AVAGO ACSL-7210 Dual-channel (opposite direction orientation) Datasheet

ACSL-7210
Dual-Channel (Bidirectional) 25 MBd
CMOS Buffered Input Digital Optocoupler
Data Sheet
Lead (Pb) Free
RoHS 6 fully
compliant
RoHS 6 fully compliant options available;
-xxxE denotes a lead-free product
Description
Features
The ACSL-7210 is a dual-channel bidirectional 25 MBd
digital optocoupler utilizes CMOS IC technology and patented packaging technologies to achieve high isolation
voltage 3750 VRMS in a < 2 mm low profile narrow-body
SOIC-8 package. The device optimizes for bidirectional industrial communication networks such as Fieldbus (PROFIBUS) and Serial Peripheral Interface (SPI) applications.
• Dual-Channel (Opposite direction orientation)
The main building blocks of the ACSL-7210 for each channel are a CMOS LED driver IC that is controlled by a CMOS
logic input signal, a high speed LED, and a CMOS detector
IC. These building blocks allow fast propagation delay of
40 ns and short pulse width distortion of 10 ns maximum.
• Guaranteed AC and DC performance over wide
temperature: –40 °C to +105 °C
The ACSL-7210 has common-mode noise immunity of
typical 35 kV/μs at 1000 VCM, with UL recognized with
isolation voltage of 3750 VRMS for 1 minute, and IEC/EN/
DIN EN 60747-5-5 working insulation voltage VIORM of 567
VPEAK with reinforced insulation.
- IEC/EN/DIN EN 60747-5-5 for Reinforced Insulation –
567 VPEAK
Applications
Functional Diagram
• Multiplexed Data Transmission
VDD 1 1
8 VDD 2
VO A 2
7 VI A
• High Speed: DC to 25 MBd
• 3.3 V and 5 V CMOS Compatibility
• CMOS input and output
• 25 kV/μs minimum Common Mode Rejection (CMR) at
VCM = 1000 V
• Safety and Regulatory Approvals: (pending):
- UL 1577 – 3750 Vrms for 1 minute
• Digital Fieldbus
DeviceNet, SDS
Isolation:
PROFIBUS,
CC-Link,
• General Instrument and Data Acquisition
• Computer Peripheral Interface
• Microprocessor System Interface
TRUTH TABLE (POSITIVE LOGIC)
VI B 3
GND 1 4
6 VOB
Shield
5 GND 2
ACSL-7210
*
A 0.1 µF bypass capacitor must be connected between pins VDD1 and
GND1, and VDD2 and GND2
Input side
VDD state
Output side
VDD state
Power
Supplied
No Power
VI
LED
VO
Power
Supplied
HIGH
OFF
HIGH
LOW
ON
LOW
Power
Supplied
X
OFF
HIGH
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this
component to prevent damage and/or degradation which may be induced by ESD. The components
featured in this datasheet are not to be used in military or aerospace applications or environments.
Ordering Information
ACSL-7210 is UL Recognized with 3750 VRMS for 1 minute per UL1577.
Option
Part number
RoHS Compliant
Package
Surface Mount
ACSL-7210
-00RE
SO-8
X
Tape & Reel
IEC/EN/DIN EN
60747-5-5
Quantity
100 per tube
-06RE
X
X
-50RE
X
X
-56RE
X
X
100 per tube
1500 per reel
X
1500 per reel
To order, choose a part number from the part number column and combine with the desired option from the option
column to form an order entry.
Example 1: ACSL-7210-50RE to order RoHS-compliant Surface Mount 8-pin package in Tape-and-Reel packaging.
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.
Package Outline Drawings
ACSL-7210 SO-8 Package
0.189 (4.80)
0.197 (5.00)
8
7
6
A NNNN
• YYWW
EEE
AVAGO
0.228 (5.80)
0.244 (6.20)
LEAD FREE
1
2
LAND PATTERN RECOMMENDATION
5
0.150 (3.80)
0.157 (4.00)
0.286 (7.27)
DATE CODE
4
3
DEVICE PART NUMBER
0.085 (2.16)
LOT ID
0.025 (0.64 )
0.013 (0.33)
0.020 (0.51)
0.010 (0.25)
0.020 (0.50)
0.008 (0.19)
0.010 (0.25)
x 45°
0.004 (0.10)
0.010 (0.25)
0.054 (1.37)
0.069 (1.75)
0°
8°
0.040 (1.016)
0.060 (1.524)
DIMENSIONS: INCHES (MILLIMETERS)
2
0.016 (0.40)
0.050 (1.27)
MIN
MAX
Solder Reflow Profile
Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). Non-Halide Flux should be used.
