB0
CCI0B
20 - P4.3
18 - P4.3
18 - P4.1
16 - P4.1
21 - P4.4
19 - P4.4
TB2
VCC
CCI2A
19 - P4.2
17 - P4.2
ACLK (internal)
CCI2B
22 - P4.5
20 - P4.5
18 - P4.1
16 - P4.1
21 - P4.4
19 - P4.4
19 - P4.2
17 - P4.2
VSS
VCC
TB1
VCC
CCI1A
TB1
CCI1B
VSS
VCC
GND
VSS
VCC
CCR0
GND
CCR1
CCR2
GND
TB0
TB1
TB2
VCC
USCI
The universal serial communication interface (USCI) module is used for serial data communication. The USCI
module supports synchronous communication protocols like SPI (3 or 4 pin), I2C and asynchronous
communication protocols like UART, enhanced UART with automatic baudrate detection (LIN), and IrDA.
USCI_A0 provides support for SPI (3 or 4 pin), UART, enhanced UART and IrDA.
USCI_B0 provides support for SPI (3 or 4 pin) and I2C.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
19
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
ADC10
The ADC10 module supports fast, 10-bit analog-to-digital conversions. The module implements a 10-bit SAR
core, sample select control, reference generator and data transfer controller, or DTC, for automatic conversion
result handling allowing ADC samples to be converted and stored without any CPU intervention.
operational amplifier OA (MSP430x22x4 only)
The MSP430x22x4 has two configurable low-current general-purpose operational amplifiers. Each OA input
and output terminal is software-selectable and offer a flexible choice of connections for various applications.
The OA op amps primarily support front-end analog signal conditioning prior to analog-to-digital conversion.
OA0 Signal Connections
Analog Input
Pin Number
DA
RHA
Device Input Signal
Module Input Name
8 - A0
6 - A0
OA0I0
OAxI0
10 - A2
8 - A2
OA0I1
OA0I1
10 - A2
8 - A2
OA0I1
OAxI1
27 - A6
25 - A6
OA0I2
OAxIA
22 - A14
20 - A14
OA0I3
OAxIB
OA1 Signal Connections
Analog Input
Pin Number
20
Device Input Signal
Module Input Name
DA
RHA
30 - A4
28 - A4
OA1I0
OAxI0
10 - A2
8 - A2
OA0I1
OA0I1
29 - A3
27 - A3
OA1I1
OAxI1
28 - A7
26 - A7
OA1I2
OAxIA
23 - A15
21 - A15
OA1I3
OAxIB
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
peripheral file map
PERIPHERALS WITH WORD ACCESS
ADC10
ADC data transfer start address
ADC memory
ADC control register 1
ADC control register 0
ADC analog enable 0
ADC analog enable 1
ADC data transfer control register 1
ADC data transfer control register 0
ADC10SA
ADC10MEM
ADC10CTL1
ADC10CTL0
ADC10AE0
ADC10AE1
ADC10DTC1
ADC10DTC0
1BCh
1B4h
1B2h
1B0h
04Ah
04Bh
049h
048h
Timer_B
Capture/compare register
Capture/compare register
Capture/compare register
Timer_B register
Capture/compare control
Capture/compare control
Capture/compare control
Timer_B control
Timer_B interrupt vector
TBCCR2
TBCCR1
TBCCR0
TBR
TBCCTL2
TBCCTL1
TBCCTL0
TBCTL
TBIV
0196h
0194h
0192h
0190h
0186h
0184h
0182h
0180h
011Eh
Timer_A
Capture/compare register
Capture/compare register
Capture/compare register
Timer_A register
Capture/compare control
Capture/compare control
Capture/compare control
Timer_A control
Timer_A interrupt vector
TACCR2
TACCR1
TACCR0
TAR
TACCTL2
TACCTL1
TACCTL0
TACTL
TAIV
0176h
0174h
0172h
0170h
0166h
0164h
0162h
0160h
012Eh
Flash Memory
Flash control 3
Flash control 2
Flash control 1
FCTL3
FCTL2
FCTL1
012Ch
012Ah
0128h
Watchdog Timer+
Watchdog/timer control
WDTCTL
0120h
OA1 (MSP430x22x4 only)
Operational Amplifier 1 control register 1
Operational Amplifier 1 control register 1
OA1CTL1
OA1CTL0
0C3h
0C2h
OA0 (MSP430x22x4 only)
Operational Amplifier 0 control register 1
Operational Amplifier 0 control register 1
OA0CTL1
OA0CTL0
0C1h
0C0h
USCI_B0
USCI_B0 transmit buffer
USCI_B0 receive buffer
USCI_B0 status
USCI_B0 bit rate control 1
USCI_B0 bit rate control 0
USCI_B0 control 1
USCI_B0 control 0
USCI_B0 I2C slave address
USCI_B0 I2C own address
UCB0TXBUF
UCB0RXBUF
UCB0STAT
UCB0BR1
UCB0BR0
UCB0CTL1
UCB0CTL0
UCB0SA
UCB0OA
06Fh
06Eh
06Dh
06Bh
06Ah
069h
068h
011Ah
0118h
USCI_A0
USCI_A0 transmit buffer
USCI_A0 receive buffer
USCI_A0 status
USCI_A0 modulation control
USCI_A0 baud rate control 1
USCI_A0 baud rate control 0
USCI_A0 control 1
USCI_A0 control 0
USCI_A0 IrDA receive control
USCI_A0 IrDA transmit control
USCI_A0 auto baud rate control
UCA0TXBUF
UCA0RXBUF
UCA0STAT
UCA0MCTL
UCA0BR1
UCA0BR0
UCA0CTL1
UCA0CTL0
UCA0IRRCTL
UCA0IRTCTL
UCA0ABCTL
067h
066h
065h
064h
063h
062h
061h
060h
05Fh
05Eh
05Dh
PERIPHERALS WITH BYTE ACCESS
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
21
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
PERIPHERALS WITH BYTE ACCESS (continued)
22
Basic Clock System+
Basic clock system control 3
Basic clock system control 2
Basic clock system control 1
DCO clock frequency control
BCSCTL3
BCSCTL2
BCSCTL1
DCOCTL
053h
058h
057h
056h
Port P4
Port P4 resistor enable
Port P4 selection
Port P4 direction
Port P4 output
Port P4 input
P4REN
P4SEL
P4DIR
P4OUT
P4IN
011h
01Fh
01Eh
01Dh
01Ch
Port P3
Port P3 resistor enable
Port P3 selection
Port P3 direction
Port P3 output
Port P3 input
P3REN
P3SEL
P3DIR
P3OUT
P3IN
010h
01Bh
01Ah
019h
018h
Port P2
Port P2 resistor enable
Port P2 selection
Port P2 interrupt enable
Port P2 interrupt edge select
Port P2 interrupt flag
Port P2 direction
Port P2 output
Port P2 input
P2REN
P2SEL
P2IE
P2IES
P2IFG
P2DIR
P2OUT
P2IN
02Fh
02Eh
02Dh
02Ch
02Bh
02Ah
029h
028h
Port P1
Port P1 resistor enable
Port P1 selection
Port P1 interrupt enable
Port P1 interrupt edge select
Port P1 interrupt flag
Port P1 direction
Port P1 output
Port P1 input
P1REN
P1SEL
P1IE
P1IES
P1IFG
P1DIR
P1OUT
P1IN
027h
026h
025h
024h
023h
022h
021h
020h
Special Function
SFR interrupt flag 2
SFR interrupt flag 1
SFR interrupt enable 2
SFR interrupt enable 1
IFG2
IFG1
IE2
IE1
003h
002h
001h
000h
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
absolute maximum ratings (see Note 1)
Voltage applied at VCC to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4.1 V
Voltage applied to any pin (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to VCC+0.3 V
Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 mA
Storage temperature, Tstg (unprogrammed device, see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 150°C
Storage temperature, Tstg (programmed device, see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 105°C
NOTES: 1. Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress
ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended
operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device
reliability.
2. All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage
is applied to the TEST pin when blowing the JTAG fuse.
3. Higher temperature may be applied during board soldering process according to the current JEDEC J-STD-020 specification with
peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.
recommended operating conditions
MIN
NOM
MAX
UNIT
Supply voltage during program execution, VCC
1.8
3.6
V
Supply voltage during program/erase flash memory, VCC
2.2
3.6
V
Supply voltage, VSS
0
Operating free-air temperature range, TA
Processor frequency fSYSTEM (Maximum MCLK frequency)
(see Notes 1, 2 and Figure 1)
V
I Version
−40
85
°C
T Version
−40
105
°C
VCC = 1.8 V,
Duty Cycle = 50% ±10%
dc
4.15
VCC = 2.7 V,
Duty Cycle = 50% ±10%
dc
12
VCC ≥ 3.3 V,
Duty Cycle = 50% ±10%
dc
16
MHz
NOTES: 1. The MSP430 CPU is clocked directly with MCLK.
Both the high and low phase of MCLK must not exceed the pulse width of the specified maximum frequency.
2. Modules might have a different maximum input clock specification. Refer to the specification of the respective module in this data
sheet.
System Frequency −MHz
16 MHz
12 MHz
7.5 MHz
4.15 MHz
1.8 V
ÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏ
2.2 V
2.7 V
3.3 V
ÏÏÏ
ÏÏÏ
ÏÏÏ
ÏÏÏ
ÏÏÏ
ÏÏÏ
Legend:
Supply voltage range,
during flash memory
programming
Supply voltage range,
during program execution
3.6 V
Supply Voltage −V
NOTE: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum VCC of 2.2 V.
Figure 1. Operating Area
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
23
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted)
active mode supply current (into DVCC + AVCC) excluding external current (see Notes 1 and 2)
PARAMETER
IAM, 1MHz
IAM, 1MHz
IAM, 4kHz
IAM,100kHz
Active mode (AM)
current (1MHz)
Active mode (AM)
current (1MHz)
Active mode (AM)
current (4kHz)
Active mode (AM)
current (100kHz)
TEST CONDITIONS
TA
fDCO = fMCLK = fSMCLK = 1MHz,
fACLK = 32,768Hz,
Program executes in flash,
BCSCTL1 = CALBC1_1MHZ,
DCOCTL = CALDCO_1MHZ,
CPUOFF = 0, SCG0 = 0, SCG1 = 0,
OSCOFF = 0
VCC
2.2 V
MIN
TYP
MAX
270
390
µA
fDCO = fMCLK = fSMCLK = 1MHz,
fACLK = 32,768Hz,
Program executes in RAM,
BCSCTL1 = CALBC1_1MHZ,
DCOCTL = CALDCO_1MHZ,
CPUOFF = 0, SCG0 = 0, SCG1 = 0,
OSCOFF = 0
3V
390
2.2 V
240
3V
fMCLK = fSMCLK =
fACLK = 32,768Hz/8 = 4,096Hz,
fDCO = 0Hz,
Program executes in flash,
SELMx = 11, SELS = 1,
DIVMx = DIVSx = DIVAx = 11,
CPUOFF = 0, SCG0 = 1, SCG1 = 0,
OSCOFF = 0
-40−85°C
2.2 V
105°C
2.2 V
-40−85°C
3V
105°C
3V
fMCLK = fSMCLK = fDCO(0,
0) ≈ 100kHz,
DCO(0,0)
fACLK = 0Hz,
Program executes in flash,
RSELx = 0, DCOx = 0,
CPUOFF = 0, SCG0 = 0, SCG1 = 0,
OSCOFF = 1
-40−85°C
2.2 V
105°C
2.2 V
-40−85°C
3V
105°C
3V
POST OFFICE BOX 655303
550
µA
340
5
9
18
µA
6
• DALLAS, TEXAS 75265
10
20
60
85
95
72
NOTES: 1. All inputs are tied to 0 V or VCC. Outputs do not source or sink any current.
2. The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF.
The internal and external load capacitance is chosen to closely match the required 9pF.
24
UNIT
95
105
µA
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
typical characteristics − active mode supply current (into DVCC + AVCC)
5.0
8.0
fDCO = 16 MHz
6.0
fDCO = 12 MHz
5.0
4.0
fDCO = 8 MHz
3.0
2.0
TA = 85 °C
Active Mode Current − mA
Active Mode Current − mA
7.0
4.0
TA = 25 °C
3.0
VCC = 3 V
TA = 85 °C
2.0
TA = 25 °C
1.0
1.0
0.0
1.5
VCC = 2.2 V
fDCO = 1 MHz
2.0
2.5
3.0
3.5
4.0
0.0
0.0
VCC − Supply Voltage − V
Figure 2. Active mode current vs VCC, TA = 25°C
POST OFFICE BOX 655303
4.0
8.0
12.0
16.0
fDCO − DCO Frequency − MHz
Figure 3. Active mode current vs DCO frequency
• DALLAS, TEXAS 75265
25
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
low power mode supply currents (into DVCC + AVCC) excluding external current (see Notes 1 and 2)
PARAMETER
ILPM0, 1MHz
Low-power mode
0 (LPM0) current,
see Note 3
Low-power mode
ILPM0,100kHz 0 (LPM0) current,
see Note 3
ILPM2
Low-power mode
2 (LPM2) current,
see Note 4
TEST CONDITIONS
TA
fMCLK = 0MHz,
fSMCLK = fDCO = 1MHz,
fACLK = 32,768Hz,
BCSCTL1 = CALBC1_1MHZ,
DCOCTL = CALDCO_1MHZ,
CPUOFF = 1, SCG0 = 0, SCG1 = 0,
OSCOFF = 0
2.2 V
ILPM3,VLO
ILPM4
fDCO = fMCLK = fSMCLK = 0MHz,
fACLK = 0Hz,
CPUOFF = 1, SCG0 = 1, SCG1 = 1,
OSCOFF = 1
2.2 V
37
48
41
65
22
29
105°C
35
-40−85°C
25
32
0.7
1.4
0.7
1.4
2.8
4.5
105°C
6
18
-40°C
0.9
1.5
25°C
0.9
1.5
3.0
5.0
POST OFFICE BOX 655303
µA
3V
105°C
40
85°C
2.2 V
3V
105°C
6.5
19
-40°C
0.4
1.0
0.5
1.0
2.2
4.2
105°C
5.7
16.5
-40°C
0.5
1.2
25°C
0.6
1.2
2.5
4.5
85°C
2.2 V
3V
105°C
6.0
17
-40°C
0.1
0.5
0.1
0.5
1.9
4.0
5.5
16
25°C
85°C
105°C
2.2 V/3 V
NOTES: 1. All inputs are tied to 0 V or VCC. Outputs do not source or sink any current.
