MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER DESCRIPTION • Clock generating circuit ....................... Internal feedback resistor (connect to external ceramic resonator or quartz-crystal) The 3806 group is 8-bit microcomputer based on the 740 family core technology. The 3806 group is designed for controlling systems that require analog signal processing and include two serial I/O functions, A-D converters, and D-A converters. The various microcomputers in the 3806 group include variations of internal memory size and packaging. For details, refer to the section on part numbering. For details on availability of microcomputers in the 3806 group, refer to the section on group expansion. • Memory expansion possible Specification Standard (unit) • Basic machine-language instructions ....................................... 71 • Memory size 0.5 0.4 Oscillation frequency (MHz) 8 8 10 4.0 to 5.5 2.7 to 5.5 32 40 –40 to 85 –20 to 85 32 Operating temperature –20 to 85 range (°C) APPLICATIONS Office automation, VCRs, tuners, musical instruments, cameras, air conditioners, etc. 41 42 45 44 43 47 46 48 50 49 53 52 51 54 55 57 56 58 59 60 61 62 65 40 66 39 67 38 68 37 69 36 70 35 71 34 33 72 M38063M6-XXXFP 73 74 32 31 75 30 76 29 77 28 78 27 79 80 26 24 21 22 23 19 20 17 18 15 16 13 14 11 12 10 9 8 7 6 5 3 4 1 25 2 P87 P86 P85 P84 P83 P82 P81 P80 VCC VREF AVSS P67/AN7 P66/AN6 P65/AN5 P64/AN4 P63 /AN3 63 64 P30 P31 P32/ONW P33/RESETOUT P34/φ P35/SYNC P36/WR P37/RD P00/AD0 P01/AD1 P02/AD2 P03/AD3 P04/AD4 P05/AD5 P06/AD6 P07/AD7 P10/AD8 P11/AD9 P12/AD10 P13/AD11 P14/AD12 P15/AD13 P16/AD14 P17/AD15 PIN CONFIGURATION (TOP VIEW) P62/AN2 P61/AN1 P60/AN0 P77 P76 P75 P74 P73/SRDY2 P72/SCLK2 P71/SOUT2 P70/SIN2 P57/DA2 P56/DA1 P55/CNTR1 P54/CNTR0 P53/INT4 P52/INT3 P51/INT2 P50 P47/SRDY1 P46/SCLK1 P45/TXD P44/RXD P43/INT1 • • • • • • • 0.5 Power dissipation (mW) ROM ................................................................ 12 K to 48 K bytes RAM ................................................................. 384 to 1024 bytes Programmable input/output ports ............................................. 72 Interrupts .................................................. 16 sources, 16 vectors Timers ............................................................................. 8 bit ✕ 4 Serial I/O1 .................... 8-bit ✕ 1 (UART or Clock-synchronized) Serial I/O2 .................................... 8-bit ✕ 1 (Clock-synchronized) A-D converter .................................................. 8-bit ✕ 8 channels D-A converter .................................................. 8-bit ✕ 2 channels High-speed version Minimum instruction execution time (µs) Power source voltage 3.0 to 5.5 (V) FEATURES Extended operating temperature version Package type : 80P6N-A 80-pin plastic-molded QFP P20/DB0 P21/DB1 P22/DB2 P23/DB3 P24/DB4 P25/DB5 P26/DB6 P27/DB7 VSS XOUT XIN P40 P41 RESET CNVSS P42/INT0 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER 41 43 42 45 44 46 47 48 50 49 52 51 53 55 54 57 56 58 60 61 40 62 39 63 38 64 37 65 36 66 35 67 34 68 33 32 69 70 31 M38063M6-XXXGP M38063M6AXXXHP 71 72 30 29 28 73 20 18 19 17 16 15 14 13 12 11 P60/AN0 P77 P76 P75 P74 P73/SRDY2 P72/SCLK2 P71/SOUT2 P70/SIN2 P57/DA2 P56/DA1 P55/CNTR 1 P54/CNTR 0 P53/INT4 P52/INT3 P51/INT2 P50 P47/SRDY1 P46/SCLK1 P45/TXD 10 21 9 22 80 8 79 CNVSS P42/INT0 P43/INT1 P44/RXD 7 23 6 RESET 24 78 5 25 77 4 76 3 26 1 27 75 Package type : 80P6S-A/80P6D-A 80-pin plastic-molded QFP 2 P16/AD14 P17/AD15 P20/DB0 P21/DB1 P22/DB2 P23/DB3 P24/DB4 P25/DB5 P26/DB6 P27/DB7 Vss XOUT XIN P40 P41 74 2 P31 P30 P87 P86 P85 P84 P83 P82 P81 P80 VCC VREF AVSS P67/AN7 P66/AN6 P65/AN5 P64/AN4 P63/AN3 P62/AN2 P61/AN1 59 P32/ONW P33/RESETOUT P34/φ P35/SYNC P36/WR P37/RD P00/AD0 P01/AD1 P02/AD2 P03/AD3 P04/AD4 P05/AD5 P06/AD6 P07/AD7 P10/AD8 P11/AD9 P12/AD10 P13/AD11 P14/AD12 P15/AD13 PIN CONFIGURATION (TOP VIEW) 31 AV SS I/O port P6 I/O port P7 I/O port P8 VREF 76 77 78 79 80 1 2 3 4 5 6 7 8 9 10 11 65 66 67 68 69 70 71 72 74 75 P6(8) D-A converter 2 (8) ROM P7(8) (8) A-D converter RAM P8(8) Serial I/O2 (8) Clock output XOUT Clock generating circuit 30 Clock input XIN PC H I/O port P5 12 13 14 15 16 17 18 19 P5(8) D-A converter 1 (8) 73 32 INT2 to INT4 P4(8) INT0 to INT1 I/O port P4 20 21 22 23 24 25 28 29 Serial I/O1 (8) PS PC L S Y X A Data bus CPU VCC VSS FUNCTIONAL BLOCK DIAGRAM (Package : 80P6N) I/O port P3 57 58 59 60 61 62 63 64 P1(8) I/O port P2 I/O port P1 P0(8) I/O port P0 49 50 51 52 53 54 55 56 Timer Y (8) Timer X (8) Timer 2 (8) Timer 1 (8) 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 P2(8) CNTR1 Prescaler Y (8) Prescaler X (8) Prescaler 12 (8) 26 CNVSS CNTR0 P3(8) 27 RESET Reset input MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER 3 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER PIN DESCRIPTION Pin Name Function Function except a port function VCC Power source • Apply voltage of 3.0 V to 5.5 V to VCC, and 0 V to VSS. (Extended operating temperature version : 4.0 V to 5.5 V) (High-speed version : 2.7 V to 5.5 V) CNVSS CNVSS • This pin controls the operation