Anpec APW7079-28DI-TRG Low-supply-current synchronous step-up dc-dc converter Datasheet

APW7079
Low-Supply-Current Synchronous Step-up DC-DC Converter
General Description
Features
•
•
•
•
•
0.9V Typical Start-up Input Voltage
The APW7079 is a compact, PFM mode, and step-up
11µA Typical No Load Quiescent Current
DC-DC converter with low quiescent current. The internal synchronous rectifier reduces cost and PCB space
PFM Operation
by eliminating the need for an external Schottky diode.
Low on-resistance of the internal switches improves the
High Efficiency up to 92%
efficiency up to 92%. The start-up voltage is guaranteed
below 1V. After start-up, the device can operate with input
Fixed 1.8V, 2.6V, 2.8V, 3V, 3.3V, 3.8V, 4.5V or 5V
Output Voltage
•
•
•
•
voltage down to 0.7V. The APW7079 is suitable for portable battery-powered applications. Consuming only 11µA
600mA Internal Switch Current
quiescent current and an optimized control scheme allows the device to operate at very high efficiency over the
Internal Synchronous Rectifier
SOT-89 Package
entire load current range.
Lead Free and Green Devices Available
Efficiency vs. Output Current
(RoHS Compliant)
100
Applications
90
80
Toy
70
Efficiency (%)
•
•
•
Wireless Mouse
Portable Instrument
VIN=0.9V
60
50
VIN=1.0V
40
Pin Configuration
VIN=2.4V
VIN=1.2V
30
VIN=1.5V
20
10
APW7079-30
0
SOT89
0.1
1
10
100
1000
Output Current, I OUT (mA)
GND 1
VOUT
2
(TAB)
LX 3
Simplified Application Circuit
VIN
Top View
IIN
L1
22µH
C1
22µF
APW7079
LX
IOUT
VOUT
VOUT
GND
C2
47µF
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and
advise customers to obtain the latest version of relevant information to verify before placing orders.
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Oct., 2008
1
www.anpec.com.tw
APW7079
79
Ordering and Marking Information
Package Code
D : SOT-89
Operating Ambient Temperature Range
I : -40 to 85oC
Handling Code
TR : Tape & Reel
Assembly Material
L : Lead Free Device G : Halogen and Lead Free Device
Voltage Code
18: 1.8V
26: 2.6V
28: 2.8V
30: 3.0V
33: 3.3V
38: 3.8V
45: 4.5V
50: 5.0V
APW7079 Assembly Material
Handling Code
Temperature Range
Package Code
Voltage Code
APW7079-18DI:
APW7079
XXXXX18
XXXXX - Date Code, 18: 1.8V
APW7079-26DI:
APW7079
XXXXX26
XXXXX - Date Code, 26: 2.6V
APW7079-28DI:
APW7079
XXXXX28
XXXXX - Date Code, 28: 2.8V
APW7079-28DI:
APW7079
XXXXX30
XXXXX - Date Code, 30: 3.0V
APW7079-33DI:
APW7079
XXXXX33
XXXXX - Date Code, 33: 3.3V
APW7079-33DI:
APW7079
XXXXX38
XXXXX - Date Code, 38: 3.8V
APW7079-45DI: APW7079
XXXXX45
XXXXX - Date Code, 45: 5.0V
APW7079-50DI:
APW7079
XXXXX50
XXXXX - Date Code, 50: 5.0V
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which
are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020C for
MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen
free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by
weight).
Absolute Maximum Ratings (Note 1)
Symbol
Parameter
VOUT
Output Voltage (VOUT to GND)
VLX
LX to GND Voltage
TSTG
Storage Temperature
TSDR
Maximum Lead Soldering Temperature, 10 Seconds
Rating
Unit
-0.3 ~ 6
V
-0.3 ~ VOUT+1
V
-65 ~ 150
°C
260
°C
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
Thermal Characteristics
Symbol
θJA
Parameter
Thermal Resistance -Junction to Ambient
Typical Value
Unit
(Note 2)
SOT-89
o
180
C/W
Note 2: θJA is measured with the component mounted on a high effective thermal conductivity test board in free air.