2. The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF.
The internal and external load capacitance is chosen to closely match the required 9pF.
3. Current for brownout and WDT clocked by SMCLK included.
4. Current for brownout and WDT clocked by ACLK included.
5. Current for brownout included.
26
UNIT
2.2 V
85°C
Low-power mode
4 (LPM4) current,
see Note 5
90
120
-40−85°C
25°C
fDCO = fMCLK = fSMCLK = 0MHz,
fACLK from internal LF oscillator (VLO),
CPUOFF = 1, SCG0 = 1, SCG1 = 1,
OSCOFF = 0
75
90
3V
85°C
Low-power mode
3 current, (LPM3)
see Note 4
MAX
µA
25°C
fDCO = fMCLK = fSMCLK = 0MHz,
fACLK = 32,768Hz,
CPUOFF = 1, SCG0 = 1, SCG1 = 1,
OSCOFF = 0
TYP
3V
-40°C
Low-power mode
3 (LPM3) current,
ILPM3,LFXT1
see Note 4
MIN
µA
fMCLK = 0MHz,
fSMCLK = fDCO(0, 0) ≈ 100kHz,
fACLK = 0Hz,
RSELx = 0, DCOx = 0,
CPUOFF = 1, SCG0 = 0, SCG1 = 0,
OSCOFF = 1
fMCLK = fSMCLK = 0MHz, fDCO = 1MHz,
fACLK = 32,768Hz,
BCSCTL1 = CALBC1_1MHZ,
DCOCTL = CALDCO_1MHZ,
CPUOFF = 1, SCG0 = 0, SCG1 = 1,
OSCOFF = 0
VCC
• DALLAS, TEXAS 75265
µA
µA
µA
µA
A
µA
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
Schmitt-trigger inputs − Ports P1, P2, P3, P4, and RST/NMI
PARAMETER
VIT+
VIT−
TEST CONDITIONS
Positive-going input threshold
voltage
Negative-going input threshold
voltage
Vhys
Input voltage hysteresis
(VIT+ − VIT−)
RPull
Pullup/pulldown resistor
For pullup: VIN = VSS;
For pulldown: VIN = VCC
CI
Input Capacitance
VIN = VSS or VCC
VCC
MIN
MAX
UNIT
0.45
0.75
VCC
2.2 V
1.00
1.65
3V
1.35
2.25
0.25
0.55
2.2 V
0.55
1.20
3V
0.75
1.65
2.2 V
0.2
1.0
3V
0.3
1.0
20
TYP
35
50
5
V
VCC
V
V
kW
pF
inputs − Ports P1 and P2
PARAMETER
t(int)
TEST CONDITIONS
Port P1, P2: P1.x to P2.x, External
trigger puls width to set interrupt
flag, (see Note 1)
External interrupt timing
VCC
2.2 V/3 V
MIN
TYP
MAX
20
UNIT
ns
NOTES: 1. An external signal sets the interrupt flag every time the minimum interrupt puls width t(int) is met. It may be set even with trigger signals
shorter than t(int).
leakage current − Ports P1, P2, P3 and P4
PARAMETER
TEST CONDITIONS
VCC
MIN
TYP
MAX
UNIT
Ilkg(Px.x)
High-impedance leakage current
see Notes 1 and 2
2.2 V/3 V
±50
nA
NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.
2. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is
disabled.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
27
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
outputs − Ports P1, P2, P3 and P4
PARAMETER
VOH
VOL
High-level output
voltage
Low-level output
voltage
VCC
MIN
I(OHmax) = −1.5 mA (see Notes 1)
I(OHmax) = −6 mA (see Notes 2)
TEST CONDITIONS
2.2 V
VCC−0.25
VCC−0.6
VCC
VCC
I(OHmax) = −1.5 mA (see Notes 1)
I(OHmax) = −6 mA (see Notes 2)
3V
VCC−0.25
VCC−0.6
VCC
VCC
2.2 V
3V
TYP
MAX
UNIT
I(OLmax) = 1.5 mA (see Notes 1)
I(OLmax) = 6 mA (see Notes 2)
2.2 V
2.2 V
VSS
VSS
VSS+0.25
VSS+0.6
I(OLmax) = 1.5 mA (see Notes 1)
3V
VSS
VSS+0.25
V
V
I(OLmax) = 6 mA (see Notes 2)
3V
VSS
VSS+0.6
NOTES: 1. The maximum total current, IOHmax and IOLmax, for all outputs combined, should not exceed ±12 mA to hold the maximum
voltage drop specified.
2. The maximum total current, IOHmax and IOLmax, for all outputs combined, should not exceed ±48 mA to hold the maximum
voltage drop specified.
output frequency − Ports P1, P2, P3 and P4
PARAMETER
fPx.y
fPort_CLK
Port output frequency
(with load)
Clock output frequency
TEST CONDITIONS
VCC
MAX
UNIT
2.2 V
10
MHz
3V
12
MHz
2.2 V
12
MHz
16
MHz
P1.4/SMCLK,
CL = 20 pF, RL = 1 kW against VCC/2
(see Note 1 and 2)
P2.0/ACLK, P1.4/SMCLK, CL = 20 pF
(see Note 2)
3V
MIN
TYP
NOTES: 1. Alternatively a resistive divider with 2 times 2 kW between VCC and VSS is used as load. The output is connected to the center tap
of the divider.
2. The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.
28
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
typical characteristics − outputs
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
50.0
I OL − Typical Low-Level Output Current − mA
I OL − Typical Low-Level Output Current − mA
25.0
TA = 25°C
VCC = 2.2 V
P4.5
20.0
TA = 85°C
15.0
10.0
5.0
0.0
0.0
0.5
1.0
1.5
2.0
VCC = 3 V
P4.5
40.0
TA = 85°C
30.0
20.0
10.0
0.0
0.0
2.5
0.5
VOL − Low-Level Output Voltage − V
1.0
3.0
3.5
0.0
VCC = 2.2 V
P4.5
I OH − Typical High-Level Output Current − mA
I OH − Typical High-Level Output Current − mA
2.5
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
0.0
−5.0
−10.0
−15.0
TA = 85°C
TA = 25°C
0.5
2.0
Figure 5
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
−25.0
0.0
1.5
VOL − Low-Level Output Voltage − V
Figure 4
−20.0
TA = 25°C
1.0
1.5
2.0
2.5
VOH − High-Level Output Voltage − V
VCC = 3 V
P4.5
−10.0
−20.0
−30.0
−40.0
−50.0
0.0
TA = 85°C
TA = 25°C
0.5
1.0
1.5
2.0
2.5
3.0
3.5
VOH − High-Level Output Voltage − V
Figure 7
Figure 6
NOTE: One output loaded at a time.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
29
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
POR/brownout reset (BOR) (see Notes 1 and 2)
PARAMETER
TEST CONDITIONS
VCC(start)
(see Figure 8)
dVCC/dt ≤ 3 V/s
V(B_IT−)
Vhys(B_IT−)
(see Figure 8 through Figure 10)
dVCC/dt ≤ 3 V/s
dVCC/dt ≤ 3 V/s
td(BOR)
(see Figure 8)
t(reset)
Pulse length needed at RST/NMI pin
to accepted reset internally
(see Figure 8)
VCC
MIN
TYP
MAX
0.7 × V(B_IT−)
70
2.2 V/3 V
2
130
UNIT
V
1.71
V
210
mV
2000
µs
µs
NOTES: 1. The current consumption of the brownout module is already included in the ICC current consumption data. The voltage level
V(B_IT−) + Vhys(B_IT−) is ≤ 1.8V.
2. During power up, the CPU begins code execution following a period of td(BOR) after VCC = V(B_IT−) + Vhys(B_IT−). The default
DCO settings must not be changed until VCC ≥ VCC(min), where VCC(min) is the minimum supply voltage for the desired
operating frequency.
VCC
Vhys(B_IT−)
V(B_IT−)
VCC(start)
1
0
t d(BOR)
Figure 8. POR/Brownout Reset (BOR) vs Supply Voltage
30
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
typical characteristics − POR/brownout reset (BOR)
VCC
3V
2
VCC(drop) − V
VCC = 3 V
Typical Conditions
t pw
1.5
1
VCC(drop)
0.5
0
0.001
1
1000
1 ns
tpw − Pulse Width − µs
1 ns
tpw − Pulse Width − µs
Figure 9. VCC(drop) Level With a Square Voltage Drop to Generate a POR/Brownout Signal
VCC
VCC(drop) − V
2
1.5
t pw
3V
VCC = 3 V
Typical Conditions
1
VCC(drop)
0.5
0
0.001
tf = tr
1
1000
tf
tr
tpw − Pulse Width − µs
tpw − Pulse Width − µs
Figure 10. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
31
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
main DCO characteristics
D All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14
overlaps RSELx = 15.
D DCO control bits DCOx have a step size as defined by parameter SDCO.