mode of the chip. • Normally connected to VSS. • If this pin is connected to VCC, the internal ROM is inhibited and external memory is accessed. VREF Analog reference voltage • Reference voltage input pin for A-D and D-A converters AVSS Analog power source • GND input pin for A-D and D-A converters • Connect to VSS. RESET Reset input • Reset input pin for active “L” XIN Clock input XOUT Clock output • Input and output signals for the internal clock generating circuit. • Connect a ceramic resonator or quartz-crystal oscillator between the XIN and XOUT pins to set the oscillation frequency. • If an external clock is used, connect the clock source to the XIN pin and leave the XOUT pin open. • The clock is used as the oscillating source of system clock. P00 – P07 I/O port P0 P10 – P17 I/O port P1 P20 – P27 I/O port P2 P30 – P37 I/O port P3 P40, P41 I/O port P4 VSS ______ P42/INT0, P43/INT1 • • • • • • 8 bit CMOS I/O port I/O direction register allows each pin to be individually programmed as either input or output. At reset this port is set to input mode. In modes other than single-chip, these pins are used as address, data, and control bus I/O pins. CMOS compatible input level CMOS 3-state output structure • 8-bit CMOS I/O port with the same function as port P0 • CMOS compatible input level • CMOS 3-state output structure • External interrupt input pin P44/RXD, P45/TXD, P46/S CLK1, _____ P47/SRDY1 P50 • Serial I/O1 I/O pins I/O port P5 P51/INT2 – P53/INT4 • 8-bit CMOS I/O port with the same function as port P0 • CMOS compatible input level • CMOS 3-state output structure • External interrupt input pin P54/CNTR0, P55/CNTR1 • Timer X and Timer Y I/O pins P56/DA1, P57/DA2 • D-A conversion output pins P60/AN0 – P67/AN7 4 I/O port P6 • 8-bit CMOS I/O port with the same function as port P0 • CMOS compatible input level • CMOS 3-state output structure • A-D conversion input pins MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER PIN DESCRIPTION (Continued) Pin Name Function Function except a port function P70/SIN2, P71/SOUT2, P72/S CLK2, _____ P73/SRDY2 I/O port P7 • 8-bit I/O port with the same function as port P0 • CMOS compatible input level • N-channel open-drain output structure • Serial I/O2 I/O pins I/O port P8 • 8-bit CMOS I/O port with the same function as port P0 • CMOS compatible input level • CMOS 3-state output structure P74 – P77 P80 – P87 PART NUMBERING Product M3806 3 M 6 - XXX FP Package type FP : 80P6N-A package GP : 80P6S-A package FS : 80D0 package ROM number Omitted in some types. Normally, using hyphen When electrical characteristic, or division of quality identification code using alphanumeric character – : standard D : Extended operating temperature version A : High-speed version ROM/PROM size 1 : 4096 bytes 2 : 8192 bytes 3 : 12288 bytes 4 : 16384 bytes 5 : 20480 bytes 6 : 24576 bytes 7 : 28672 bytes 8 : 32768 bytes 9 : 36864 bytes A : 40960 bytes B : 45056 bytes C : 49152 bytes D : 53248 bytes E : 57344 bytes F : 61440 bytes The first 128 bytes and the last 2 bytes of ROM are reserved areas ; they cannot be used. Memory type M : Mask ROM version E : EPROM or One Time PROM version RAM size 0 : 192 bytes 1 : 256 bytes 2 : 384 bytes 3 : 512 bytes 4 : 640 bytes 5 : 768 bytes 6 : 896 bytes 7 : 1024 bytes 5 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER GROUP EXPANSION Mitsubishi plans to expand the 3806 group as follows: (1) Support for mask ROM, One Time PROM, and EPROM versions ROM/PROM capacity ................................ 12 K to 48 K bytes RAM capacity .............................................. 384 to 1024 bytes (2) Packages 80P6N-A ............................. 0.8 mm-pitch plastic molded QFP 80P6S-A ........................... 0.65 mm-pitch plastic molded QFP 80D0 ................ 0.8 mm-pitch ceramic LCC (EPROM version) Memory Expansion Plan Mass product ROM size (bytes) 48K M38067MC/EC Mass product 32K M38067M8 28K Mass product 24K M38063M6/E6 20K Mass product 16K M38062M4 Mass product 12K M38062M3 8K 4K 192 256 384 512 640 768 896 1024 RAM size (bytes) Products under development : the development schedule and specification may be revised without notice. Currently supported products are listed below Product name M38062M3-XXXFP M38062M3-XXXGP M38062M4-XXXFP M38062M4-XXXGP M38063M6-XXXFP M38063E6-XXXFP M38063E6FP M38063M6-XXXGP M38063E6-XXXGP M38063E6GP M38063E6FS M38067M8-XXXFP M38067M8-XXXGP M38067MC-XXXFP M38067EC-XXXFP M38067ECFP M38067MC-XXXGP M38067EC-XXXGP M38067ECGP 6 As of May 1996 (P) ROM size (bytes) ROM size for User in ( ) RAM size (bytes) 12288 (12158) 384 16384 (16254) 384 Package 80P6N-A 80P6S-A 80P6N-A 80P6S-A 80P6N-A 24576 (24446) 512 80P6S-A 32768 (32638) 1024 80D0 80P6N-A 80P6S-A 80P6N-A 49152 (49022) 1024 80P6S-A Remarks Mask ROM version Mask ROM version Mask ROM version Mask ROM version Mask ROM version One Time PROM version One Time PROM version Mask ROM version One Time PROM version One Time PROM version EPROM version Mask ROM version Mask ROM version Mask ROM version One Time PROM version One Time PROM version Mask ROM version One Time PROM version One Time PROM version (blank) (blank) (blank) (blank) MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER GROUP EXPANSION (2) Packages 80P6N-A ............................. 