Recommended Operating Conditions (Note 3, 4)
Symbol
VOUT
VIN
Parameter
Output Voltage (VOUT to GND)
Converter Supply Voltage
VLX
LX to GND Voltage
IOUT
Converter Output Current
TA
TJ
Range
Unit
0.7 ~ 5.5
V
0.3 ~ VOUT+1
V
-0.3 ~ VOUT+0.3
V
0 ~ 0.9 x IOUT(MAX)
A
Ambient Temperature
-40 ~ 85
°C
Junction Temperature
-40 ~ 125
°C
Note 3: Refer to the typical application circuit
Note 4: Refer to “Application Information” for detail value.
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Oct., 2008
2
www.anpec.com.tw
APW7079
Electrical Characteristics
Refer to Typical Application Circuits. VIN=1.5V, RLOAD = ∞, and TA= -40 ~ 85oC, unless otherwise noted. Typical values are at TA=25oC.
Symbol
VIN
Parameter
IDD
Max.
0.7
-
5.5
V
-
0.9
1
V
APW7079-18
1.764
1.8
1.836
APW7079-26
2.548
2.6
2.652
APW7079-28
2.744
2.8
2.856
APW7079-30
2.94
3.0
3.06
APW7079-33
3.234
3.3
3.366
APW7079-38
3.724
3.8
3.876
APW7079-45
4.41
4.5
4.59
APW7079-50
4.9
5.0
5.1
7
11
15
µA
Converter Supply Voltage
Start-up Voltage
VOUT
APW7079
Typ.
Test Conditions
RLOAD=3kΩ
Output Voltage
Supply Current
VOUT = VOUT(Typ.)+0.5V
Measured at VOUT
No Inductor Connected
Min.
Unit
V
TOFF(MIN)
Main Switch Min. Off-time
0.6
0.9
1.2
µs
TON(MAX)
Main Switch Max. On-time
3
4
5
µs
Main Switch Max. Duty
75
-
85
%
APW7079-18
-
0.5
-
APW7079-26
-
0.4
-
APW7079-28
-
0.4
-
APW7079-30
-
0.4
-
APW7079-33
-
0.4
-
APW7079-38
-
0.4
-
RN-FET
RP-FET
Main Switch on Resistance
Synchronous Switch on
Resistance
ILX=100mA
ILX=100mA
APW7079-45
-
0.3
-
APW7079-50
-
0.3
-
APW7079-18
-
1
-
APW7079-26
-
0.8
-
APW7079-28
-
0.8
-
APW7079-30
-
0.7
-
APW7079-33
-
0.6
-
APW7079-38
-
0.5
-
APW7079-45
-
0.4
-
APW7079-50
ILIM
Ω
Ω
-
0.4
-
500
600
700
mA
Main Switch Leakage Current
-
-
1
µA
Synchronous Switch Leakage
Current
-
-
1
µA
Over Temperature Shutdown
-
150
-
°C
Over Temperature Hysteresis
-
40
-
°C
Main Switch Current Limit
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Oct., 2008
3
www.anpec.com.tw
APW7079
Typical Operating Characteristics
(Refer to the application circuit in the section “Typical Application Circuit”, VIN=1.5V, L1=22µH, TA=25oC unless otherwise noted.)
Efficiency vs. Output Current
Output Voltage vs. Output Current
1.84
90
1.82
80
1.80
Output Voltage, VOUT (V)
100
Efficiency (%)
70
VIN=0.9V
60
50
VIN=1.0V
40
VIN=1.2V
30
VIN=1.5V
20
1.78
1.76
VIN=0.9V
1.74
1.72
VIN=1.0V
1.70
VIN=1.2V
1.68
VIN=1.5V
1.66
10
APW7079-18
APW7079-18
1.64
0
0.1
1
10
100
0
1000
50
100
150
200
250
300
Output Current, IOUT (mA)
Output Current, IOUT (mA)
Efficiency vs. Output Current
Output Voltage vs. Output Current
3.1
100
90
Output Voltage, VOUT (V)
80
Efficiency (%)
70
VIN=0.9V
60
50
VIN=1.0V
40
VIN=2.4V
VIN=1.2V
30
20
VIN=1.5V
10
3.0
VIN=2.4V
2.9
VIN=1.5V
2.8
VIN=1.2V
VIN=1.0V
2.7
VIN=0.9V
APW7079-30
APW7079-30
2.6
0
0.1
1
10
100
0
1000
50
100
Output Current, IOUT (mA)
150
200
250
300
350
400
Output Current, IOUT (mA)
Output Voltage vs. Output Current
Output Voltage vs. Output Current
100
6
90
5
Output Voltage, VOUT (V)
80
Efficiency (%)
70
60
50
VIN=0.9V
40
VIN=3.6V
VIN=1.0V
30
VIN=2.4V
VIN=1.2V
20
VIN=1.5V
10
4
VIN=3.6V
3
VIN=0.9V
VIN=2.4V
VIN=1.0V
2
VIN=1.5V
VIN=1.2V
1
APW7079-50
APW7079-50
0
0
0.1
1
10
100
1000
0
Output Current, IOUT (mA)
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Oct., 2008
4
50
100
150
200
250
Output Current, IOUT (mA)
300
350
www.anpec.com.tw
APW7079
Typical Operating Characteristics (Cont.)