D Modulation control bits MODx select how often fDCO(RSEL,DCO+1) is used within the period of 32 DCOCLK
cycles. The frequency fDCO(RSEL,DCO) is used for the remaining cycles. The frequency is an average equal
to:
f average +
MOD
32 f DCO(RSEL,DCO) f DCO(RSEL,DCO)1)
f DCO(RSEL,DCO))(32*MOD) f DCO(RSEL,DCO)1)
DCO frequency
PARAMETER
Vcc
Supply voltage range
TEST CONDITIONS
VCC
MIN
TYP
MAX
UNIT
RSELx < 14
1.8
3.6
V
RSELx = 14
2.2
3.6
V
RSELx = 15
3.0
3.6
V
fDCO(0,0)
fDCO(0,3)
DCO frequency (0, 0)
RSELx = 0, DCOx = 0, MODx = 0
2.2 V/3 V
0.06
0.14
MHz
DCO frequency (0, 3)
RSELx = 0, DCOx = 3, MODx = 0
2.2 V/3 V
0.07
0.17
MHz
fDCO(1,3)
fDCO(2,3)
DCO frequency (1, 3)
RSELx = 1, DCOx = 3, MODx = 0
2.2 V/3 V
0.10
0.20
MHz
DCO frequency (2, 3)
RSELx = 2, DCOx = 3, MODx = 0
2.2 V/3 V
0.14
0.28
MHz
fDCO(3,3)
fDCO(4,3)
DCO frequency (3, 3)
RSELx = 3, DCOx = 3, MODx = 0
2.2 V/3 V
0.20
0.40
MHz
DCO frequency (4, 3)
RSELx = 4, DCOx = 3, MODx = 0
2.2 V/3 V
0.28
0.54
MHz
fDCO(5,3)
fDCO(6,3)
DCO frequency (5, 3)
RSELx = 5, DCOx = 3, MODx = 0
2.2 V/3 V
0.39
0.77
MHz
DCO frequency (6, 3)
RSELx = 6, DCOx = 3, MODx = 0
2.2 V/3 V
0.54
1.06
MHz
fDCO(7,3)
fDCO(8,3)
DCO frequency (7, 3)
RSELx = 7, DCOx = 3, MODx = 0
2.2 V/3 V
0.80
1.50
MHz
DCO frequency (8, 3)
RSELx = 8, DCOx = 3, MODx = 0
2.2 V/3 V
1.10
2.10
MHz
fDCO(9,3)
fDCO(10,3)
DCO frequency (9, 3)
RSELx = 9, DCOx = 3, MODx = 0
2.2 V/3 V
1.60
3.00
MHz
DCO frequency (10, 3)
RSELx = 10, DCOx = 3, MODx = 0
2.2 V/3 V
2.50
4.30
MHz
fDCO(11,3)
fDCO(12,3)
DCO frequency (11, 3)
RSELx = 11, DCOx = 3, MODx = 0
2.2 V/3 V
3.00
5.50
MHz
DCO frequency (12, 3)
RSELx = 12, DCOx = 3, MODx = 0
2.2 V/3 V
4.30
7.30
MHz
fDCO(13,3)
fDCO(14,3)
DCO frequency (13, 3)
RSELx = 13, DCOx = 3, MODx = 0
2.2 V/3 V
6.00
9.60
MHz
DCO frequency (14, 3)
RSELx = 14, DCOx = 3, MODx = 0
2.2 V/3 V
8.60
13.9
MHz
fDCO(15,3)
fDCO(15,7)
DCO frequency (15, 3)
RSELx = 15, DCOx = 3, MODx = 0
3V
12.0
18.5
MHz
DCO frequency (15, 7)
RSELx = 15, DCOx = 7, MODx = 0
3V
16.0
26.0
MHz
SRSEL
Frequency step between
range RSEL and RSEL+1
SRSEL
f =
/fDCO(RSEL,DCO)
DCO(RSEL+1,DCO)
2.2 V/3 V
SDCO
Frequency step between
tap DCO and DCO+1
SDCO
f=
/fDCO(RSEL,DCO)
DCO(RSEL,DCO+1)
2.2 V/3 V
1.05
1.08
1.12
Measured at P1.4/SMCLK
2.2 V/3 V
40
50
60
Duty Cycle
32
1.55
ratio
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
%
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
calibrated DCO frequencies − tolerance at calibration
PARAMETER
TEST CONDITIONS
Frequency tolerance at calibration
TA
25°C
VCC
MIN
TYP
MAX
UNIT
3V
−1
±0.2
+1
25°C
3V
0.990
1
1.010
MHz
%
fCAL(1MHz)
1MHz calibration value
BCSCTL1= CALBC1_1MHZ
DCOCTL = CALDCO_1MHZ
Gating time: 5ms
fCAL(8MHz)
8MHz calibration value
BCSCTL1= CALBC1_8MHZ
DCOCTL = CALDCO_8MHZ
Gating time: 5ms
25°C
3V
7.920
8
8.080
MHz
fCAL(12MHz)
12MHz calibration value
BCSCTL1= CALBC1_12MHZ
DCOCTL = CALDCO_12MHZ
Gating time: 5ms
25°C
3V
11.88
12
12.12
MHz
fCAL(16MHz)
16MHz calibration value
BCSCTL1= CALBC1_16MHZ
DCOCTL = CALDCO_16MHZ
Gating time: 2ms
25°C
3V
15.84
16
16.16
MHz
VCC
MIN
MAX
UNIT
calibrated DCO frequencies − tolerance over temperature 0°C to +85°C
PARAMETER
1 MHz tolerance over temperature
TA
0−85°C
3.0 V
−2.5
±0.5
+2.5
%
8 MHz tolerance over temperature
0−85°C
3.0 V
−2.5
±1.0
+2.5
%
12 MHz tolerance over temperature
0−85°C
3.0 V
−2.5
±1.0
+2.5
%
16 MHz tolerance over temperature
0−85°C
3.0 V
−3.0
±2.0
+3.0
%
2.2 V
0.970
1
1.030
MHz
3.0 V
0.975
1
1.025
MHz
3.6 V
0.970
1
1.030
MHz
2.2 V
7.760
8
8.400
MHz
3.0 V
7.800
8
8.200
MHz
3.6 V
7.600
8
8.240
MHz
2.2 V
11.70
12
12.30
MHz
3.0 V
11.70
12
12.30
MHz
3.6 V
11.70
12
12.30
MHz
3.0 V
15.52
16
16.48
MHz
3.6 V
15.00
16
16.48
MHz
fCAL(1MHz)
fCAL(8MHz)
fCAL(12MHz)
fCAL(16MHz)
1MHz calibration value
8MHz calibration value
12MHz calibration value
16MHz calibration value
TEST CONDITIONS
BCSCTL1= CALBC1_1MHZ
DCOCTL = CALDCO_1MHZ
Gating time: 5ms
BCSCTL1= CALBC1_8MHZ
DCOCTL = CALDCO_8MHZ
Gating time: 5ms
0−85°C
0−85
C
0−85°C
0−85
C
BCSCTL1= CALBC1_12MHZ
DCOCTL = CALDCO_12MHZ
Gating time: 5ms
0−85°C
0−85
C
BCSCTL1= CALBC1_16MHZ
DCOCTL = CALDCO_16MHZ
Gating time: 2ms
0−85°C
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TYP
33
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
calibrated DCO frequencies − tolerance over supply voltage VCC
PARAMETER
TEST CONDITIONS
1 MHz tolerance over VCC
TA
25°C
VCC
MIN
TYP
MAX
UNIT
1.8 V − 3.6 V
−3
±2
+3
%
8 MHz tolerance over VCC
25°C
1.8 V − 3.6 V
−3
±2
+3
%
12 MHz tolerance over VCC
25°C
2.2 V − 3.6 V
−3
±2
+3
%
16 MHz tolerance over VCC
25°C
3.0 V − 3.6 V
−6
±2
+3
%
25°C
1.8 V − 3.6 V
0.970
1
1.030
MHz
fCAL(1MHz)
1MHz calibration value
BCSCTL1= CALBC1_1MHZ
DCOCTL = CALDCO_1MHZ
Gating time: 5ms
fCAL(8MHz)
8MHz calibration value
BCSCTL1= CALBC1_8MHZ
DCOCTL = CALDCO_8MHZ
Gating time: 5ms
25°C
1.8 V − 3.6 V
7.760
8
8.240
MHz
fCAL(12MHz)
12MHz calibration value
BCSCTL1= CALBC1_12MHZ
DCOCTL = CALDCO_12MHZ
Gating time: 5ms
25°C
2.2 V − 3.6 V
11.64
12
12.36
MHz
fCAL(16MHz)
16MHz calibration value
BCSCTL1= CALBC1_16MHZ
DCOCTL = CALDCO_16MHZ
Gating time: 2ms
25°C
3.0 V − 3.6 V
15.00
16
16.48
MHz
TA
I: -40−85°C
T: -40−105°C
VCC
MIN
MAX
UNIT
calibrated DCO frequencies − overall tolerance
PARAMETER
TEST CONDITIONS
1 MHz tolerance overall
TYP
1.8 V − 3.6 V
−5
±2
+5
%
8 MHz tolerance overall
I: -40−85°C
T: -40−105°C
1.8 V − 3.6 V
−5
±2
+5
%
12 MHz tolerance overall
I: -40−85°C
T: -40−105°C
2.2 V − 3.6 V
−5
±2
+5
%
16 MHz tolerance overall
I: -40−85°C
T: -40−105°C
3.0 V − 3.6 V
−6
±3
+6
%
fCAL(1MHz)
1MHz calibration value
BCSCTL1= CALBC1_1MHZ
DCOCTL = CALDCO_1MHZ
Gating time: 5ms
I: -40−85°C
T: -40−105°C
1.8 V − 3.6 V
0.950
1
1.050
MHz
fCAL(8MHz)
8MHz calibration value
BCSCTL1= CALBC1_8MHZ
DCOCTL = CALDCO_8MHZ
Gating time: 5ms
I: -40−85°C
T: -40−105°C
1.8 V − 3.6 V
7.600
8
8.400
MHz
fCAL(12MHz)
12MHz calibration value
BCSCTL1= CALBC1_12MHZ
DCOCTL = CALDCO_12MHZ
Gating time: 5ms
I: -40−85°C
T: -40−105°C
2.2 V − 3.6 V
11.40
12
12.60
MHz
fCAL(16MHz)
16MHz calibration value
BCSCTL1= CALBC1_16MHZ
DCOCTL = CALDCO_16MHZ
Gating time: 2ms
I: -40−85°C
T: -40−105°C
3.0 V − 3.6 V
15.00
16
17.00
MHz
34
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
typical characteristics − calibrated 1MHz DCO frequency
1.03
1.02
VCC = 1.8 V
Frequency − MHz
1.01
VCC = 2.2 V
1.00
VCC = 3.0 V
0.99
VCC = 3.6 V
0.98
0.97
−50.0
−25.0
0.0
25.0
50.0
75.0
100.0
TA − Temperature − °C
Figure 11. Calibrated 1 MHz Frequency vs. Temperature
1.03
Frequency − MHz
1.02
1.01
TA = 105 °C
1.00
TA = 85 °C
TA = 25 °C
0.99
TA = −40 °C
0.98
0.97
1.5
2.0
2.5
3.0
3.5
4.0
VCC − Supply Voltage − V
Figure 12. Calibrated 1 MHz Frequency vs. VCC
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
35
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
wake-up from lower power modes (LPM3/4)
PARAMETER
TEST CONDITIONS
DCO clock wake-up time from
tDCO,LPM3/4 LPM3/4
(see Note 1)
VCC
MIN
TYP
MAX
BCSCTL1= CALBC1_1MHZ
DCOCTL = CALDCO_1MHZ
2.2 V/3 V
2
BCSCTL1= CALBC1_8MHZ
DCOCTL = CALDCO_8MHZ
2.2 V/3 V
1.5
BCSCTL1= CALBC1_12MHZ
DCOCTL = CALDCO_12MHZ
2.2 V/3 V
1
BCSCTL1= CALBC1_16MHZ
DCOCTL = CALDCO_16MHZ
3V
1
UNIT
µss
1/fMCLK +
tClock,LPM3/4
NOTES: 1. The DCO clock wake-up time is measured from the edge of an external wake-up signal (e.g., port interrupt) to the first clock edge
observable externally on a clock pin (MCLK or SMCLK).
2. Parameter applicable only if DCOCLK is used for MCLK.
tCPU,LPM3/4
CPU wake-up time from LPM3/4
(see Note 2)
typical characteristics − DCO clock wake-up time from LPM3/4
DCO Wake Time − us
10.00
RSELx = 0...11
RSELx = 12...15
1.00
0.10
0.10
1.00
10.00
DCO Frequency − MHz
Figure 13. Clock wake-up time from LPM3 vs DCO frequency
36
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
DCO with external resistor ROSC (see Note 1)
PARAMETER
TEST CONDITIONS
fDCO,ROSC
DCO output frequency
with ROSC
Dt
Temperature drift
DV
Drift with VCC
VCC
DCOR = 1,
RSELx = 4, DCOx = 3, MODx = 0,
TA = 25°C
DCOR = 1,
RSELx = 4, DCOx = 3, MODx = 0
MIN
TYP
MAX
UNIT
2.2 V
1.8
3V
1.95
2.2 V/3 V
±0.1
%/°C
2.2 V/3 V
10
%/V
MHz
DCOR = 1,
RSELx = 4, DCOx = 3, MODx = 0
NOTES: 1. ROSC = 100kΩ. Metal film resistor, type 0257. 0.6 watt with 1% tolerance and TK = ±50ppm/°C.
typical characteristics − DCO with external resistor ROSC
10.00
DCO Frequency − MHz
DCO Frequency − MHz
10.00
1.00
0.10
RSELx = 4
0.01
10.00
100.00
1000.00
1.00
0.10
RSELx = 4
0.01
10.00
10000.00
ROSC − External Resistor − kOhm
10000.00
Figure 15. DCO Frequency vs ROSC,
VCC = 3.0 V, TA = 255C
2.50
2.50
2.25
ROSC = 100k
2.00
1.75
1.50
1.25
1.00
ROSC = 270k
0.75
0.50
DCO Frequency − MHz
2.25
DCO Frequency − MHz
1000.00
ROSC − External Resistor − kOhm
Figure 14. DCO Frequency vs ROSC,
VCC = 2.2 V, TA = 255C
ROSC = 100k
2.00
1.75
1.50
1.25
1.00
ROSC = 270k
0.75
0.50
ROSC = 1M
0.25
0.00
−50.0
100.00
−25.0
0.0
25.0
50.0
75.0
ROSC = 1M
0.25
100.0
0.00
2.0
TA − Temperature − 5C
Figure 16. DCO Frequency vs Temperature,
VCC = 3.0 V
POST OFFICE BOX 655303
2.5
3.0
3.5
4.0
VCC − Supply Voltage − V
Figure 17. DCO Frequency vs VCC,
TA = 255C
• DALLAS, TEXAS 75265
37
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
crystal oscillator, LFXT1, low frequency modes (see Note 4)
PARAMETER
fLFXT1,LF
TEST CONDITIONS
LFXT1 oscillator crystal
frequency, LF mode 0, 1
LFXT1 oscillator logic level
fLFXT1,LF,logic square wave input frequency,
LF mode
OALF
CL,eff
Oscillation Allowance for LF
crystals
Integrated effective Load
Capacitance, LF mode
(see Note 1)
VCC
XTS = 0, LFXT1Sx = 0 or 1
1.8 V − 3.6 V
XTS = 0, LFXT1Sx = 3
1.8 V − 3.6 V
MIN
TYP
MAX
32,768
10,000
XTS = 0, LFXT1Sx = 0;
fLFXT1,LF = 32,768 kHz,
CL,eff = 6 pF
XTS = 0, LFXT1Sx = 0;
fLFXT1,LF = 32,768 kHz,
CL,eff = 12 pF
32,768
UNIT
Hz
50,000
Hz
500
kW
200
kW
XTS = 0, XCAPx = 0
1
pF
XTS = 0, XCAPx = 1
5.5
pF
XTS = 0, XCAPx = 2
8.5
pF
XTS = 0, XCAPx = 3
11
pF
Duty Cycle
LF mode
XTS = 0, Measured at
P1.4/ACLK, fLFXT1,LF = 32,768
Hz
2.2 V/3 V
30
fFault,LF
Oscillator fault frequency, LF
mode (see Note 3)
XTS = 0, LFXT1Sx = 3
(see Notes 2)
2.2 V/3 V
10
50
70
%
10,000
Hz
NOTES: 1. Includes parasitic bond and package capacitance (approximately 2pF per pin).
Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a
correct setup the effective load capacitance should always match the specification of the used crystal.
2. Measured with logic level input frequency but also applies to operation with crystals.
3. Frequencies below the MIN specification will set the fault flag, frequencies above the MAX specification will not set the fault flag.
Frequencies in between might set the flag.
4. To improve EMI on the LFXT1 oscillator the following guidelines should be observed.
− Keep as short a trace as possible between the device and the crystal.
− Design a good ground plane around the oscillator pins.
− Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
− Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
− Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
− If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
− Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other
documentation. This signal is no longer required for the serial programming adapter.
internal very low power, low frequency oscillator (VLO)
PARAMETER
TEST CONDITIONS
TA
-40−85°C
VCC
2.2 V/3 V
105°C
2.2 V/3 V
fVLO
VLO frequency
dfVLO/dT
VLO frequency
temperature drift
(see Note 1)
I: -40−85°C
T: -40−105°C
2.2 V/3 V
dfVLO/dVCC
VLO frequency supply
voltage drift
(see Note 2)
25°C
1.8V − 3.6V
MIN
TYP
MAX
4
12
20
NOTES: 1. Calculated using the box method:
I Version: (MAX(−40...85_C) − MIN(−40...85_C))/MIN(−40...85_C)/(85_C − (−40_C))
T Version: (MAX(−40...105_C) − MIN(−40...105_C))/MIN(−40...105_C)/(105_C − (−40_C))
2. Calculated using the box method: (MAX(1.8...3.6V) − MIN(1.8...3.6V))/MIN(1.8...3.6V)/(3.6V − 1.8V)
38
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
22
UNIT
kHz
0.5
%/°C
4
%/V
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
crystal oscillator, LFXT1, high frequency modes (see Note 5)
PARAMETER
TEST CONDITIONS
VCC
MIN
TYP
MAX
UNIT
fLFXT1,HF0
LFXT1 oscillator crystal frequency,
HF mode 0
XTS = 1, LFXT1Sx = 0
1.8 V − 3.6 V
0.4
1
MHz
fLFXT1,HF1
LFXT1 oscillator crystal frequency,
HF mode 1
XTS = 1, LFXT1Sx = 1
1.8 V − 3.6 V
1
4
MHz
1.8 V − 3.6 V
2
10
MHz
fLFXT1,HF2
LFXT1 oscillator crystal frequency,
HF mode 2
XTS = 1, LFXT1Sx = 2
2.2 V − 3.6 V
2
12
MHz
3.0 V − 3.6 V
2
16
MHz
1.8 V − 3.6 V
0.4
10
MHz
2.2 V − 3.6 V
0.4
12
MHz
3.0 V − 3.6 V
0.4
16
MHz
LFXT1 oscillator logic level square
fLFXT1,HF,logic wave input frequency,
HF mode
XTS = 1, LFXT1Sx = 3
XTS = 0, LFXT1Sx = 0,
fLFXT1,HF = 1 MHz,
CL,eff = 15 pF
OAHF
CL,eff
Duty Cycle
fFault,HF
Oscillation Allowance for HF
crystals
(refer to Figure 18 and Figure 19)
Integrated effective Load
Capacitance, HF mode
(see Note 1)
XTS = 0, LFXT1Sx = 1
fLFXT1,HF = 4 MHz,
CL,eff = 15 pF
XTS = 0, LFXT1Sx = 2
fLFXT1,HF = 16 MHz,
CL,eff = 15 pF
XTS = 1 (see Note 2)
HF mode
Oscillator fault frequency, HF mode
(see Note 4)
2700
W
800
W
300
W
1
pF
XTS = 1, Measured at P1.4/ACLK,
fLFXT1,HF = 10 MHz
2.2 V/3 V
40
50
60
%
XTS = 1, Measured at P1.4/ACLK,
fLFXT1,HF = 16 MHz
2.2 V/3 V
40
50
60
%
XTS = 1, LFXT1Sx = 3
(see Notes 3)
2.2 V/3 V
30
300
kHz
NOTES: 1. Includes parasitic bond and package capacitance (approximately 2pF per pin).
Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a
correct setup the effective load capacitance should always match the specification of the used crystal.
2. Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
3. Measured with logic level input frequency but also applies to operation with crystals.
4. Frequencies below the MIN specification will set the fault flag, frequencies above the MAX specification will not set the fault flag.
Frequencies in between might set the flag.
5. To improve EMI on the LFXT1 oscillator the following guidelines should be observed.
− Keep as short a trace as possible between the device and the crystal.
− Design a good ground plane around the oscillator pins.
− Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
− Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
− Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
− If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
− Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other
documentation. This signal is no longer required for the serial programming adapter.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
39
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
typical characteristics − LFXT1 oscillator in HF mode (XTS = 1)
Oscillation Allowance − Ohms
100000.00
10000.00
1000.00
LFXT1Sx = 3
100.00
LFXT1Sx = 2
LFXT1Sx = 1
10.00
0.10
1.00
10.00
100.00
Crystal Frequency − MHz
Figure 18. Oscillation Allowance vs Crystal Frequency, CL,eff = 15 pF, TA = 25°C
800.0
XT Oscillator Supply Current − uA
LFXT1Sx = 3
700.0
600.0
500.0
400.0
300.0
LFXT1Sx = 2
200.0
100.0
LFXT1Sx = 1
0.0
0.0
4.0
8.0
12.0
16.0
20.0
Crystal Frequency − MHz
Figure 19. XT Oscillator Supply Current vs Crystal Frequency, CL,eff = 15 pF, TA = 25°C
40
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
Timer_A
PARAMETER
fTA
Timer_A clock frequency
tTA,cap
Timer_A, capture timing
TEST CONDITIONS
Internal: SMCLK, ACLK;
External: TACLK, INCLK;
Duty Cycle = 50% ±10%
TA0, TA1, TA2
VCC
MIN
TYP
MAX
2.2 V
10
3V
16
UNIT
MHz
2.2 V/3 V
20
ns
Timer_B
PARAMETER
fTB
Timer_B clock frequency
tTB,cap
Timer_B, capture timing
TEST CONDITIONS
Internal: SMCLK, ACLK;
External: TBCLK;
Duty Cycle = 50% ±10%
TB0, TB1, TB2
POST OFFICE BOX 655303
VCC
TYP
MAX
10
3V
16
UNIT
MHz
2.2 V/3 V
• DALLAS, TEXAS 75265
MIN
2.2 V
20
ns
41
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
USCI (UART Mode)
PARAMETER
fUSCI
USCI input clock frequency
fBITCLK
BITCLK clock frequency
(equals Baudrate in MBaud)
tτ
UART receive deglitch time
(see Note 1)
TEST CONDITIONS
VCC
MIN
Internal: SMCLK, ACLK
External: UCLK
Duty Cycle = 50% ± 10%
TYP
MAX
UNIT
fSYSTEM
MHz
1
MHz
2.2V /3 V
2.2 V
50
150
600
ns
3V
50
100
600
ns
NOTES: 1. Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are
correctly recognized their width should exceed the maximum specification of the deglitch time.
USCI (SPI Master Mode, see Figure 20 and Figure 21)
PARAMETER
fUSCI
USCI input clock frequency
tSU,MI
SOMI input data setup time
tHD,MI
tVALID,MO
TEST CONDITIONS
VCC
MIN
SMCLK, ACLK
Duty Cycle = 50% ± 10%
SOMI input data hold time
UCLK edge to SIMO valid;
CL = 20 pF
SIMO output data valid time
TYP
MAX
UNIT
fSYSTEM
MHz
2.2 V
110
ns
3V
75
ns
2.2 V
0
ns
3V
0
ns
2.2 V
30
ns
3V
20
ns
USCI (SPI Slave Mode, see Figure 22 and Figure 23)
PARAMETER
TEST CONDITIONS
VCC
MIN
TYP
MAX
UNIT
tSTE,LEAD
STE lead time
STE low to clock
2.2 V/3 V
tSTE,LAG
STE lag time
Last clock to STE high
2.2 V/3 V
tSTE,ACC
STE access time
STE low to SOMI data out
2.2 V/3 V
50
ns
tSTE,DIS
STE disable time
STE high to SOMI high impedance
2.2 V/3 V
50
ns
tSU,SI
SIMO input data setup time
tHD,SI
SIMO input data hold time
tVALID,SO
42
SOMI output data valid time
UCLK edge to SOMI valid;
CL = 20 pF
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
50
ns
10
ns
2.2 V
20
ns
3V
15
ns
2.2 V
10
ns
3V
10
ns
2.2 V
75
110
ns
3V
50
75
ns
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
1/fUCxCLK
CKPL
=0
CKPL
=1
UCLK
tLOW/HIGH
tLOW/HIGH
tSU,MI
tHD,MI
SOMI
tVALID ,MO
SIMO
Figure 20. SPI Master Mode, CKPH = 0
1/fUCxCLK
CKPL
=0
CKPL
=1
UCLK
tLOW/HIGH
tLOW/HIGH
tSU,MI
tHD,MI
SOMI
tVALID ,MO
SIMO
Figure 21. SPI Master Mode, CKPH = 1
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
43
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
tSTE,LEAD
tSTE,LAG
STE
1/fUCxCLK
CKPL
=0
CKPL
=1
UCLK
tLOW/HIGH
tLOW/HIGH
tSU,SIMO
tHD,SIMO
SIMO
tACC
tVALID ,SOMI
tDIS
SOMI
Figure 22. SPI Slave Mode, CKPH = 0
tSTE,LEAD
tSTE,LAG
STE
1/fUCxCLK
CKPL=0
UCLK
CKPL=1
tLOW/HIGH
tLOW/HIGH
tSU,SI
tHD,SI
SIMO
tACC
tVALID ,SO
SOMI
Figure 23. SPI Slave Mode, CKPH = 1
44
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
tDIS
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
USCI (I2C Mode, see Figure 24)
PARAMETER
TEST CONDITIONS
fUSCI
USCI input clock frequency
fSCL
SCL clock frequency
VCC
MIN
TYP
Internal: SMCLK, ACLK
External: UCLK
Duty Cycle = 50% ± 10%
MAX
UNIT
fSYSTEM
MHz
400
kHz
2.2 V/3 V
0
2.2 V/3 V
4.0
us
2.2 V/3 V
0.6
us
2.2 V/3 V
4.7
us
2.2 V/3 V
0.6
us
tHD,STA
Hold time (repeated) START
fSCL ≤ 100kHz
fSCL > 100kHz
tSU,STA
Set-up time for a repeated START
fSCL ≤ 100kHz
fSCL > 100kHz
tHD,DAT
tSU,DAT
Data hold time
2.2 V/3 V
0
ns
Data set-up time
2.2 V/3 V
250
ns
tSU,STO
Set-up time for STOP
2.2 V/3 V
4.0
us
Pulse width of spikes suppressed by
input filter
2.2 V
50
150
600
ns
tSP
3V
50
100
600
ns
tHD , STA
tSU , STA tHD , STA
tBUF
SDA
t
LOW
tHIGH
tSP
SCL
tSU ,DAT
tSU , STO
tHD ,DAT
Figure 24. I2C Mode Timing
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
45
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
10-bit ADC, power supply and input range conditions (see Note 1)
PARAMETER
TEST CONDITIONS
TA
VCC
VCC
Analog supply voltage
range
VSS = 0 V
VAx
Analog input voltage range
(see Note 2)
All Ax terminals.
Analog inputs selected in
ADC10AE register.
ADC10 supply current
(see Note 3)
fADC10CLK = 5.0 MHz
ADC10ON = 1, REFON = 0
ADC10SHT0 = 1,
ADC10SHT1 = 0, ADC10DIV
=0
-40−85°C
I: -40−85
C
T: -40−105°C
fADC10CLK = 5.0 MHz
ADC10ON = 0, REF2_5V = 0,
REFON = 1, REFOUT = 0
I: -40−85°C
T: -40−105°C
fADC10CLK = 5.0 MHz
ADC10ON = 0, REF2_5V = 1,
REFON = 1, REFOUT = 0
I: -40−85°C
T: -40−105°C
3V
-40−85°C
2.2 V/3 V
105°C
2.2 V/3 V
-40−85°C
2.2 V/3 V
105°C
2.2 V/3 V
IADC10
IREF+
Reference supply current,
reference buffer disabled
(see Note 4)
fADC10CLK = 5.0 MHz
ADC10ON = 0,
REFON = 1, REF2_5V = 0,
REFOUT = 1,
ADC10SR=0
Reference buffer supply
current with ADC10SR=1
(see Note 4)
fADC10CLK = 5.0 MHz
ADC10ON = 0,
REFON = 1,
REF2_5V = 0,
REFOUT = 1,
ADC10SR=1
CI
Input capacitance
Only one terminal Ax selected
at a time
I: -40−85°C
T: -40−105°C
RI
Input MUX ON resistance
0V ≤ VAx ≤ VCC
I: -40−85°C
T: -40−105°C
IREFB,1
NOTES: 1.
2.
3.
4.