0.8 mm-pitch plastic molded QFP (EXTENDED OPERATING TEMPERATURE VERSION) Mitsubishi plans to expand the 3806 group (extended operating temperature version) as follows: (1) Support for mask ROM version ROM/PROM capacity ................................ 12 K to 48 K bytes RAM capacity .............................................. 384 to 1024 bytes Memory Expansion Plan New product M38067ECD Mass product ROM size (bytes) 48K M38067MCD Mass product 32K M38067M8D 28K Mass product 24K M38063M6D 20K Mass product 16K M38062M4D Mass product 12K M38062M3D 8K 4K 192 256 384 512 640 768 896 1024 RAM size (bytes) Currently supported products are listed below. As of May 1996 Product name (P) ROM size (bytes) ROM size for User in ( ) RAM size (bytes) M38062M3DXXXFP M38062M4DXXXFP M38063M6DXXXFP M38067M8DXXXFP M38067MCDXXXFP M38067ECDXXXFP M38067ECDFP 12288(12158) 16384(16254) 24576(24446) 32768(32638) 384 384 512 1024 49152(49022) 1024 Package 80P6N-A Remarks Mask ROM version Mask ROM version Mask ROM version Mask ROM version Mask ROM version One Time PROM version One Time PROM version (blank) 7 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER GROUP EXPANSION (HIGH-SPEED VERSION) Mitsubishi plans to expand the 3806 group (high-speed version) as follows: (1) Support for mask ROM, One Time PROM, and EPROM versions ROM/PROM capacity ................................ 24 K to 48 K bytes RAM capacity .............................................. 512 to 1024 bytes (2) Packages 80P6N-A ............................. 0.8 mm-pitch plastic molded QFP 80P6S-A ........................... 0.65 mm-pitch plastic molded QFP 80P6D-A ............................. 0.5 mm-pitch plastic molded QFP 80D0 ................ 0.8 mm-pitch ceramic LCC (EPROM version) Memory Expansion Plan New product ROM size (bytes) 48K M38067MCA/ECA New product M38067M8A 32K 28K New product 24K M38063M6A 20K 16K 12K 8K 4K 192 256 384 512 640 768 896 1024 RAM size (bytes) Products under development: the development schedule and specification may be revised without notice. Currently supported products are listed below. Product name M38063M6AXXXFP M38063M6AXXXGP M38063M6AXXXHP M38067M8AXXXFP M38067M8AXXXGP M38067MCAXXXFP M38067ECAXXXFP M38067ECAFP M38067MCAXXXGP M38067ECAXXXGP M38067ECAGP M38067ECAFS 8 As of May 1996 (P) ROM size (bytes) ROM size for User in ( ) RAM size (bytes) 24576 (24446) 512 32768 (32638) 1024 Package 80P6N-A 80P6S-A 80P6D-A 80P6N-A 80P6S-A 80P6N-A 49152 (49022) 1024 80P6S-A 80D0 Remarks Mask ROM version Mask ROM version Mask ROM version Mask ROM version Mask ROM version Mask ROM version One Time PROM version One Time PROM version (blank) Mask ROM version One Time PROM version One Time PROM version (blank) EPROM version MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER FUNCTIONAL DESCRIPTION Central Processing Unit (CPU) The 3806 group uses the standard 740 family instruction set. Refer to the table of 740 family addressing modes and machine instructions or the SERIES 740 <Software> User’s Manual for details on the instruction set. Machine-resident 740 family instructions are as follows: The FST and SLW instruction cannot be used. The STP, WIT, MUL, and DIV instruction can be used. CPU mode register The CPU mode register is allocated at address 003B16. The CPU mode register contains the stack page selection bit. b7 b0 CPU mode register (CPUM : address 003B16) Processor mode bits b1 b0 0 0 : Single-chip mode 0 1 : Memory expansion mode 1 0 : Microprocessor mode 1 1 : Not available Stack page selection bit 0 : 0 page 1 : 1 page Not used (return “0” when read) Fig. 1 Structure of CPU mode register 9 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Memory Special function register (SFR) area The Special Function Register area in the zero page contains control registers such as I/O ports and timers. RAM RAM is used for data storage and for stack area of subroutine calls and interrupts. Zero page The 256 bytes from addresses 000016 to 00FF16 are called the zero page area. The internal RAM and the special function registers (SFR) are allocated to this area. The zero page addressing mode can be used to specify memory and register addresses in the zero page area. Access to this area with only 2 bytes is possible in the zero page addressing mode. Special page ROM The first 128 bytes and the last 2 bytes of ROM are reserved for device testing and the rest is user area for storing programs. Interrupt vector area The 256 bytes from addresses FF0016 to FFFF16 are called the special page area. The special page addressing mode can be used to specify memory addresses in the special page area. Access to this area with only 2 bytes is possible in the special page addressing mode. The interrupt vector area contains reset and interrupt vectors. RAM area RAM capacity (bytes) 192 256 384 512 640 768 896 1024 Address XXXX16 000016 SFR area 00FF16 013F16 01BF16 023F16 02BF16 033F16 03BF16 043F16 Zero page 004016 