(Refer to the application circuit in the section “Typical Application Circuit”, VIN=1.5V, L1=22µH, TA=25oC unless otherwise noted.)
1.2
1.4
Start-up/Hold-on Voltage, VST /VHOLD (V)
1.4
Start-up/Hold-on Voltage, VST /VHOLD (V)
Start-up/Hold-on Voltage vs.
Output Current
Start-up/Hold-on Voltage vs.
Output Current
Start-up
1
0.8
Hold-on
0.6
0.4
0.2
APW7079-18
0
0
10
20
30
40
1.2
Start-up
1
0.8
0.6
Hold-on
0.4
0.2
APW7079-30
0
0
50
10
Output Current, IOUT (mA)
Start-up/Hold-on Voltage vs.
Output Current
1
0.8
Hold-on
0.6
0.4
0.2
APW7079-50
0
40
50
60
50
40
30
APW7079-50
20
10
APW7079-18
APW7079-30
0
0
0.8
Main Switch ON Resistance, RN-FET (Ω)
No Load Battery Current, IIN (µA)
Start-up
1.2
30
No Load Battery Current
vs. Input Voltage
70
10
20
30
40
50
0
1.5
2
2.5
3
3.5
4
4.5
Main Switch ON Resistance vs.
Junction Temperature
Synchronous Switch ON Resistance vs. Junction Temperature
1.6
0.6
0.5
0.4
0.3
APW7079-18
0.2
APW7079-30
APW7079-50
0
-50
1
Input Voltage, VIN (V)
0.7
0.1
0.5
Output Current, IOUT (mA)
Synchronous Switch ON Resistance,
RP-FET (Ω)
Start-up/Hold-on Voltage, VST /VHOLD (V)
1.4
20
Output Current, IOUT (mA)
-25
0
25
50
75
100
Junction Temperature, TJ (oC)
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Oct., 2008
1.4
1.2
1.0
0.8
0.6
APW7079-18
0.4
APW7079-30
0.2
APW7079-50
0.0
-50
125
5
-25
0
25
50
75
100
125
Junction Temperature, TJ (oC)
5
www.anpec.com.tw
APW7079
Operating Waveforms
Line Transient Response
Load Transient Response
IOUT=10mA -> 110mA -> 10mA
IOUT rise/fall time = 1µs
VIN=1.5V
VIN
IOUT
1.5V
110mA
2
2V
10mA
VOUT
3
1
VOUT
3
CH2: IOUT, 100mA/Div, DC
CH3: VOUT, 50mV/Div, AC
Time: 0.1ms/Div
CH1: VIN, 0.5V/Div, DC
CH3: VOUT, 50mV/Div, AC
Time: 0.1ms/Div
Heavy Load Switching Waveform
IOUT=100mA, VIN=1.5V
2
ILX
VOUT
3
VLX
4
CH2: ILX, 200mA/Div, DC
CH3: VOUT, 50mV/Div, AC
CH4: VLX, 2V/Div, DC
Time: 5µs/Div
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Oct., 2008
6
www.anpec.com.tw
APW7079
Pin Description
PIN
FUNCTION
NO.
NAME
1
LX
2
VOUT
Converter output and control circuitry bias supply pin.
3
GND
Ground.
Junction of N-FET and P-FET Drains. Connect the inductor here and minimize the trace area for
lowest EMI.