Regulatory Information
The ACSL-7210 will be approved by the following organizations:
UL
Approval under UL 1577, component recognition program up to VISO = 3750 VRMS.
CSA
Approval under CSA Component Acceptance Notice #5.
IEC/EN/DIN EN 60747-5-5 (Option 06RE only)
Insulation and Safety Related Specifications
Parameter
Symbol
ACSL-7210 Units
Conditions
Minimum External Air Gap
(Clearance)
L(101)
4.3
mm
Measured from input terminals to output terminals,
shortest distance through air.
Minimum External Tracking
(Creepage)
L(102)
4.3
mm
Measured from input terminals to output terminals,
shortest distance path along body.
0.08
mm
Through insulation distance conductor to conductor, usually the
straight line distance thickness between the emitter and detector.
175
V
DIN IEC 112/VDE 0303 Part 1
Minimum Internal Plastic Gap
(Internal Clearance)
Tracking Resistance
(Comparative Tracking Index)
CTI
Isolation Group
IIIa
Material Group (DIN VDE 0110, 1/89, Table 1)
IEC/EN/DIN EN 60747-5-5 Insulation Characteristics* (Option 06RE)
Characteristic
Description
Symbol
Installation classification per DIN VDE 0110/39, Table 1
for rated mains voltage ≤ 150 Vrms
for rated mains voltage ≤ 300 Vrms
for rated mains voltage ≤ 600 Vrms
ACSL-7210
Unit
I – IV
I – IV
I – III
Climatic Classification
40/105/21
Pollution Degree (DIN VDE 0110/39)
2
Maximum Working Insulation Voltage
VIORM
567
Vpeak
Input to Output Test Voltage, Method b*
VIORM x 1.875=VPR, 100% Production Test with tm=1 sec, Partial discharge < 5 pC
VPR
1063
Vpeak
Input to Output Test Voltage, Method a*
VIORM x 1.6=VPR, Type and Sample Test, tm=10 sec, Partial discharge < 5 pC
VPR
907
Vpeak
Highest Allowable Overvoltage (Transient Overvoltage tini = 60 sec)
VIOTM
6000
Vpeak
Safety-limiting values – maximum values allowed in the event of a failure.
Case Temperature
Input Current
Output Power
TS
IS, INPUT
PS, OUTPUT
175
75
600
°C
mA
mW
Insulation Resistance at TS, VIO = 500 V
RS
109
Ω
*
3
Refer to the optocoupler section of the Isolation and Control Components Designer’s Catalog, under Product Safety Regulations section, (IEC/EN/
DIN EN 60747-5-5) for a detailed description of Method a and Method b partial discharge test profiles.
Absolute Maximum Ratings
Parameter
Symbol
Min
Max
Units
Storage Temperature
TS
-55
125
°C
Operating Temperature
TA
-40
105
°C
Supply Voltage
VDD1, VDD2
0
6.5
V
Input Voltage
VIA, VIB
-0.5
VDD + 0.5
V
Output Voltage
VOA, VOB
-0.5
VDD + 0.5
V
Average Output Current
IO
10
mA
Input Power Dissipation [1]
PI
72
mW
Output Power Dissipation [1]
PO
62
mW
Lead Solder Temperature
TLS
260 °C for 10 sec, 1.6 mm below seating plane
Parameter
Symbol
Min
Max
Units
Operating Temperature
TA
-40
105
°C
Supply Voltage (3.3V)
VDD1, VDD2
3.0
3.6
V
Supply Voltage (5V)
VDD1, VDD2
4.5
5.5
V
Logic High Input Voltage
VIH
0.7 × VDD
VDD
V
Logic Low Input Voltage
VIL
0
0.3 × VDD
V
Input Signal Rise and Fall Times
tr, tf
1
ms
Recommended Operating Conditions
Electrical Specifications (DC)
Over recommended temperature (TA = –40 °C to 105 °C) and supply voltage (4.5 V≤ VDD1 ≤ 5.5 V, 4.5 V ≤ VDD2 ≤ 5.5 V), (3
V≤ VDD1 ≤ 3.6 V, 3 V ≤ VDD2 ≤ 3.6 V), (4.5 V ≤ VDD1 ≤ 5.5V, 3 V ≤ VDD2 ≤ 3.6 V) and (3 V ≤ VDD1 ≤ 3.6 V, 4.5 V ≤ VDD2 ≤5.5 V).
All typical specifications are at VDD1 = VDD2 = +3.3 V, TA = 25 °C, unless otherwise specified.