RAM 010016 XXXX16 Reserved area 044016 ROM area ROM capacity (bytes) 4096 8192 12288 16384 20480 24576 28672 32768 36864 40960 45056 49152 53248 57344 61440 Fig. 2 Memory map diagram 10 Not used Address YYYY16 Address ZZZZ16 F00016 E00016 D00016 C00016 B00016 A00016 900016 800016 700016 600016 500016 400016 300016 200016 100016 F08016 E08016 D08016 C08016 B08016 A08016 908016 808016 708016 608016 508016 408016 308016 208016 108016 YYYY16 Reserved ROM area (128 bytes) ZZZZ16 ROM FF0016 FFDC16 Interrupt vector area FFFE16 FFFF16 Reserved ROM area Special page MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER 000016 Port P0 (P0) 002016 Prescaler 12 (PRE12) 000116 Port P0 direction register (P0D) 002116 Timer 1 (T1) 000216 Port P1 (P1) 002216 Timer 2 (T2) 000316 Port P1 direction register (P1D) 002316 Timer XY mode register (TM) 000416 Port P2 (P2) 002416 Prescaler X (PREX) 000516 Port P2 direction register (P2D) 002516 Timer X (TX) 000616 Port P3 (P3) 002616 Prescaler Y (PREY) 000716 Port P3 direction register (P3D) 002716 Timer Y (TY) 000816 Port P4 (P4) 002816 000916 Port P4 direction register (P4D) 002916 000A16 Port P5 (P5) 002A16 000B16 Port P5 direction register (P5D) 002B16 000C16 Port P6 (P6) 002C16 000D16 Port P6 direction register (P6D) 002D16 000E16 Port P7 (P7) 002E16 000F16 Port P7 direction register (P7D) 002F16 001016 Port P8 (P8) 003016 001116 Port P8 direction register (P8D) 003116 001216 003216 001316 003316 001416 003416 AD/DA control register (ADCON) 001516 003516 A-D conversion register (AD) 001616 003616 D-A1 conversion register (DA1) 001716 003716 D-A2 conversion register (DA2) 001816 Transmit/Receive buffer register (TB/RB) 003816 001916 Serial I/O1 status register (SIO1STS) 003916 001A16 Serial I/O1 control register (SIO1CON) 003A16 Interrupt edge selection register 001B16 UART control register (UARTCON) 003B16 CPU mode register (CPUM) 001C16 Baud rate generator (BRG) 003C16 Interrupt request register 1(IREQ1) 001D16 Serial I/O2 control register (SIO2CON) 003D16 Interrupt request register 2(IREQ2) 001E16 001F16 Serial I/O2 register (SIO2) (INTEDGE) 003E16 Interrupt control register 1(ICON1) 003F16 Interrupt control register 2(ICON2) Fig. 3 Memory map of special function register (SFR) 11 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER I/O Ports Direction registers The 3806 group has 72 programmable I/O pins arranged in nine I/O ports (ports P0 to P8). The I/O ports have direction registers which determine the input/output direction of each individual pin. Each bit in a direction register corresponds to one pin, each pin can be set to be input port or output port. When “0” is written to the bit corresponding to a pin, that pin becomes an input pin. When “1” is written to that bit, that pin becomes an output pin. Pin Name Input/Output P00 – P07 Port P0 Input/output, individual bits P10 – P17 Port P1 Input/output, individual bits P20 – P27 Port P2 Input/output, individual bits P30 – P37 Port P3 Input/output, individual bits P40,P41 P42/INT0, P43/INT1 P44/RXD, P45/TXD, P46/SCLK1, _____ P47/SRDY1 P50 P51/INT2, P52/INT3, P53/INT4 P54/CNTR0, P55/CNTR1 P56/DA1, P57/DA2 P60/AN0 – P67/AN7 Port P4 Port P5 Port P6 Input/output, individual bits Input/output, individual bits If data is read from a pin which is set to output, the value of the port output latch is read, not the value of the pin itself. Pins set to input are floating. If a pin set to input is written to, only the port output latch is written to and the pin remains floating. I/O Format CMOS 3-state output CMOS compatible input level CMOS 3-state output CMOS compatible input level CMOS 3-state output CMOS compatible input level CMOS 3-state output CMOS compatible input level CMOS 3-state output CMOS compatible input level CMOS 3-state output CMOS compatible input level Input/output, individual bits CMOS 3-state output CMOS compatible input level P70/SIN2, P71/SOUT2, P72/SCLK2, _____ P73/SRDY2 P74 – P77 Port P7 Input/output, individual bits N-channel open-drain output CMOS compatible input level P80 – P87 Port P8 Input/output, individual bits CMOS 3-state output CMOS compatible input level Non-Port Function Related SFRs Address low-order byte output CPU mode register Address high-order byte output CPU mode register Ref.No. (1) Data bus I/O CPU mode register Control signal I/O CPU mode register External interrupt input Interrupt edge selection register Serial I/O1 function I/O Serial I/O1 control register UART control register External interrupt input Interrupt edge selection register (2) Timer X and Timer Y function I/O Timer XY mode register (7) D-A conversion output AD/DA control register (8) A-D conversion input Serial I/O2 function I/O (2) (3) (4) (5) (6) (1) (9) Serial I/O2 control register (10) (11) (12) (13) (14) (1) Note 1: For details of the functions of ports P0 to P3 in modes other than single-chip mode, and how to use double-function ports as function I/O ports, refer to the applicable sections. 