46
TYP
MAX
UNIT
2.2
3.6
V
0
VCC
V
2.2 V
0.52
1.05
3V
0.6
1.2
mA
2.2 V/3 V
mA
0.25
Reference buffer supply
current with ADC10SR=0
(see Note 4)
IREFB,0
MIN
2.2 V/3 V
0.4
mA
1.1
0.5
1.4
mA
1.8
mA
0.7
mA
0.8
mA
27
pF
2000
Ω
The leakage current is defined in the leakage current table with Px.x/Ax parameter.
The analog input voltage range must be within the selected reference voltage range VR+ to VR− for valid conversion results.
The internal reference supply current is not included in current consumption parameter IADC10.
The internal reference current is supplied via terminal VCC. Consumption is independent of the ADC10ON control bit, unless a
conversion is active. The REFON bit enables the built-in reference to settle before starting an A/D conversion.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
10-bit ADC, built-in voltage reference
PARAMETER
VCC,REF+
TEST CONDITIONS
Positive built-in reference analog
supply voltage range
VREF+
Positive built-in reference voltage
ILD,VREF+
Maximum VREF+ load current
VCC
IVREF+ ≤ 1mA, REF2_5V=0
IVREF+ ≤ 0.5mA, REF2_5V=1
VREF+ load regulation response time
UNIT
V
IVREF+ ≤ 1mA, REF2_5V=1
IVREF+ ≤ IVREF+max, REF2_5V=0
2.2 V/3 V
1.41
1.5
1.59
V
IVREF+ ≤ IVREF+max, REF2_5V=1
3V
2.35
2.5
2.65
V
2.9
±0.5
3V
±1
mA
IVREF+ = 500 µA ± 100 µA
Analog input voltage VAx ≈ 0.75 V;
REF2_5V=0
2.2 V/3 V
±2
LSB
IVREF+ = 500 µA ± 100 µA
Analog input voltage VAx ≈ 1.25 V;
REF2_5V=1
3V
±2
LSB
3V
400
IVREF+ =
100µA→900µA,
VAx ≈ 0.5 x VREF+
Error of conversion
result ≤ 1 LSB
ADC10SR=0
ns
ADC10SR=1
3V
2000
100
Max. capacitance at pin VREF+
(see Note 1)
IVREF+ ≤ ±1mA,
REFON=1, REFOUT=1
2.2 V/3 V
TCREF+
Temperature coefficient
IVREF+ = const. with
0 mA ≤ IVREF+ ≤ 1 mA
2.2 V/3 V
tREFON
Settling time of internal reference
voltage (see Note 2)
IVREF+ = 0.5 mA, REF2_5V=0
REFON = 0 → 1
Settling time of reference buffer
(see Note 2)
MAX
2.8
CVREF+
tREFBURST
TYP
2.2
2.2 V
VREF+ load regulation
MIN
pF
±100 ppm/°C
3.6 V
30
IVREF+ = 0.5 mA,
REF2_5V=0,
REFON = 1,
REFBURST = 1
ADC10SR=0
2.2 V
1
ADC10SR=1
2.2 V
2.5
IVREF+ = 0.5 mA,
REF2_5V=1,
REFON = 1,
REFBURST = 1
ADC10SR=0
3V
2
ADC10SR=1
3V
4.5
µs
µss
µss
NOTES: 1. The capacitance applied to the internal buffer operational amplifier, if switched to terminal P2.4/TA2/A4/VREF+/VeREF+ (REFOUT=1),
must be limited; the reference buffer may become unstable otherwise.
2. The condition is that the error in a conversion started after tREFON or tRefBuf is less than ±0.5 LSB.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
47
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
10-bit ADC, external reference (see Note 1)
PARAMETER
VeREF+
TEST CONDITIONS
Positive external reference input
voltage range (see Note 2)
TYP
MAX
UNIT
1.4
VCC
V
VeREF− ≤ VeREF+ ≤ VCC − 0.15V
SREF1 = 1, SREF0 = 1 (see Note 3)
1.4
3.0
V
0
1.2
V
1.4
VCC
V
Negative external reference input
voltage range (see Note 4)
VeREF+ > VeREF−
∆VeREF
Differential external reference input
voltage range
∆VeREF = VeREF+ − VeREF−
VeREF+ > VeREF− (see Note 5)
Static input current into VeREF+
MIN
VeREF+ > VeREF−
SREF1 = 1, SREF0 = 0
VeREF−
IVeREF+
VCC
0V ≤ VeREF+ ≤ VCC,
SREF1 = 1, SREF0 = 0
2.2 V/3 V
±1
µA
0V ≤VeREF+ ≤ VCC − 0.15V ≤ 3V
SREF1 = 1, SREF0 = 1 (see Note 3)
2.2 V/3 V
0
µA
IVeREF−
Static input current into VeREF−
0V ≤ VeREF− ≤ VCC
2.2 V/3 V
±1
µA
NOTES: 1. The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, CI, is also
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the
recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy.
2. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced
accuracy requirements.
3. Under this condition the external reference is internally buffered. The reference buffer is active and requires the reference buffer
supply current IREFB. The current consumption can be limited to the sample and conversion period with REBURST = 1.
4. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced
accuracy requirements.
5. The accuracy limits the minimum external differential reference voltage. Lower differential reference voltage levels may be applied
with reduced accuracy requirements.
48
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
10-bit ADC, timing parameters
PARAMETER
fADC10CLK
fADC10OSC
tCONVERT
TEST CONDITIONS
For specified
performance of
ADC10 linearity
parameters
ADC10 input clock frequency
ADC10 built-in oscillator frequency
Conversion time
VCC
MIN
TYP
MAX
UNIT
ADC10SR=0
2.2 V/3 V
0.45
6.3
ADC10SR=1
2.2 V/3 V
0.45
1.5
ADC10DIVx=0, ADC10SSELx = 0
fADC10CLK = fADC10OSC
2.2 V/3 V
3.7
6.3
MHz
ADC10 built-in oscillator,
ADC10SSELx = 0
fADC10CLK = fADC10OSC
2.2 V/3 V
2.06
3.51
µs
MHz
13×
ADC10DIV×
1/fADC10CLK
fADC10CLK from ACLK, MCLK or
SMCLK: ADC10SSELx ≠ 0
µs
tADC10ON
Turn on settling time of the ADC
(see Note 1)
100
ns
NOTES: 1. The condition is that the error in a conversion started after tADC10ON is less than ±0.5 LSB. The reference and input signal are already
settled.
10-bit ADC, linearity parameters
PARAMETER
TEST CONDITIONS
VCC
MIN
TYP
MAX
UNIT
EI
ED
Integral linearity error
2.2 V/3 V
±1
LSB
Differential linearity error
2.2 V/3 V
±1
LSB
EO
Offset error
2.2 V/3 V
±1
LSB
EG
Gain error
Source impedance RS < 100 Ω,
SREFx = 010; un-buffered external
reference; VeREF+ = 1.5V
2.2 V
±1.1
±2
LSB
SREFx = 010; un-buffered external
reference; VeREF+ = 2.5V
3V
±1.1
±2
LSB
2.2 V
±1.1
±4
LSB
3V
±1.1
±3
LSB
2.2 V
±2
±5
LSB
3V
±2
±5
LSB
SREFx = 011; buffered external
reference (see Note 1);
VeREF+ = 1.5V
2.2 V
±2
±7
LSB
SREFx = 011; buffered external
reference (see Note 1);
VeREF+ = 2.5V
3V
±2
±6
LSB
SREFx = 011; buffered external
reference (see Note 1);
VeREF+ = 1.5V
SREFx = 011; buffered external
reference (see Note 1);
VeREF+ = 2.5V
SREFx = 010; un-buffered external
reference; VeREF+ = 1.5V
SREFx = 010; un-buffered external
reference; VeREF+ = 2.5V
ET
Total unadjusted error
NOTES: 1. The reference buffer’s offset adds to the gain and total unadjusted error.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
49
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
10-bit ADC, temperature sensor and built-in VMID
PARAMETER
ISENSOR
Temperature sensor supply
current (see Note 1)
TEST CONDITIONS
REFON = 0, INCHx = 0Ah,
TA = 25_C
TCSENSOR†
ADC10ON = 1, INCHx = 0Ah
(see Note 2)
VOffset,Sensor Sensor offset voltage
ADC10ON = 1, INCHx = 0Ah
(see Note 2)
VSensor
Sensor output voltage
(see Note 3)
Sample time required if
tSensor(sample) channel 10 is selected (see
Note 4)
VCC
MIN
TYP
MAX
2.2 V
40
120
3V
60
160
3.55
3.66
mV/°C
100
mV
2.2 V/3 V
3.44
−100
µA
A
Temperature sensor voltage
at TA = 105°C (T Version only)
2.2 V/3 V
1265
1365
1465
mV
Temperature sensor voltage
at TA = 85°C
2.2 V/3 V
1195
1295
1395
mV
Temperature sensor voltage
at TA = 25°C
2.2 V/3 V
985
1085
1185
Temperature sensor voltage
at TA = 0°C
2.2 V/3 V
895
995
1095
ADC10ON = 1, INCHx = 0Ah,
Error of conversion result ≤ 1 LSB
2.2 V/3 V
30
mV
µs
2.2 V
NA
3V
NA
IVMID
Current into divider at channel
11 (see Note 5)
ADC10ON = 1, INCHx = 0Bh,
1.06
1.1
1.14
VCC divider at channel 11
ADC10ON = 1, INCHx = 0Bh,
VMID is ≈0.5 x VCC
2.2 V
VMID
3V
1.46
1.5
1.54
ADC10ON = 1, INCHx = 0Bh,
Error of conversion result ≤ 1 LSB
2.2 V
1400
3V
1220
Sample time required if
tVMID(sample) channel 11 is selected (see
Note 6)
UNIT
A
µA
V
ns
NOTES: 1. The sensor current ISENSOR is consumed if (ADC10ON = 1 and REFON = 1), or (ADC10ON=1 and INCH=0Ah and sample signal
is high). When REFON = 1, ISENSOR is included in IREF+. When REFON = 0, ISENSOR applies during conversion of the temperature
sensor input (INCH = 0Ah).
2. The following formula can be used to calculate the temperature sensor output voltage:
VSensor,typ = TCSensor ( 273 + T [°C] ) + VOffset,sensor [mV] or
VSensor,typ = TCSensor T [°C] + VSensor(TA = 0°C) [mV]
3. Results based on characterization and/or production test, not TCSensor or VOffset,sensor.
4. The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on).
5. No additional current is needed. The VMID is used during sampling.
6. The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed.
50
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
operational amplifier OA, supply specifications (MSP430x22x4 only)
PARAMETER
VCC
ICC
PSRR
TEST CONDITIONS
VCC
Supply voltage range
Supply current (see Note 1)
Power supply rejection ratio
MIN
TYP
2.2
MAX
UNIT
3.6
Fast Mode
2.2 V/3 V
180
290
Medium Mode
2.2 V/3 V
110
190
Slow Mode
2.2 V/3 V
50
80
Non-inverting
2.2 V/3 V
70
V
µA
dB
NOTES: 1. Corresponding pins configured as OA inputs and outputs respectively.
operational amplifier OA, input/output specifications (MSP430x22x4 only)
PARAMETER
VI/P
IIkg
TEST CONDITIONS
Input voltage range
Input leakage current
(see Notes 1 and 2)
Voltage noise density, I/P
MIN
−0.1
±0.5
VCC−1.2
5
nA
2.2 V/3 V
−20
±5
20
nA
TA = +85 to +105_C
Fast Mode
2.2 V/3 V
−50
50
nA
80
fV(I/P) = 1 kHz
140
Fast Mode
30
50
fV(I/P) = 10 kHz
65
±10
2.2 V/3 V
±10
2.2 V/3 V
0.3V ≤ VIN ≤ VCC−1.0V
∆VCC≤ ± 10%, TA = 25°C
2.2 V/3 V
Fast Mode, ISOURCE ≤ −500µA
2.2 V/3 V
Slow Mode,ISOURCE ≤ −150µA
2.2 V/3 V
Fast Mode, ISOURCE ≤ +500µA
2.2 V/3 V
Slow Mode,ISOURCE ≤ +150µA
2.2 V/3 V
RLoad= 3 kΩ, CLoad = 50pF,
VO/P(OAx) < 0.2 V
2.2 V/3 V
150
250
RLoad= 3 kΩ, CLoad = 50pF,
VO/P(OAx) > VCC − 1.2 V
2.2 V/3 V
150
250
RLoad= 3 kΩ, CLoad = 50pF,
0.2 V ≤ VO/P(OAx) ≤ VCC − 0.2 V
2.2 V/3 V
0.1
4
Non-inverting
2.2 V/3 V
70
Low-level output voltage, O/P
Output Resistance
(see Figure 25 and Note 4)
Common-mode rejection ratio
VCC−0.2
VCC−0.1
VSS
VSS
mV
µV/°C
see Note 3
Offset voltage drift
with supply, I/P
VOL
CMRR
nV/√Hz
Offset temperature drift, I/P
High-level output voltage, O/P
V
50
Slow Mode
Offset voltage, I/P
VOH
NOTES: 1.
2.
3.
4.
UNIT
−5
Slow Mode
RO/P(OAx)
MAX
2.2 V/3 V
Medium Mode
VIO
TYP
TA = −40 to +55_C
TA = +55 to +85_C
Medium Mode
Vn
VCC
±1.5
mV/V
VCC
VCC
V
0.2
0.1
V
Ω
dB
ESD damage can degrade input current leakage.