Block Diagram
VOUT
2
Zero Crossing
Comparator
+
Thermal
Shutdown
0.9µs Min.
off-time
Synchronous
Switch
Error
Comparator
3
-
LX
+
Control
Logic
VREF
4µs Max.
on-time
Gate
Driver
Main Switch
Current Limit
Comparator
RSENSE
+
Soft
start
1
GND
Typical Application Circuit
VIN
IIN
L1
22µH
APW7079
LX
C1
22µF
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Oct., 2008
IOUT
VOUT
GND
7
www.anpec.com.tw
APW7079
Function Description
Control Scheme
The converter monitors the output voltage. When the internal feedback voltage falls below the reference voltage,
the main switch turns on and the inductor current ramps
up. The main switch turns off when the current reaches
the peak current limit of typical 600mA. The second criterion that turns off the switch is the maximum on-time of
4µs (typical). As the main switch is turned off, the synchronous switch is turned on and delivers the current to
the output. The main switch remains off for a minimum of
900ns (typical), or until the internal feedback voltage drops
below the reference voltage. By the control scheme with
low quiescent current of 11µA (typical), the converter gets
high efficiency over a wide load range.
Start-Up
A startup oscillator circuit is integrated in the APW7079.
When the power is applied to the device, the circuit pumps
the output voltage high. Once the output voltage reaches
1.4V (typ), the main DC-DC circuitry turns on and boosts
the output voltage to the final regulation point.
Synchronous Rectification
The internal synchronous rectifier eliminates the need
for an external Schottky diode, thus reducing cost and
board space. During the cycle off-time, the P-channel
MOSFET turns on and shunts the MOSFET body diode.
As a rewsult, the synchronous rectifier significantly improves efficiency without the addition of an external
component. Conversion efficiency can be as high as 92%.
Over-Temperature Protection
The over-temperature circuit limits the junction temperature of the APW7079. When the junction temperature exceeds 150°C, a thermal sensor turns off the power
MOSFETs, allowing the devices to cool. The thermal sensor allows the converter to start a start-up process and
regulate the output voltage again after the junction temperature cools by 40°C.The OTP is designed with a 40°C
hysteresis to lower the average TJ during continuous thermal overload conditions, increasing lifetime of the device.
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Oct., 2008
8
www.anpec.com.tw
APW7079
Application Information
Input Capacitor Selection
The input capacitor is chosen based on the voltage rating
Since the output ripple is the product of the peak inductor
current and the output capacitor ESR, using low-ESR tan-
and the RMS current rating. For reliable operation, it is
recommended to select the capacitor voltage rating at
talum capacitors for the best performance or connecting
two or more filter capacitors in parallel is recommended.
least 1.3 times higher than the maximum input voltage.
The maximum RMS current rating of the input capacitor is
Inductor Selection
The inductor value determines the inductor ripple current
and affects the load transient response. It is recom-
calculated as the following equation:
IRMS =
where
VIN ⋅ TON
L
3
1
⋅
mended to select the boost inductor in order to keep the
maximum peak inductor current below the current limit
threshold of the power switch. For example, the current
limit threshold of the APW7079’s switch is 600mA. For
TON = main switch max. on-time (4µs typical)
VIN = input voltage
choosing an inductor which has peak current passed,
firstly, it is necessary to consider the output load (IOUT),
L = inductor value in µH
The capacitors should be placed close to the inductor
and the GND.
input (VIN), and output voltage (VOUT). Secondly, the desired current ripple in the inductor also needed to be
Output Capacitor Selection
taken into account. The current was calculated in “Output
Capacitor Selection”. Since the output ripple is the prod-
An output capacitor is required to filter the output and supply the load transient current. The output ripple is the sum
uct of the peak inductor current and the output capacitor
ESR, the larger inductor value reduces the inductor cur-
of the voltages across the ESR and the ideal output
capacitor. The peak-to-peak voltage of the ESR is calcu-
rent ripple and output voltage ripple but typically offers a
larger physical size.
The inductor value also slightly affects the maximum out-
lated as the following equations:
∆VESR = IPEAK x ESR
IPEAK =
put current. The maximum output current can be calculated as below:
VOUT ⋅ IOUT VIN ⋅ TON
+
≤ ILIM
VIN ⋅ η
2 ⋅L
IOUT (MAX ) =
Where
IPEAK = peak current of inductor in amp
TOFF = main switch min. off-time (0.9µs typical)
The peak-to-peak voltage of the ideal output capacitor is
Therefore, to consider the balance of the efficiency and
component size, an inductor value of 22µH to 47µH is
calculated as the following equation:
IOUT × TON
COUT
recommended in most applications.