2: Make sure that the input level at each pin is either 0 V or VCC during execution of the STP instruction. When an input level is at an intermediate potential, a current will flow from VCC to VSS through the input-stage gate. 12 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER (1) Ports P0, P1, P2, P3, P40, P41, P50, P8 (2) Ports P42, P43, P51, P52, P53 Direction register Data bus Direction register Port latch Port latch Data bus Interrupt input (3) Port P44 (4) Port P45 Serial I/O1 enable bit Receive enable bit P45/TXD P-channel output disable bit Serial I/O1 enable bit Transmit enable bit Direction register Direction register Data bus Port latch Port latch Data bus Serial I/O1 input Serial I/O1output (5) Port P46 (6) Port P47 Serial I/O1 synchronous clock selection bit Serial I/O1 enable bit Serial I/O1 mode selection bit Serial I/O1 enable bit SRDY1 output enable bit Serial I/O1 mode selection bit Serial I/O1 enable bit Direction register Data bus Direction register Port latch Serial I/O1 external clock input Serial I/O1 clock output (7) Ports P54, P55 Serial I/O1 ready output (8) Ports P56, P57 Direction register Data bus Port latch Data bus Direction register Port latch Data bus Pulse output mode Timer output Counter input Interrupt input Port latch D-A conversion output DA1 output enable bit (P5 6) DA2 output enable bit (P5 7) Fig. 4 Port block diagram (single-chip mode) (1) 13 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER (9) Port P6 (10) Port P70 Direction register Direction register Data bus Port latch Port latch Data bus Serial I/O2 input A-D conversion input Analog input pin selection bit (11) Port P71 (12) Port P72 Serial I/O2 transmit completion signal Serial I/O2 port selection bit Serial I/O2 synchronous clock selection bit Serial I/O2 port selection bit Direction register Direction register Port latch Data bus Data bus Serial I/O2 clock output Serial I/O2 output (13) Port P73 Port latch (14) Ports P74 – Port P77 Direction register SRDY2 output enable bit Data bus Direction register Data bus Port latch Serial I/O2 ready output Fig. 5 Port block diagram (single-chip mode) (2) 14 Port latch Serial I/O2 external clock input MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER INTERRUPTS Interrupt operation Interrupts occur by sixteen sources: seven external, eight internal, and one software. When an interrupt is received, the contents of the program counter and processor status register are automatically stored into the stack. The interrupt disable flag is set to inhibit other interrupts from interfering.The corresponding interrupt request bit is cleared and the interrupt jump destination address is read from the vector table into the program counter. Interrupt control Each interrupt is controlled by an interrupt request bit, an interrupt enable bit, and the interrupt disable flag except for the software interrupt set by the BRK instruction. An interrupt occurs if the corresponding interrupt request and enable bits are “1” and the interrupt disable flag is “0”. Interrupt enable bits can be set or cleared by software. Interrupt request bits can be cleared by software, but cannot be set by software. The BRK instruction cannot be disabled with any flag or bit. The I (interrupt disable) flag disables all interrupts except the BRK instruction interrupt. Notes on use When the active edge of an external interrupt (INT 0 to INT 4 , CNTR 0, or CNTR 1 ) is changed, the corresponding interrupt request bit may also be set. Therefore, please take following sequence; (1) Disable the external interrupt which is selected. (2) Change the active edge selection. (3) Clear the interrupt request bit which is selected to “0”. (4) Enable the external interrupt which is selected. Table 1. Interrupt vector addresses and priority Interrupt Source Priority Vector Addresses (Note 1) Low High FFFC16 FFFD16 Interrupt Request Generating Conditions At reset At detection of either rising or falling edge of INT0 input Reset (Note 2) 1 INT0 2 FFFB16 FFFA16 INT1 3 FFF916 FFF816 Serial I/O1 reception 4 FFF716 FFF616 Serial I/O1 transmission 5 FFF516 FFF416 Timer X Timer Y Timer 1 Timer 2 6 7 8 9 FFF316 FFF116 FFEF16 FFED16 FFF216 FFF016 FFEE16 FFEC16 CNTR0 10 FFEB16 FFEA16 CNTR1 11 FFE916 FFE816 Serial I/O2 12 FFE716 FFE616 INT2 13 FFE516 FFE416 INT3 14 FFE316 FFE216 INT4 15 FFE116 FFE016 A-D converter 16 FFDF16 FFDE16 At detection of either rising or falling edge of INT1 input At completion of serial I/O1 data reception At completion of serial I/O1 transfer shift or when transmission buffer is empty At timer X underflow At timer Y underflow At timer 1 underflow At timer 2 underflow At detection of either rising or falling edge of CNTR0 input At detection of either rising or falling edge of CNTR1 input At completion of serial I/O2 data transfer At detection of either rising or falling edge of INT2 input At detection of either rising or falling edge of INT3 input At detection of either rising or falling edge of INT4 input At completion of A-D conversion BRK instruction 17 FFDD16 FFDC16 At BRK instruction execution Remarks Non-maskable External interrupt (active edge selectable) External interrupt (active edge selectable) Valid when serial I/O1 is selected Valid when serial I/O1 is selected STP release timer underflow External interrupt (active edge selectable) External interrupt (active edge selectable) Valid when serial I/O2 is selected External interrupt (active edge selectable) External interrupt (active edge selectable) External interrupt (active edge selectable) Non-maskable software interrupt Note 1: Vector addresses contain interrupt jump destination addresses. 