The input bias current is overridden by the input leakage current.
Calculated using the box method.
Specification valid for voltage-follower OAx configuration.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
51
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
RO/P(OAx)
Max
RLoad
ILoad
AV CC
OAx
2
CLoad
O/P(OAx)
Min
0.2V
AV CC −0.2VAV
V
CC OUT
Figure 25. OAx Output Resistance Tests
operational amplifier OA, dynamic specifications (MSP430x22x4 only)
PARAMETER
SR
TEST CONDITIONS
Slew rate
VCC
MIN
TYP
Fast Mode
1.2
Medium Mode
0.8
Slow Mode
0.3
Open-loop voltage gain
φm
ten(on)
ten(off)
UNIT
V/µs
100
dB
Phase margin
CL = 50 pF
60
deg
Gain margin
CL = 50 pF
20
dB
Gain-Bandwidth Product
(see Figure 26
and Figure 27)
GBW
MAX
Enable time on
Non-inverting, Fast Mode,
RL = 47kΩ, CL = 50pF
2.2 V/3 V
2.2
Non-inverting, Medium Mode,
RL =300kΩ, CL = 50pF
2.2 V/3 V
1.4
Non-inverting, Slow Mode,
RL =300kΩ, CL = 50pF
2.2 V/3 V
0.5
ton, non-inverting, Gain = 1
2.2 V/3 V
10
Enable time off
2.2 V/3 V
MHz
20
µs
1
µs
TYPICAL PHASE vs FREQUENCY
TYPICAL OPEN-LOOP GAIN vs FREQUENCY
0
140
120
100
−50
Fast Mode
80
Phase − degrees
Gain − dB
Fast Mode
60
40
Medium Mode
20
0
Slow Mode
−100
Medium Mode
−150
−20
Slow Mode
−40
−200
−60
−80
1
10
100
1000
10000
100000
−250
1
Input Frequency − kHz
100
Figure 27
POST OFFICE BOX 655303
1000
Input Frequency − kHz
Figure 26
52
10
• DALLAS, TEXAS 75265
10000
100000
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
operational amplifier OA feedback network, resistor network (see Note 1. MSP430x22x4 only)
PARAMETER
TEST CONDITIONS
VCC
MIN
TYP
MAX
UNIT
Rtotal
Total resistance of resistor string
76
96
128
kΩ
Runit
Unit resistor of resistor string
(see Note 2)
4.8
6
8
kΩ
NOTES: 1. A single resistor string is composed of 4 Runit + 4 Runit + 2 Runit + 2 Runit + 1 Runit + 1 Runit + 1 Runit + 1 Runit = 16 Runit = Rtotal.
2. For the matching (i.e. the relative accuracy) of the unit resistors on a device refer to the gain and level specifications of the respective
configurations.
operational amplifier OA feedback network,
comparator mode (OAFCx = 3. MSP430x22x4 only)
PARAMETER
VLevel
tPLH, tPHL
Comparator level
Propagation delay
(low−high and high−low)
TEST CONDITIONS
VCC
MIN
TYP
MAX
OAFBRx = 1, OARRIP = 0
2.2 V/ 3V
0.245
1/4
0.255
OAFBRx = 2, OARRIP = 0
2.2 V/ 3V
0.495
1/2
0.505
OAFBRx = 3, OARRIP = 0
2.2 V/ 3V
0.619
5/8
0.631
OAFBRx = 4, OARRIP = 0
2.2 V/ 3V
N/A (see Note 1)
OAFBRx = 5, OARRIP = 0
2.2 V/ 3V
N/A (see Note 1)
OAFBRx = 6, OARRIP = 0
2.2 V/ 3V
N/A (see Note 1)
OAFBRx = 7, OARRIP = 0
2.2 V/ 3V
OAFBRx = 1, OARRIP = 1
2.2 V/ 3V
0.061
OAFBRx = 2, OARRIP = 1
2.2 V/ 3V
OAFBRx = 3, OARRIP = 1
2.2 V/ 3V
OAFBRx = 4, OARRIP = 1
UNIT
N/A (see Note 1)
1/16
0.065
0.122
1/8
0.128
0.184
3/16
0.192
2.2 V/ 3V
0.245
1/4
0.255
OAFBRx = 5, OARRIP = 1
2.2 V/ 3V
0.367
3/8
0.383
OAFBRx = 6, OARRIP = 1
2.2 V/ 3V
0.495
1/2
0.505
OAFBRx = 7, OARRIP = 1
2.2 V/ 3V
Fast Mode, Overdrive 10mV
2.2 V/ 3V
40
Fast Mode, Overdrive 100mV
2.2 V/3 V
4
Fast Mode, Overdrive 500mV
2.2 V/3 V
3
Medium Mode, Overdrive 10mV
2.2 V/3 V
60
Medium Mode, Overdrive 100mV
2.2 V/3 V
6
Medium Mode, Overdrive 500mV
2.2 V/3 V
5
Slow Mode, Overdrive 10mV
2.2 V/3 V
160
Slow Mode, Overdrive 100mV
2.2 V/3 V
20
Slow Mode, Overdrive 500mV
2.2 V/3 V
15
VCC
N/A (see Note 1)
µs
NOTES: 1. The level is not available due to the analog input voltage range of the operational amplifier.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
53
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
operational amplifier OA feedback network,
non-inverting amplifier mode (OAFCx = 4. MSP430x22x4 only)
PARAMETER
G
THD
Gain
Total Harmonic Distortion/
Nonlinearity
TEST CONDITIONS
VCC
MIN
TYP
MAX
OAFBRx = 0
2.2 V/ 3V
0.998
1.00
1.002
OAFBRx = 1
2.2 V/ 3V
1.328
1.334
1.340
OAFBRx = 2
2.2 V/ 3V
1.985
2.001
2.017
OAFBRx = 3
2.2 V/ 3V
2.638
2.667
2.696
OAFBRx = 4
2.2 V/ 3V
3.94
4.00
4.06
OAFBRx = 5
2.2 V/ 3V
5.22
5.33
5.44
OAFBRx = 6
2.2 V/ 3V
7.76
7.97
8.18
OAFBRx = 7
2.2 V/ 3V
15.0
15.8
16.6
2.2 V
−60
3V
−70
all gains
UNIT
dB
tSettle
Settling time (see Note 1)
all power modes
2.2 V/3 V
7
12
µs
NOTES: 1. The settling time specifies the time until an ADC result is stable. This includes the minimum required sampling time of the ADC. The
settling time of the amplifier itself might be faster.
operational amplifier OA feedback network,
inverting amplifier mode (OAFCx = 6, see Note 1, MSP430x22x4 only)
PARAMETER
G
THD
Gain
Total Harmonic Distortion/
Nonlinearity
VCC
MIN
TYP
MAX
OAFBRx = 1
TEST CONDITIONS
2.2 V/ 3V
−0.345
−0.335
−0.325
OAFBRx = 2
2.2 V/ 3V
−1.023
−1.002
−0.979
OAFBRx = 3
2.2 V/ 3V
−1.712
−1.668
−1.624
OAFBRx = 4
2.2 V/ 3V
−3.10
−3.00
−2.90
OAFBRx = 5
2.2 V/ 3V
−4.51
−4.33
−4.15
OAFBRx = 6
2.2 V/ 3V
−7.37
−6.97
−6.57
OAFBRx = 7
2.2 V/ 3V
−16.3
−14.8
−13.1
all gains
2.2 V
−60
3V
−70
UNIT
dB
tSettle
Settling time (see Note 2)
all power modes
2.2 V/3 V
7
12
µs
NOTES: 1. This includes the 2 OA configuration “inverting amplifier with input buffer”. Both OA needs to be set to the same power mode OAPMx.
2. The settling time specifies the time until an ADC result is stable. This includes the minimum required sampling time of the ADC. The
settling time of the amplifier itself might be faster.
54
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
Flash Memory
PARAMETER
VCC(PGM/
ERASE)
TEST CONDITIONS
VCC
Program and Erase supply voltage
MIN
TYP
2.2
fFTG
IPGM
Flash Timing Generator frequency
Supply current from VCC during program
2.2 V/3.6 V
257
1
IERASE
tCPT
Supply current from VCC during erase
2.2 V/3.6 V
1
Cumulative program time (see Note 1)
2.2 V/3.6 V
tCMErase
Cumulative mass erase time
2.2 V/3.6 V
Program/Erase endurance
tRetention
Data retention duration
TJ = 25°C
tWord
tBlock, 0
Word or byte program time
Block program time for 1st byte or word
tBlock, 1-63
tBlock, End
Block program time for each additional byte or word
tMass Erase
tSeg Erase
Mass erase time
Block program end-sequence wait time
20
104
MAX
UNIT
3.6
V
476
kHz
5
mA
7
mA
10
ms
ms
105
cycles
100
years
30
25
18
see Note 2
tFTG
6
10593
Segment erase time
4819
NOTES: 1. The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming
methods: individual word/byte write and block write modes.
2. These values are hardwired into the Flash Controller’s state machine (tFTG = 1/fFTG).
RAM
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
V(RAMh)
RAM retention supply voltage (see Note 1)
CPU halted
1.6
V
NOTE 1: This parameter defines the minimum supply voltage VCC when the data in RAM remains unchanged. No program execution should
happen during this supply voltage condition.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
55
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
JTAG and Spy-Bi-Wire Interface
TEST
CONDITIONS
PARAMETER
fSBW
tSBW,Low
VCC
MIN
TYP
MAX
UNIT
Spy-Bi-Wire input frequency
2.2 V / 3 V
0
20
MHz
Spy-Bi-Wire low clock pulse length
2.2 V / 3 V
0.025
15
us
tSBW,En
Spy-Bi-Wire enable time
(TEST high to acceptance of first clock edge, see
Note 1)
2.2 V/ 3 V
1
us
tSBW,Ret
Spy-Bi-Wire return to normal operation time
2.2 V/ 3 V
15
100
2.2 V
0
5
MHz
3V
0
10
MHz
fTCK
TCK input frequency (see Note 2)
us
RInternal
Internal pull-down resistance on TEST
2.2 V/ 3 V
25
60
90
kΩ
NOTES: 1. Tools accessing the Spy-Bi-Wire interface need to wait for the maximum tSBW,En time after pulling the TEST/SBWCLK pin high
before applying the first SBWCLK clock edge.
2. fTCK may be restricted to meet the timing requirements of the module selected.
JTAG Fuse (see Note 1)
TEST
CONDITIONS
PARAMETER
VCC(FB)
VFB
Supply voltage during fuse-blow condition
IFB
tFB
Supply current into TEST during fuse blow
TA = 25°C
Voltage level on TEST for fuse-blow
VCC
MIN
MAX
2.5
6
Time to blow fuse
TYP
UNIT
V
7
V
100
mA
1
ms
NOTES: 1. Once the fuse is blown, no further access to the JTAG/Test and emulation feature is possible and is switched to bypass mode.
56
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
APPLICATION INFORMATION
Port P1 pin schematic: P1.0 to P1.3, input/output with Schmitt-trigger
Pad Logic
P1REN.x
P1DIR.x
0
0
Module X OUT
1
0
1
1
Direction
0: Input
1: Output
1
P1OUT.x
DVSS
DVCC
P1.0/TACLK/ADC10CLK
P1.1/TA0
P1.2/TA1
P1.3/TA2
P1SEL.x
P1IN.x
EN
Module X IN
D
P1IE.x
P1IRQ.x
EN
Q
Set
P1IFG.x
P1SEL.x
P1IES.x
Interrupt
Edge
Select
Port P1 (P1.0 to P1.3) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P1.X)
X
P1.0/
TACLK/ADC10CLk
0
P1.1/TA0
P1.2/TA1
P1.3/TA2
1
2
3
FUNCTION
P1DIR.x
P1SEL.x
I: 0; O: 1
0
Timer_A3.TACLK
0
1
ADC10CLK
1
1
P1.1† (I/O)
P1.0† (I/O)
I: 0; O: 1
0
Timer_A3.CCI0A
0
1
Timer_A3.TA0
1
1
P1.2† (I/O)
I: 0; O: 1
0
Timer_A3.CCI0A
0
1
Timer_A3.TA0
1
1
P1.3† (I/O)
I: 0; O: 1
0
Timer_A3.CCI0A
0
1
Timer_A3.TA0
1
1
† Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable.
2. X: Don’t care.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
57
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
Port P1 pin schematic: P1.4 to P1.6, input/output with Schmitt-trigger and in-system access features
Pad Logic
P1REN.x
P1DIR.x
0
P1OUT.x
0
1
0
DVCC
1
1
Direction
0: Input
1: Output
1
Module X OUT
DVSS
P1.4/SMCLK/TCK
P1.5/TA0/TMS
P1.6/TA1/TDI
Bus
Keeper
P1SEL.x
EN
P1IN.x
EN
Module X IN
D
P1IE.x
P1IRQ.x
EN
Q
Set
P1IFG.x
P1SEL.x
P1IES.x
Interrupt
Edge
Select
To JTAG
From JTAG
Port P1 (P1.4 to P1.6) pin functions
PIN NAME (P1.X)
P1.4/SMCLK/TCK
P1.5/TA0/TMS
P1.6/TA1/TDI/TCLK
CONTROL BITS / SIGNALS
X
4
5
6
FUNCTION
P1.4† (I/O)
P1SEL.x
4-Wire JTAG
I: 0; O: 1
0
0
SMCLK
1
1
0
TCK
X
X
1
I: 0; O: 1
0
0
P1.5† (I/O)
Timer_A3.TA0
1
1
0
TMS
X
X
1
P1.6† (I/O)
I: 0; O: 1
0
0
Timer_A3.TA1
1
1
0
TDI/TCLK (see Note 3)
X
X
1
† Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable.