VIN
For the applications using tantalum capacitors, the ∆VCOUT
is much smaller than the V ESR and can be ignored.
IIN
ILX
IOUT
LX
VOUT
ISWP
CIN
Therefore, the AC peak-to-peak output voltage (∆VOUT) is
shown as below:
N-FET
ISWN P-FET
ESR
COUT
∆VOUT = IPEAK x ESR
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Oct., 2008

  ⋅ η

where
η = efficiency (0.85 typical)
∆VCOUT =
VIN 
 VOUT − VIN
ILIM − TOFF 
VOUT 
2×L

9
www.anpec.com.tw
APW7079
Application Information (Cont.)
ILX
T J = TA + TR
ILIM
where
TA = the ambient temperature.
IPEAK
The power dissipation can be calculated as below:
IIN
PD = POUT x (1-η)/η
where
POUT = Output power (VOUT x IOUT)
ISWN
η = Efficiency
As an example, the APW7079-18 converts an input voltage 1.2V to provide a load current of 175mA at ambient
temperature of 85°C. Assume the efficiency (η) is 0.75.
Therefore, the power dissipated on the converter is:
ISWP
PD = 1.8 x 0.175 x (1-0.75)/0.75= 0.105 Watt
IOUT
VOUT
Since the power dissipation includes the loss of external
components, the actual value is slightly lower. For the
IPEAK x ESR
SOT-89 package, the θJA is 180°C/W. Thus, the junction
temperature of the regulator is as below:
VOUT
TJ = 85°C + (PD)(180) = 104 °C
The maximum junction temperature should be less than
125°C. Note that, the junction temperature is lower at
higher output voltages due to reduced switch resistance.
Thermal Consideration
In most applications, the APW7079 does not dissipate
much heat due to its high efficiency. However, in applications where the APW7079 is running at high ambient tem-
Layout Consideration
For all switching power supplies especially with high peak
currents and switching frequency, the layout is an important step in the design. If the layout is not carefully done,
the regulator may show noise problems and duty cycle
jitter.
perature with low output voltage, the heat dissipated may
exceed the maximum junction temperature of the part. If
the junction temperature reaches approximately 150°C,
both power switches will be turned off and the LX node
1.The input capacitor should be placed close to the
will become high impedance. To avoid the APW7079 from
exceeding the maximum junction temperature, the user
device, which can reduce copper trace resistance and
effect input ripple of the IC.
will need to do some thermal analysis. The goal of the
thermal analysis is to determine whether the power dis-
2.The inductor should be placed as close as possible to
the switch pin to minimize the switching noise.
sipated exceeds the maximum junction temperature of
the part. The temperature rise is given by:
3.The output capacitor should be place closed to the
VOUT and the GND.
TR = (PD)(θJA)
where PD is the power dissipated by the regulator and θJA
is the thermal resistance from the junction of the die to
the ambient temperature. The junction temperature, TJ,
is given by:
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Oct., 2008
10
www.anpec.com.tw
APW7079
Application Information (Cont.)
Layout Consideration (Cont.)
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Oct., 2008
11
www.anpec.com.tw
APW7079
Package Information
SOT-89
A
C
L
H
E
E1
D
D1
e
e1
B
B1
S
Y
M
B
O
L
A
SOT-89
MILLIMETERS
INCHES
MIN.
MAX.
MIN.
MAX.
1.40
1.60
0.055
0.063
B
0.44
0.56
0.017
0.022
B1
0.36
0.48
0.014
0.019
C
0.35
0.44
0.014
0.017
D
4.40
4.60
0.173
0.181
D1
1.62
1.83
0.064
0.072
E
2.29
2.60
0.090
0.102
E1
2.13
2.29
0.084
0.090
e
1.50 BSC
e1
3.00 BSC
0.059 BSC
0.118 BSC
H
3.94
4.25
0.155
L
0.89
1.20
0.035
0.167
0.047
Note : Follow JEDEC TO-243 AA.