Parameter
Symbol
Typ.
Max.
Units
Test Conditions
Logic Low Supply Current [2]
IDD1L, IDD2L
9
15
mA
VI = 0 V
Figure 1
Logic High Supply Current [2]
IDD1H, IDD2H
1.9
5
mA
VI = VDD
Figure 2
Input Current
IIA, IIB
-10
10
µA
Logic High Output Voltage
VOH
VDD - 0.1
3.3
VDD - 1.0
3.1
Logic Low Output Voltage
VOL
4
Min.
V
IO = –20 µA, VI = VIH
V
IO = –4 mA, VI = VIH
0
0.1
V
IO = 20 µA, VI = VIL
0.14
1.0
V
IO = 4 mA, VI = VIL
Switching Specifications (AC)
Over recommended temperature (TA = –40 °C to 105 °C) and supply voltage (4.5 V≤ VDD1 ≤ 5.5 V, 4.5 V ≤ VDD2 ≤ 5.5 V), (3
V≤ VDD1 ≤ 3.6 V, 3 V ≤ VDD2 ≤ 3.6 V), (4.5 V ≤ VDD1 ≤ 5.5V, 3 V ≤ VDD2 ≤ 3.6 V) and (3 V ≤ VDD1 ≤ 3.6 V, 4.5 V ≤ VDD2 ≤5.5 V).
All typical specifications are at VDD1 = VDD2 = +3.3 V, TA = 25 °C, unless otherwise specified.
Parameter
Symbol
Propagation Delay Time to Logic
Low Output [3]
Typ.
Max.
Units
Test Conditions
tPHL
27
40
ns
CL= 15 pF, CMOS Signal Levels
Figures 3,4
Propagation Delay Time to Logic
High Output [3]
tPLH
25
40
ns
CL= 15 pF, CMOS Signal Levels
Figures 3,4
Pulse Width
tPW
ns
CL= 15 pF, CMOS Signal Levels
Pulse Width Distortion [4]
PWD
8
ns
3 V ≤ VDD ≤ 3.6 V
CL= 15 pF, CMOS Signal Levels
Figures 5, 6
10
ns
CL= 15 pF, CMOS Signal Levels
Propagation Delay Skew [5]
tPSK
20
ns
CL= 15 pF, CMOS Signal Levels
Output Rise Time (10% – 90%)
tR
5.1
ns
Output Fall Time (90% - 10%)
tF
3.8
ns
CL= 15 pF, CMOS Signal Levels
Figure 7
Common Mode Transient
Immunity at Logic High Output [6]
|CMH|
25
35
kV/µs
VCM = 1000 V, TA = 25 °C
VI = VDD1, VO > 0.8 × VDD2
Common Mode Transient
Immunity at Logic Low Output [6]
|CML|
25
35
kV/µs
VCM = 1000 V, TA = 25 °C
VI = 0 V, VO < 0.8 V
Parameter
Symbol
Min.
Typ.
Units
Test Conditions
Input-Output Insulation [7,8,9]
VISO
3750
|tPHL - tPLH|
Min.
40
1.8
Package Characteristics
All typical at TA = 25 °C
Input-Output Resistance [7]
Input-Output Capacitance
Input Capacitance [10]
Max.
VRMS
RH < 50% for 1 min. TA = 25 °C
RI-O
1012
Ω
VI-O = 500 V
CI-O
1
pF
f=1 MHz, TA = 25 °C
CI
6
pF
Notes:
1. Per channel.
2. LED is ON when VI is low and OFF when VI is high.
3. tPHL propagation delay is measured from the 50% level on the falling edge of the VI signal to the 50% level of the falling edge of the VO signal. tPLH
propagation delay is measured from the 50% level on the rising edge of the VI signal to the 50% level of the rising edge of the VO signal.
4. PWD is defined as |tPHL - tPLH|.
5. tPSK is equal to the magnitude of the worst case difference in tPHL and/or tPLH that will be seen between units at any given temperature within the
recommended operating conditions.
6. CMH is the maximum common mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common
mode voltage slew rate that can be sustained while maintaining VO < 0.8 V. The common mode voltage slew rates apply to both rising and falling
common mode voltage edges.
7. Device is considered a two-terminal device: pins 1, 2, 3, and 4 are shorted together and pins 5, 6, 7, and 8 are shorted together.
8. In accordance with UL1577, ACSL-7210 is proof-tested by applying an insulation test voltage ≥ 4500 VRMS for 1 second (leakage detection current
limit, II-O ≤ 5 μA).