2. X: Don’t care.
3. Function controlled by JTAG.
58
P1DIR.x
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
Port P1 pin schematic: P1.7, input/output with Schmitt-trigger and in-system access features
Pad Logic
P1REN.7
P1DIR.7
0
P1OUT.7
0
1
0
DVCC
1
1
Direction
0: Input
1: Output
1
Module X OUT
DVSS
P1.7/TA2/TDO/TDI
Bus
Keeper
P1SEL.7
EN
P1IN.7
EN
Module X IN
D
P1IE.7
P1IRQ.7
EN
Q
Set
P1IFG.7
Interrupt
Edge
Select
P1SEL.7
P1IES.7
To JTAG
From JTAG
From JTAG
From JTAG (TDO)
Port P1 (P1.7) pin functions
PIN NAME (P1.X)
P1.7/TA2/TDO/TDI
CONTROL BITS / SIGNALS
X
7
FUNCTION
P1.7† (I/O)
P1DIR.x
P1SEL.x
4-Wire JTAG
I: 0; O: 1
0
0
Timer_A3.TA2
1
1
0
TDO/TDI (see Note 3)
X
X
1
† Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable.
2. X: Don’t care.
3. Function controlled by JTAG.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
59
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
Port P2 pin schematic: P2.0, P2.2, input/output with Schmitt-trigger
Pad Logic
To ADC 10
INCHx = y
ADC10AE0.y
P2REN.x
P2DIR.x
0
0
Module X OUT
1
0
1
1
Direction
0: Input
1: Output
1
P2OUT.x
DVSS
DVCC
P2.0/ACLK/A0/OA0I0
P2.2/TA0/A2/OA0I1
Bus
Keeper
P2SEL.x
EN
P2IN.x
EN
Module X IN
D
P2IE.x
P2IRQ.x
EN
Q
P2IFG.x
P2SEL.x
P2IES.x
Set
Interrupt
Edge
Select
+
OA0
−
Port P2 (P2.0, P2.2) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P2.X)
X
Y
P2.0/ACLK/A0/OA0I0
0
0
P2.2/TA0/A2/OA0I1
2
2
FUNCTION
P2.0† (I/O)
P2DIR.x
P2SEL.x
ADC10AE0.y
I: 0; O: 1
0
0
ACLK
1
1
0
A0/OA0I0 (see Note 3)
X
X
1
I: 0; O: 1
0
0
Timer_A3.CCI0B
0
1
0
Timer_A3.TA0
1
1
0
A2/OA0I1 (see Note 3)
X
X
P2.2† (I/O)
1
† Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable.
2. X: Don’t care.
3. Setting the ADC10AE0.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when
applying analog signals.
60
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
Port P2 pin schematic: P2.1, input/output with Schmitt-trigger
Pad Logic
To ADC 10
INCHx = 1
ADC10AE0.1
P2REN.1
P2DIR.1
0
0
Module X OUT
1
0
1
1
Direction
0: Input
1: Output
1
P2OUT.1
DVSS
DVCC
P2.1/TAINCLK/SMCLK/
A1/OA0O
Bus
Keeper
P2SEL.1
EN
P2IN.1
EN
Module X IN
D
P2IE.1
P2IRQ.1
EN
Q
P2IFG.1
Set
+
OA0
P2SEL.1
P2IES.1
OAADCx
OAFCx
OAPMx
Interrupt
Edge
Select
1
−
(OAADCx = 10 or OAFCx = 000) and OAPMx > 00
To OA0 Feedback Network
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
61
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
Port P2 pin schematic: P2.3, input/output with Schmitt-trigger
SREF2
Pad Logic
VSS
0
To ADC 10 VR−
1
To ADC 10
INCHx = 3
ADC10AE0.3
P2REN.3
P2DIR.3
0
0
Module X OUT
1
0
1
1
Direction
0: Input
1: Output
1
P2OUT.3
DVSS
DVCC
P2.3/TA1/
A3/VREF−/VeREF−/
OA1I1/OA1O
Bus
Keeper
P2SEL.3
EN
P2IN.3
EN
Module X IN
D
P2IE.3
P2IRQ.3
P2IFG.3
P2SEL.3
P2IES.3
OAADCx
OAFCx
OAPMx
EN
Q
Set
Interrupt
Edge
Select
+
OA1
−
(OAADCx = 10 or OAFCx = 000) and OAPMx > 00
To OA1 Feedback Network
62
1
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
Port P2 (P2.1) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P2.X)
X
Y
P2.1/TAINCLK/SMCLK
/A1/OA0O
1
1
FUNCTION
P2DIR.x
P2SEL.x
ADC10AE0.y
I: 0; O: 1
0
0
Timer_A3.INCLK
0
1
0
SMCLK
1
1
0
A1/OA0O (see Note 3)
X
X
P2.1† (I/O)
1
† Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable.
2. X: Don’t care.
3. Setting the ADC10AE0.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when
applying analog signals.
Port P2 (P2.3) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P2.X)
X
Y
P2.3/TA1/
A3/VREF−/VeREF−/
OA1I1/OA1O
3
3
FUNCTION
P2.3† (I/O)
Timer_A3.CCI1B
P2DIR.x
P2SEL.x
ADC10AE0.y
I: 0; O: 1
0
0
0
1
0
0
Timer_A3.TA1
1
1
A3/VREF−/VeREF−/OA1I1/OA1O (see Note 3)
X
X
1
† Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable.
2. X: Don’t care.
3. Setting the ADC10AE0.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when
applying analog signals.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
63
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
Port P2 pin schematic: P2.4, input/output with Schmitt-trigger
Pad Logic
To/from ADC10
positive reference
To ADC10
INCHx = 4
ADC10AE0.4
P2REN.4
P2DIR.4
0
0
Module X OUT
1
0
DVCC
1
1
Direction
0: Input
1: Output
1
P2OUT.4
DVSS
P2.4/TA2/
A4/VREF+/VeREF+/
OA1I0
Bus
Keeper
P2SEL.4
EN
P2IN.4
EN
Module X IN
D
P2IE.4
P2IRQ.4
EN
Q
Set
P2IFG.4
P2SEL.4
P2IES.4
Interrupt
Edge
Select
+
OA1
−
Port P2 (P2.4) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P2.X)
X
Y
P2.4/TA2/
A4/VREF+/VeREF+/
OA1I0
4
4
FUNCTION
P2.4† (I/O)
Timer_A3.TA2
P2DIR.x
P2SEL.x
ADC10AE0.y
I: 0; O: 1
0
0
1
1
0
A4/VREF+/VeREF+/OA1I0 (see Note 3)
X
X
1
† Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable.
2. X: Don’t care.
3. Setting the ADC10AE0.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when
applying analog signals.
64
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
Port P2 pin schematic: P2.5, input/output with Schmitt-trigger and external ROSC for DCO
Pad Logic
To DCO
DCOR
P1REN.x
P1DIR.x
0
P1OUT.x
0
1
0
DVCC
1
1
Direction
0: Input
1: Output
1
Module X OUT
DVSS
P2.5/ROSC
Bus
Keeper
P1SEL.x
EN
P1IN.x
EN
Module X IN
D
P1IE.x
P1IRQ.x
EN
Q
P1IFG.x
P1SEL.x
P1IES.x
Set
Interrupt
Edge
Select
Port P2 (P2.5) pin functions
PIN NAME (P2.X)
P2.5/ROSC
CONTROL BITS / SIGNALS
X
5
FUNCTION
P2.5† (I/O)
P2DIR.x
P2SEL.x
DCOR
I: 0; O: 1
0
0
N/A
0
1
0
DVSS
ROSC
1
1
0
X
X
1
† Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable.
2. X: Don’t care.
3. Setting the ADC10AE0.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when
applying analog signals.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
65
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
Port P2 pin schematic: P2.6, input/output with Schmitt-trigger and crystal oscillator input
BCSCTL3.LFXT1Sx = 11
LFXT1 Oscillator
P2.7/XOUT
LFXT1 off
0
LFXT1CLK
1
Pad Logic
P2SEL.7
P2REN.6
P2DIR.6
0
P2OUT.6
0
1
0
DVCC
1
1
Direction
0: Input
1: Output
1
Module X OUT
DVSS
P2.6/XIN
Bus
Keeper
P2SEL.6
EN
P2IN.6
EN
Module X IN
D
P2IE.6
P2IRQ.6
EN
Q
Set
P2IFG.6
Interrupt
Edge
Select
P2SEL.6
P2IES.6
Port P2 (P2.6) pin functions
PIN NAME (P2.X)
P2.6/XIN
CONTROL BITS / SIGNALS
X
6
FUNCTION
P2.6 (I/O)
XIN†
† Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable.
2. X: Don’t care.
66
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
P2DIR.x
P2SEL.x
I: 0; O: 1
0
X
1
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
Port P2 pin schematic: P2.7, input/output with Schmitt-trigger and crystal oscillator output
BCSCTL3.LFXT1Sx = 11
LFXT1 Oscillator
LFXT1 off
0
LFXT1CLK
From P2.6/XIN
1
P2.6/XIN
Pad Logic
P2SEL.6
P2REN.7
P2DIR.7
0
P2OUT.7
0
1
0
DVCC
1
1
Direction
0: Input
1: Output
1
Module X OUT
DVSS
P2.7/XOUT
Bus
Keeper
P2SEL.7
EN
P2IN.7
EN
Module X IN
D
P2IE.7
P2IRQ.7
EN
Q
P2IFG.7
P2SEL.7
P2IES.7
Set
Interrupt
Edge
Select
Port P2 (P2.7) pin functions
PIN NAME (P2.X)
XOUT/P2.7
CONTROL BITS / SIGNALS
X
6
FUNCTION
P2.7 (I/O)
XOUT† (see Note 3)
P2DIR.x
P2SEL.x
I: 0; O: 1
0
1
† Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable.
2. X: Don’t care.
3. If the pin XOUT/P2.7 is used as an input a current can flow until P2SEL.7 is cleared due to the oscillator output driver connection
to this pin after reset.
POST OFFICE BOX 655303
X
• DALLAS, TEXAS 75265
67
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
Port P3 pin schematic: P3.0, input/output with Schmitt-trigger
Pad Logic
To ADC 10
INCHx = 5
ADC10AE0.5
P3REN.0
P3DIR.0
USCI Direction
Control
0
P3OUT.0
0
Module X OUT
1
DVSS
0
DVCC
1
1
Direction
0: Input
1: Output
1
P3.0/UC1STE/UC0CLK/A5
Bus
Keeper
P3SEL.0
EN
P3IN.0
EN
Module X IN
D
Port P3 (P3.0) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P3.X)
X
Y
P3.0/
UC1STE/UC0CLK/A5
0
5
FUNCTION
P3.0† (I/O)
UC1STE/UC0CLK (see Notes 3, 4)
P3DIR.x
P3SEL.x
ADC10AE0.y
I: 0; O: 1
0
0
X
1
0
A5 (see Note 5)
X
X
1
† Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable.
2. X: Don’t care.
3. The pin direction is controlled by the USCI module.
4. UC0CLK function takes precedence over UC1STE function. If the pin is required as UC0CLK input or output USCI1 will be forced
to 3-wire SPI mode if 4-wire SPI mode is selected.
5. Setting the ADC10AE0.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when
applying analog signals.
68
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
Port P3 pin schematic: P3.1 to P3.5, input/output with Schmitt-trigger
Pad Logic
DVSS
P3REN.x
P3DIR.x
USCI Direction
Control
0
P3OUT.x
0
Module X OUT
1
DVSS
0
DVCC
1
1
Direction
0: Input
1: Output
1
Bus
Keeper
P3SEL.x
EN
P3IN.x
P3.1/UC1SIMO/UC1SCL
P3.2/UC1SOMI/UC1SDA
P3.3/UC1CLK/UC0STE
P3.4/UC0TXD/UC0SIMO
P3.5/UC0RXD/UC0SOMI
EN
Module X IN
D
Port P3 (P3.1 to P3.5) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P3.X)
X
P3.1/
UC1SIMO/UC1SDA
1
P3.2/
UC1SOMI/UC1SCL
1
P3.3/
UC1CLK/UC0STE
1
P3.4/
UC0TXD/UC0SIMO
1
P3.5/
UC0RXD/UC0SOMI
1
FUNCTION
P3.1† (I/O)
UC1SIMO/UC1SDA (see Note 3)
P3.2† (I/O)
UC1SOMI/UC1SCL (see Note 3)
P3.3† (I/O)
UC1CLK/UC0STE (see Notes 3, 4)
P3.4† (I/O)
UC0TXD/UC0SIMO (see Note 3)
P3.5† (I/O)
UC0RXD/UC0SOMI (see Note 3)
P3DIR.x
P3SEL.x
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
I: 0; O: 1
0
1
† Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable.