2: Reset function in the same way as an interrupt with the highest priority. 15 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Interrupt request bit Interrupt enable bit Interrupt disable flag (I) BRK instruction Reset Interrupt request Fig. 6 Interrupt control b7 b0 Interrupt edge selection register (INTEDGE : address 003A16) INT0 active edge selection bit INT1 active edge selection bit Not used (returns “0” when read) INT2 active edge selection bit INT3 active edge selection bit INT4 active edge selection bit Not used (returns “0” when read) b7 0 : Falling edge active 1 : Rising edge active b0 Interrupt request register 1 (IREQ1 : address 003C16) b7 b0 Interrupt request register 2 (IREQ2 : address 003D16) CNTR0 interrupt request bit CNTR1 interrupt request bit Serial I/O2 interrupt request bit INT2 interrupt request bit INT3 interrupt request bit INT4 interrupt request bit AD converter interrupt request bit Not used (returns “0” when read) INT0 interrupt request bit INT1 interrupt request bit Serial I/O1 receive interrupt request bit Serial I/O1 transmit interrupt request bit Timer X interrupt request bit Timer Y interrupt request bit Timer 1 interrupt request bit Timer 2 interrupt request bit 0 : No interrupt request issued 1 : Interrupt request issued b7 b0 Interrupt control register 1 (ICON1 : address 003E16) INT0 interrupt enable bit INT1 interrupt enable bit Serial I/O1 receive interrupt enable bit Serial I/O1 transmit interrupt enable bit Timer X interrupt enable bit Timer Y interrupt enable bit Timer 1 interrupt enable bit Timer 2 interrupt enable bit b7 b0 Interrupt control register 2 (ICON2 : address 003F16) CNTR0 interrupt enable bit CNTR1 interrupt enable bit Serial I/O2 interrupt enable bit INT2 interrupt enable bit INT3 interrupt enable bit INT4 interrupt enable bit AD converter interrupt enable bit Not used (returns “0” when read) (Do not write “1” to this bit) 0 : Interrupts disabled 1 : Interrupts enabled Fig. 7 Structure of interrupt-related registers 16 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Timers Timer 1 and Timer 2 The 3806 group has four timers: timer X, timer Y, timer 1, and timer 2. All timers are count down. When the timer reaches “0016”, an underflow occurs at the next count pulse and the corresponding timer latch is reloaded into the timer and the count is continued. When a timer underflows, the interrupt request bit corresponding to that timer is set to “1”. The division ratio of each timer or prescaler is given by 1/(n + 1), where n is the value in the corresponding timer or prescaler latch. The count source of prescaler 12 is the oscillation frequency divided by 16. The output of prescaler 12 is counted by timer 1 and timer 2, and a timer underflow sets the interrupt request bit. b7 b0 Timer XY mode register (TM : address 002316) Timer X operating mode bit b1b0 0 0: Timer mode 0 1: Pulse output mode 1 0: Event counter mode 1 1: Pulse width measurement mode CNTR0 active edge switch bit 0: Interrupt at falling edge Count at rising edge in event counter mode 1: Interrupt at rising edge Count at falling edge in event counter mode Timer X count stop bit 0: Count start 1: Count stop Timer Y operating mode bit b5b4 0 0: Timer mode 0 1: Pulse output mode 1 0: Event counter mode 1 1: Pulse width measurement mode CNTR1 active edge switch bit 0: Interrupt at falling edge Count at rising edge in event counter mode 1: Interrupt at rising edge Count at falling edge in event counter mode Timer Y count stop bit 0: Count start 1: Count stop Timer X and Timer Y Timer X and Timer Y can each be selected in one of four operating modes by setting the timer XY mode register. Timer Mode The timer counts f(XIN)/16 in timer mode. Pulse Output Mode Timer X (or timer Y) counts f(XIN)/16. Whenever the contents of the timer reach “00 16 ”, the signal output from the CNTR 0 (or CNTR 1 ) pin is inverted. If the CNTR 0 (or CNTR 1 ) active edge switch bit is “0”, output begins at “ H”. If it is “1”, output starts at “L”. When using a timer in this mode, set the corresponding port P54 ( or port P55) direction register to output mode. Event Counter Mode Operation in event counter mode is the same as in timer mode, except the timer counts signals input through the CNTR 0 or CNTR1 pin. Pulse Width Measurement Mode If the CNTR0 (or CNTR1) active edge selection bit is “0”, the timer counts at the oscillation frequency divided by 16 while the CNTR0 (or CNTR 1) pin is at “H”. If the CNTR0 (or CNTR1 ) active edge switch bit is “1”, the count continues during the time that the CNTR0 (or CNTR1) pin is at “L”. In all of these modes, the count can be stopped by setting the timer X (timer Y) count stop bit to “1”. Ever y time a