9. The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous
voltage rating. For the continuous voltage rating, refer to your equipment level safety specification or Avago Technologies Application Note 1074
entitled “Optocoupler Input-Output Endurance Voltage.”
10. CI is the capacitance measured at pin 3 or pin 7 (VI).
5
13
11
9
7
5
5.0 V
3.3 V
- 40
- 20
0
20
40
TA (°C)
60
80
100
Figure 1.Typical Logic Low Supply Current vs. temperature
IDD1H, IDD2H - LOGIC HIGH SUPPLY CURRENT (mA)
IDD1L, IDD2L - LOGIC LOW SUPPLY CURRENT (mA)
15
2
1
32
30
Tphl, Tplh (ns)
Tphl, Tplh (ns)
3
32
28
26
24
20
- 40
Tplh
Tphl
- 20
0
20
40
TA (°C)
60
80
20
100
6
5
5
PWD (ns)
6
4
3
1
1
TA (°C)
60
80
100
80
Tplh
Tphl
100
Figure 5. Typical pulse width distortion vs. temperature at 3.3 V supply
voltage
15
25
35
CL (pF)
45
55
3
2
40
60
4
2
20
40
TA (°C)
Figure 4. Typical propagation delay vs. load capacitance at 3.3 V supply
voltage
7
0
20
24
7
- 20
0
26
8
- 40
- 20
28
8
0
- 40
22
Figure 3. Typical propagation delay vs. temperature at 3.3 V supply voltage
PWD (ns)
4
34
22
5.0V
3.3V
Figure 2. Typical Logic High Supply Current vs. temperature
30
6
5
0
15
25
35
CL (pF)
45
55
Figure 6. Typical pulse width distortion vs. load capacitance at 3.3 V supply
voltage
8
7
Tr, Tf (ns)
6
5
4
3
Rise Time
Fall Time
2
1
-40
-20
0
20
40
T A ( O C)
60
80
100
Figure 7. Typical rise and fall time vs. temperature at 3.3 V supply voltage
Application Information
Bypassing and PC Board Layout
The ACSL-7210 optocoupler is extremely easy to use. No external interface circuitry is required because ACSL-7210 uses
high-speed CMOS IC technology, allowing CMOS logic to be directly connected to the inputs and outputs.
The only external components required for proper operation are two bypass capacitors. Capacitor value should be between 0.01 µF and 0.1 µF. For each capacitor, the total lead length between both ends of the capacitor and the power
supply pins should not exceed 20 mm.
Figure 8 shows the typical application diagram for 25 MBd bidirectional ACSL-7210 and 10 MBd ultra low-power ACPLM61L, providing isolation in PROFIBUS (RS485) communication. ACSL-7210 isolates the transmitting and receiving data
channels while ACPL-M61L isolates the transmit enable signal.
VDD1
C4
100 nF
U1
Isolation
1
VDD1
2
VOA
3
VIB
4
GND1
Rx
Tx
VDD2
8
VDD2
7
VIA
6
VOB
5
GND2
Rx
Tx
ACSL-7210
VDD1
Isolation
R1
Tx Enable
U3
U2
1 AN
510
R2 3
360
VDD2
VDD2
CA
1
VDD 6
5
VO
4
GND
Tx Enable
RO
2
RE_
3
DE
4
DI
ACPL-M61L
Figure 8. Isolated PROFIBUS (RS485) communication with ACSL-7210 and ACPL-M61L
7
VCC
8
7
B
A 6
5
GND
RS485
Fieldbus
Network
(Twisted Cable)
For the SPI interface, the ACSL-7210 is used for serial data in/out isolation (2 channels bidirectional). The third channel
- clock signal isolation is provided by ACPL-077L, 25 MBd CMOS digital optocoupler. Figure 9 shows the SPI isolated communication between master and slave devices using ACSL-7210 and ACPL-077L.
VDD2
VDD1
C6
100 nF
U4
1
2
To master device
3
4
VDD1
VDD2
V1
NC
NC
VO
GND1
GND2
8
VDD2
VDD1
C5
100 nF
C4
100 nF
7
6 To slave device
U1
1
2
To master device
5
3
4
ACPL-077L
VDD1
VOA
VIA
VIB
VOB
GND1
ACSL-7210
Figure 9. Isolated SPI between master and slave devices using ACSL-7210 and ACPL-077L
For product information and a complete list of distributors, please go to our web site:
VDD2
www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2015 Avago Technologies. All rights reserved.
AV02-4235EN - February 11, 2015
GND2
8
C1
100 nF
7
6 To slave device
5
Similar pages