2. X: Don’t care.
3. The pin direction is controlled by the USCI module.
4. UC1CLK function takes precedence over UC0STE function. If the pin is required as UC1CLK input or output USCI0 will be forced
to 3-wire SPI mode even if 4-wire SPI mode is selected.
POST OFFICE BOX 655303
X
• DALLAS, TEXAS 75265
69
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
Port P3 pin schematic: P3.6 to P3.7, input/output with Schmitt-trigger
Pad Logic
To ADC 10
INCHx = y
ADC10AE0.y
P3REN.x
P3DIR.x
0
0
Module X OUT
1
0
1
1
Direction
0: Input
1: Output
1
P3OUT.x
DVSS
DVCC
P3.6/A6/OA0I2
P3.7/A7/OA1I2
Bus
Keeper
P3SEL.x
EN
P3IN.x
EN
Module X IN
D
+
OA0/1
−
Port P3 (P3.6, P3.7) pin functions
PIN NAME (P3.X)
P3.6/A6/OA0I2
CONTROL BITS / SIGNALS
X
Y
6
6
FUNCTION
P3DIR.x
P3.6† (I/O)
A6/OA0I2 (see Note 5)
P3.7/A7/OA1I2
7
7
P3.7† (I/O)
A7/OA1I2 (see Note 5)
P3SEL.x
ADC10AE0.y
I: 0; O: 1
0
0
X
X
1
I: 0; O: 1
0
0
X
X
1
† Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable.
2. X: Don’t care.
3. The pin direction is controlled by the USCI module.
4. UC1CLK function takes precedence over UC0STE function. If the pin is required as UC1CLK input or output USCI0 will be forced
to 3-wire SPI mode if 4-wire SPI mode is selected.
5. Setting the ADC10AE0.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when
applying analog signals.
70
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
Port P4 pin schematic: P4.0 to P4.2, input/output with Schmitt-trigger
Timer_B Output Tristate Logic
P4.6/TBOUTH/A15/OA1I3
P4SEL.6
P4DIR.6
ADC10AE1.7
Pad Logic
P4REN.x
P4DIR.x
0
0
Module X OUT
1
0
1
1
Direction
0: Input
1: Output
1
P4OUT.x
DVSS
DVCC
Bus
Keeper
P4SEL.x
P4.0/TB0
P4.1/TB1
P4.2/TB2
EN
P4IN.x
EN
Module X IN
D
Port P4 (P4.0 to P4.2) pin functions
PIN NAME (P4.X)
P4.0/TB0
CONTROL BITS / SIGNALS
X
0
FUNCTION
P4.0† (I/O)
Timer_B3.CCI0A
Timer_B3.TB0
P4.1/TB1
P4.2/TB2
1
2
P4DIR.x
P4SEL.x
I: 0; O: 1
0
0
1
1
1
I: 0; O: 1
0
Timer_B3.CCI1A
0
1
Timer_B3.TB1
1
1
I: 0; O: 1
0
Timer_B3.CCI2A
0
1
Timer_B3.TB2
1
1
P4.1† (I/O)
P4.2† (I/O)
† Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable.
2. X: Don’t care.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
71
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
Port P4 pin schematic: P4.3 to P4.4, input/output with Schmitt-trigger
Timer_B Output Tristate Logic
P4.6/TBOUTH/A15/OA1I3
P4SEL.6
P4DIR.6
ADC10AE1.7
Pad Logic
To ADC 10
†
INCHx = 8+y
ADC10AE1.y
P4REN.x
P4DIR.x
0
0
Module X OUT
1
0
1
1
Direction
0: Input
1: Output
1
P4OUT.x
DVSS
DVCC
P4.3/TB0/A12/OA0O
P4.4/TB1/A13/OA1O
Bus
Keeper
P4SEL.x
EN
P4IN.x
EN
Module X IN
D
+
OA0/1
−
OAADCx
OAPMx
1
OAADCx = 01 and OAPMx > 00
To OA0/1 Feedback Network
1
† If OAADCx = 11 and not OAFCx = 000 the ADC input A12 or A13 is internally connected to the OA0 or OA1 output respectively and the connections
from the ADC and the operational amplifiers to the pad are disabled.
72
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
Port P4 (P4.3 to P4.4) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P4.X)
X
Y
P4.3/TB0/A12/OA0O
3
4
P4.4/TB1/A13/OA1O
4
5
FUNCTION
P4DIR.x
P4SEL.x
ADC10AE1.y
I: 0; O: 1
0
0
Timer_B3.CCI0B
0
1
0
Timer_B3.TB0
1
1
0
A12/OA0O (see Note 3)
X
X
1
P4.3† (I/O)
P4.4† (I/O)
I: 0; O: 1
0
0
Timer_B3.CCI1B
0
1
0
Timer_B3.TB1
1
1
0
A13/OA1O (see Note 3)
X
X
1
† Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable.
2. X: Don’t care.
3. Setting the ADC10AE1.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when
applying analog signals.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
73
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
Port P4 pin schematic: P4.5, input/output with Schmitt-trigger
Timer_B Output Tristate Logic
P4.6/TBOUTH/A15/OA1I3
P4SEL.6
P4DIR.6
ADC10AE1.7
Pad Logic
To ADC 10
INCHx = 14
ADC10AE1.6
P4REN.5
P4DIR.5
0
0
Module X OUT
1
0
1
P4.5/TB3/A14/OA0I3
Bus
Keeper
P4SEL.5
EN
P4IN.5
EN
Module X IN
D
+
OA0
−
74
1
Direction
0: Input
1: Output
1
P4OUT.5
DVSS
DVCC
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
Port P4 (P4.5) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P4.X)
X
Y
P4.5/TB3/A14/OA0I3
5
6
FUNCTION
P4.5† (I/O)
P4DIR.x
P4SEL.x
ADC10AE1.y
I: 0; O: 1
0
0
0
Timer_B3.TB2
1
1
A14/OA0I3 (see Note 3)
X
X
1
† Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable.
2. X: Don’t care.
3. Setting the ADC10AE1.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when
applying analog signals.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
75
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
Port P4 pin schematic: P4.6, input/output with Schmitt-trigger
Pad Logic
To ADC 10
INCHx = 15
ADC10AE1.7
P4REN.6
P4DIR.6
0
0
Module X OUT
1
0
DVCC
1
1
Direction
0: Input
1: Output
1
P4OUT.6
DVSS
P4.6/TBOUTH/
A15/OA1I3
Bus
Keeper
P4SEL.6
EN
P4IN.6
EN
Module X IN
D
+
OA1
−
Port P4 (P4.6) pin functions
PIN NAME (P4.X)
P4.6/TBOUTH/
A15/OA1I3
CONTROL BITS / SIGNALS
X
Y
6
7
FUNCTION
P4.6† (I/O)
P4DIR.x
P4SEL.x
ADC10AE1.y
I: 0; O: 1
0
0
TBOUTH
0
1
0
DVSS
A15/OA1I3 (see Note 3)
1
1
0
X
X
1
† Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable.
2. X: Don’t care.
3. Setting the ADC10AE1.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when
applying analog signals.
76
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
Port P4 pin schematic: P4.7, input/output with Schmitt-trigger
Pad Logic
DVSS
P4REN.x
P4DIR.x
0
P4OUT.x
0
1
0
DVCC
1
1
Direction
0: Input
1: Output
1
Module X OUT
DVSS
P4.7/TBCLK
Bus
Keeper
P4SEL.x
EN
P4IN.x
EN
Module X IN
D
Port P4 (P4.7) pin functions
PIN NAME (P4.X)
CONTROL BITS / SIGNALS
X
FUNCTION
P4DIR.x
P4SEL.x
I: 0; O: 1
0
Timer_B3.TBCLK
0
1
DVSS
† Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable.
2. X: Don’t care.
1
1
P4.7/TBCLK
7
P4.7† (I/O)
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
77
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
JTAG fuse check mode
MSP430 devices that have the fuse on the TEST terminal have a fuse check mode that tests the continuity of
the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check
current, ITF , of 1 mA at 3 V, 2.5 mA at 5 V can flow from the TEST pin to ground if the fuse is not burned. Care
must be taken to avoid accidentally activating the fuse check mode and increasing overall system power
consumption.
When the TEST pin is again taken low after a test or programming session, the fuse check mode and sense
currents are terminated.
Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if TMS
is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode.
After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse
check mode has the potential to be activated.
The fuse check current will only flow when the fuse check mode is active and the TMS pin is in a low state (see
Figure 28). Therefore, the additional current flow can be prevented by holding the TMS pin high (default
condition).
Time TMS Goes Low After POR
TMS
ITEST
ITF
Figure 28. Fuse Check Mode Current, MSP430F22xx
NOTE:
The CODE and RAM data protection is ensured if the JTAG fuse is blown and the 256-bit bootloader
access key is used. Also, see the bootstrap loader section for more information.
78
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS504A − JULY 2006 − REVISED DECEMBER 2006
Data Sheet Revision History
Literature
Number
SLAS504
SLAS504A
Summary
Preliminary data sheet release.
Production data sheet release.
Updated specification and added characterization graphs.
Updated/corrected port pin schematics.
NOTE: The referring page and figure numbers are referred to the respective document revision.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
79
PACKAGE OPTION ADDENDUM
www.ti.com
23-Mar-2007
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
MSP430F2232IDA
ACTIVE
TSSOP
DA
38
MSP430F2232IDAR
ACTIVE
TSSOP
DA
MSP430F2232IRHAR
ACTIVE
QFN
MSP430F2232IRHAT
ACTIVE
MSP430F2232TDA
40
Lead/Ball Finish
MSL Peak Temp (3)
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
38
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
RHA
40
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
QFN
RHA
40
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
ACTIVE
TSSOP
DA
38
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
MSP430F2232TDAR
ACTIVE
TSSOP
DA
38
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
MSP430F2232TRHAR
ACTIVE
QFN
RHA
40
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F2232TRHAT
ACTIVE
QFN
RHA
40
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F2234IDA
ACTIVE
TSSOP
DA
38
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
MSP430F2234IDAR
ACTIVE
TSSOP
DA
38
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
MSP430F2234IRHAR
ACTIVE
QFN
RHA
40
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F2234IRHAT
ACTIVE
QFN
RHA
40
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F2234TDA
ACTIVE
TSSOP
DA
38
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
MSP430F2234TDAR
ACTIVE
TSSOP
DA
38
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
MSP430F2234TRHAR
ACTIVE
QFN
RHA
40
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F2234TRHAT
ACTIVE
QFN
RHA
40
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F2252IDA
ACTIVE
TSSOP
DA
38
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
MSP430F2252IDAR
ACTIVE
TSSOP
DA
38
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
MSP430F2252IRHAR
ACTIVE
QFN
RHA
40
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F2252IRHAT
ACTIVE
QFN
RHA
40
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F2252TDA
ACTIVE
TSSOP
DA
38
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
MSP430F2252TDAR
ACTIVE
TSSOP
DA
38
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
MSP430F2252TRHAR
ACTIVE
QFN
RHA
40
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F2252TRHAT
ACTIVE
QFN
RHA
40
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F2254IDA
ACTIVE
TSSOP
DA
38
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
23-Mar-2007
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
MSP430F2254IDAR
ACTIVE
TSSOP
DA
38
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
MSP430F2254IRHAR
ACTIVE
QFN
RHA
40
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F2254IRHAT
ACTIVE
QFN
RHA
40
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F2254TDA
ACTIVE
TSSOP
DA
38
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
MSP430F2254TDAR
ACTIVE
TSSOP
DA
38
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
MSP430F2254TRHAR
ACTIVE
QFN
RHA
40
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F2254TRHAT
ACTIVE
QFN
RHA
40
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F2272IDA
ACTIVE
TSSOP
DA
38
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
MSP430F2272IDAR
ACTIVE
TSSOP
DA
38
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
MSP430F2272IRHAR
ACTIVE
QFN
RHA
40
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F2272IRHAT
ACTIVE
QFN
RHA
40
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F2272TDA
ACTIVE
TSSOP
DA
38
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
MSP430F2272TDAR
ACTIVE
TSSOP
DA
38
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
MSP430F2272TRHAR
ACTIVE
QFN
RHA
40
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F2272TRHAT
ACTIVE
QFN
RHA
40
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F2274IDA
ACTIVE
TSSOP
DA
38
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
MSP430F2274IDAR
ACTIVE
TSSOP
DA
38
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
MSP430F2274IRHAR
ACTIVE
QFN
RHA
40
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F2274IRHAT
ACTIVE
QFN
RHA
40
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F2274TDA
ACTIVE
TSSOP
DA
38
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
MSP430F2274TDAR
ACTIVE
TSSOP
DA
38
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
MSP430F2274TRHAR
ACTIVE
QFN
RHA
40
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F2274TRHAT
ACTIVE
QFN
RHA
40
250
CU NIPDAU
Level-3-260C-168 HR
(1)
Green (RoHS &
no Sb/Br)
Lead/Ball Finish
MSL Peak Temp (3)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
Addendum-Page 2
PACKAGE OPTION ADDENDUM
www.ti.com
23-Mar-2007
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 3
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties
may be subject to additional restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
RFID
www.ti-rfid.com
Telephony
www.ti.com/telephony
Low Power
Wireless
www.ti.com/lpw
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated
Similar pages