timer underflows, the corresponding interrupt request bit is set. Fig. 8 Structure of timer XY register 17 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Data bus Oscillator Divider f(XIN ) 1/16 Pulse width measurement mode P54/CNTR0 pin CNTR0 active edge switch bit “0” Timer X latch (8) Prescaler X (8) Timer X (8) Timer mode Pulse output mode Event counter mode Timer X count stop bit CNTR0 active edge switch bit Q “1” “0” Port P5 4 latch Toggle flip- flop Q Timer X latch write pulse Pulse output mode Data bus Pulse width measurement mode CNTR1 active edge switch bit “0” Prescaler Y latch (8) Timer Y latch (8) Prescaler Y (8) Timer Y (8) Timer mode Pulse output mode Event counter mode To timer Y interrupt request bit Timer Y count stop bit To CNTR 1 interrupt request bit “1” CNTR1 active edge switch bit Q “1” Port P55 direction register T R Pulse output mode P55/CNTR1 pin To timer X interrupt request bit To CNTR 0 interrupt request bit “1” Port P54 direction register Prescaler X latch (8) Port P5 5 latch “0” Toggle flip- flop Q T R Timer Y latch write pulse Pulse output mode Pulse output mode Data bus Prescaler 12 latch (8) Timer 1 latch (8) Timer 2 latch (8) Prescaler 12 (8) Timer 1 (8) Timer 2 (8) To timer 2 interrupt request bit To timer 1 interrupt request bit Fig. 9 Block diagram of timer X, timer Y, timer 1, and timer 2 18 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Serial I/O1 Clock synchronous serial I/O mode Serial I/O1 can be used as either clock synchronous or asynchronous (UART) serial I/O. A dedicated timer is also provided for baud rate generation. Clock synchronous serial I/O1 mode can be selected by setting the mode selection bit of the serial I/O1 control register to “1”. For clock synchronous serial I/O1, the transmitter and the receiver must use the same clock. If an internal clock is used, transfer is started by a write signal to the TB/RB (address 001816). Data bus Serial I/O1 control register Address 0018 16 Receive buffer Receive buffer full flag (RBF) Receive interrupt request (RI) Receive shift register P44/RXD Address 001A 16 Shift clock Clock control circuit P46/SCLK1 f(X IN) XIN Serial I/O1 synchronous clock selection bit Frequency division ratio 1/(n+1) BRG count source selection bit Baud rate generator Address 001C 16 1/4 P47/SRDY1 F/F 1/4 Clock control circuit Falling-edge detector Shift clock P45/TXD Transmit shift completion flag (TSC) Transmit interrupt source selection bit Transmit interrupt request (TI) Transmit shift register Transmit buffer Address 0018 16 Transmit buffer empty flag (TBE) Serial I/O1 status register Address 0019 16 Data bus Fig. 10 Block diagram of clock synchronous serial I/O1 Transfer shift clock (1/2 to 1/2048 of the internal clock, or an external clock) Serial output TxD D0 D1 D2 D3 D4 D5 D6 D7 Serial input RxD D0 D1 D2 D3 D4 D5 D6 D7 Receive enable signal SRDY1 Write pulse to receive/transmit buffer (address 0018 16) TBE = 0 TBE = 1 TSC = 0 RBF = 1 TSC = 1 Overrun error (OE) detection Notes 1 : The transmit interrupt (TI) can be selected to occur either when the transmit buffer has emptied (TBE=1) or after the transmit shift operation has ended (TSC=1), by setting the transmit interrupt source selection bit (TIC) of the serial I/O1 control register. 2 : If data is written to the transmit buffer when TSC=0, the transmit clock is generated continuously and serial data is output continuously from the TxD pin. 3 : The receive interrupt (RI) is set when the receive buffer full flag (RBF) becomes “1” . Fig. 11 Operation of clock synchronous serial I/O1 function 19 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Asynchronous serial I/O (UART) mode two buffers have the same address in memory. Since the shift register cannot be written to or read from directly, transmit data is written to the transmit buffer, and receive data is read from the receive buffer. The transmit buffer can also hold the next data to be transmitted, and the receive buffer can hold a character while the next character is being received. Clock asynchronous serial I/O mode (UART) can be selected by clearing the serial I/O mode selection bit of the serial I/O control register to “0”. Eight serial data transfer formats can be selected, and the transfer formats used by a transmitter and receiver must be identical. The transmit and receive shift registers each have a buffer, but the Data bus Address 0018 16 Serial I/O1 control register Address 001A16 Receive buffer OE Character length selection bit P44/RXD STdetector 7 bits Receive buffer full flag (RBF) Receive interrupt request (RI) Receive shift register 1/16 8 bits PE FE UART control register SP detector Clock control circuit Address 001B16 Serial I/O1 synchronous clock selection bit P46/SCLK1 f(XIN) BRG count source selection bit Frequency division ratio 1/(n+1) Baud rate generator Address 001C 16 1/4 ST/SP/PA generator 1/16 Transmit shift register P45/TXD Transmit shift completion flag (TSC) Transmit interrupt source selection bit Transmit interrupt request (TI) Character length selection bit Transmit buffer Address 001816 Data bus Fig. 12 Block diagram of UART serial I/O 20 Transmit buffer empty flag (TBE) Serial I/O1 status register Address 001916 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Transmit or receive clock Transmit buffer write signal TBE=0 TSC=0 TBE=1 Serial output TXD TBE=0 TSC=1✽ TBE=1 ST D0 D1 SP ST D0 Receive buffer read signal SP D1 ✽ 1 start bit 7 or 8 data bit 1 or 0 parity bit 1 or 2 stop bit (s) Generated at 2nd bit in 2-stop-bit mode RBF=0 RBF=1 Serial input RXD ST D0 D1 SP RBF=1 ST D0 D1 SP Notes 1: Error flag detection occurs at the same time that the RBF flag becomes "1" (at 1st stop bit, during reception). 