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Oct., 2008
12
www.anpec.com.tw
APW7079
Carrier Tape & Reel Dimensions
P0
P2
P1
A
B0
W
F
E1
OD0
K0
A0
A
OD1 B
B
T
SECTION A-A
SECTION B-B
H
A
d
T1
Application
SOT-89
A
H
T1
C
d
D
W
E1
F
178.0±2.00
50 MIN.
12.4+2.00
-0.00
13.0+0.50
-0.20
1.5 MIN.
20.2 MIN.
12.0±0.30
1.75±0.10
5.50±0.05
P0
P1
P2
D0
D1
T
A0
B0
K0
2.0±0.05
1.5+0.10
-0.00
1.5 MIN.
0.6+0.00
-0.40
4.80±0.20
4.50±0.20
1.80±0.20
4.0±0.10
8.0±0.10
(mm)
Devices Per Unit
Package Type
Unit
Quantity
SOT-89
Tape & Reel
1000
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Oct., 2008
13
www.anpec.com.tw
APW7079
Taping Direction Information
SOT-89
USER DIRECTION OF FEED
Reflow Condition
(IR/Convection or VPR Reflow)
tp
TP
Critical Zone
TL to TP
Ramp-up
Temperature
TL
tL
Tsmax
Tsmin
Ramp-down
ts
Preheat
25
t 25°C to Peak
Time
Reliability Test Program
Test item
SOLDERABILITY
HOLT
PCT
TST
ESD
Latch-Up
Method
MIL-STD-883D-2003
MIL-STD-883D-1005.7
JESD-22-B, A102
MIL-STD-883D-1011.9
MIL-STD-883D-3015.7
JESD 78
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Oct., 2008
14
Description
245°C, 5 sec
1000 Hrs Bias @125°C
168 Hrs, 100%RH, 121°C
-65°C~150°C, 200 Cycles
VHBM > 2KV, VMM > 200V
10ms, 1tr > 100mA
www.anpec.com.tw
APW7079
Classification Reflow Profiles
Profile Feature
Average ramp-up rate
(TL to TP)
Preheat
- Temperature Min (Tsmin)
- Temperature Max (Tsmax)
- Time (min to max) (ts)
Time maintained above:
- Temperature (TL)
- Time (tL)
Peak/Classification Temperature (Tp)
Time within 5°C of actual
Peak Temperature (tp)
Ramp-down Rate
Sn-Pb Eutectic Assembly
Pb-Free Assembly
3°C/second max.
3°C/second max.
100°C
150°C
60-120 seconds
150°C
200°C
60-180 seconds
183°C
60-150 seconds
217°C
60-150 seconds
See table 1
See table 2
10-30 seconds
20-40 seconds
6°C/second max.
6°C/second max.
6 minutes max.
8 minutes max.
Time 25°C to Peak Temperature
Note: All temperatures refer to topside of the package. Measured on the body surface.
Table 1. SnPb Eutectic Process – Package Peak Reflow Temperatures
3
3
Package Thickness
Volume mm
<350
Volume mm
≥350
<2.5 mm
≥2.5 mm
240 +0/-5°C
225 +0/-5°C
225 +0/-5°C
225 +0/-5°C
Table 2. Pb-free Process – Package Classification Reflow Temperatures
3
Package Thickness
3
Volume mm
<350
Volume mm
350-2000
3
Volume mm
>2000
<1.6 mm
260 +0°C*
260 +0°C*
260 +0°C*
1.6 mm – 2.5 mm
260 +0°C*
250 +0°C*
245 +0°C*
≥2.5 mm
250 +0°C*
245 +0°C*
245 +0°C*
* Tolerance: The device manufacturer/supplier shall assure process compatibility up to and including the stated
classification temperature (this means Peak reflow temperature +0°C. For example 260°C+0°C) at the rated MSL
level.
Customer Service
Anpec Electronics Corp.
Head Office :
No.6, Dusing 1st Road, SBIP,
Hsin-Chu, Taiwan, R.O.C.
Tel : 886-3-5642000
Fax : 886-3-5642050
Taipei Branch :
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,
Sindian City, Taipei County 23146, Taiwan
Tel : 886-2-2910-3838
Fax : 886-2-2917-3838
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Oct., 2008
15
www.anpec.com.tw
Similar pages