2: The transmit interrupt (TI) can be selected to occur when either the TBE or TSC flag becomes "1", depending on the setting of the transmit interrupt source selection bit (TIC) of the serial I/O control register. 3: The receive interrupt (RI) is set when the RBF flag becomes "1". 4: After data is written to the transmit buffer when TSC=1, 0.5 to 1.5 cycles of the data shift cycle is necessary until changing to TSC=0. Fig. 13 Operation of UART serial I/O function Serial I/O1 control register (SIO1CON) 001A16 The serial I/O control register consists of eight control bits for the serial I/O function. UART control register (UARTCON) 001B16 The UART control register consists of four control bits (bits 0 to 3) which are valid when asynchronous serial I/O is selected and set the data format of an data transfer. One bit in this register (bit 4) is always valid and sets the output structure of the P45/TXD pin. Serial I/O1 status register (SIO1STS) 001916 The read-only serial I/O1 status register consists of seven flags (bits 0 to 6) which indicate the operating status of the serial I/O function and various errors. Three of the flags (bits 4 to 6) are valid only in UART mode. The receive buffer full flag (bit 1) is cleared to “0” when the receive buffer is read. If there is an error, it is detected at the same time that data is transferred from the receive shift register to the receive buffer, and the receive buffer full flag is set. A write to the serial I/O status register clears all the error flags OE, PE, FE, and SE (bit 3 to bit 6, re- spectively). Writing “0” to the serial I/O enable bit SIOE (bit 7 of the Serial I/O Control Register) also clears all the status flags, including the error flags. All bits of the serial I/O1 status register are initialized to “0” at reset, but if the transmit enable bit (bit 4) of the serial I/O control register has been set to “1”, the transmit shift completion flag (bit 2) and the transmit buffer empty flag (bit 0) become “1”. Transmit buffer/Receive buffer register (TB/ RB) 001816 The transmit buffer and the receive buffer are located at the same address. The transmit buffer is write-only and the receive buffer is read-only. If a character bit length is 7 bits, the MSB of data stored in the receive buffer is “0”. Baud rate generator (BRG) 001C16 The baud rate generator determines the baud rate for serial transfer. The baud rate generator divides the frequency of the count source by 1/(n + 1), where n is the value written to the baud rate generator. 21 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER b7 b0 Serial I/O1 status register (SIO1STS : address 0019 16) Transmit buffer empty flag (TBE) 0: Buffer full 1: Buffer empty Receive buffer full flag (RBF) 0: Buffer empty 1: Buffer full Transmit shift completion flag (TSC) 0: Transmit shift in progress 1: Transmit shift completed Overrun error flag (OE) 0: No error 1: Overrun error Parity error flag (PE) 0: No error 1: Parity error Framing error flag (FE) 0: No error 1: Framing error Summing error flag (SE) 0: (OE) U (PE) U (FE)=0 1: (OE) U (PE) U (FE)=1 Not used (returns "1" when read) b7 b0 UART control register (UARTCON : address 001B 16) Character length selection bit (CHAS) 0: 8 bits 1: 7 bits Parity enable bit (PARE) 0: Parity checking disabled 1: Parity checking enabled Parity selection bit (PARS) 0: Even parity 1: Odd parity Stop bit length selection bit (STPS) 0: 1 stop bit 1: 2 stop bits P45/TXD P-channel output disable bit (POFF) 0: CMOS output (in output mode) 1: N-channel open drain output (in output mode) Not used (return "1" when read) Fig. 14 Structure of serial I/O control registers 22 b7 b0 Serial I/O1 control register (SIO1CON : address 001A 16) BRG count source selection bit (CSS) 0: f(X IN) 1: f(X IN)/4 Serial I/O1 synchronous clock selection bit (SCS) 0: BRG output divided by 4 when clock synchronous serial I/O is selected, BRG output divided by 16 when UART is selected. 1: External clock input when clock synchronous serial I/O is selected, external clock input divided by 16 when UART is selected. SRDY1 output enable bit (SRDY) 0: P4 7 pin operates as ordinaly I/O pin 1: P4 7 pin operates as S RDY1 output pin Transmit interrupt source selection bit (TIC) 0: Interrupt when transmit buffer has emptied 1: Interrupt when transmit shift operation is completed Transmit enable bit (TE) 0: Transmit disabled 1: Transmit enabled Receive enable bit (RE) 0: Receive disabled 1: Receive enabled Serial I/O1 mode selection bit (SIOM) 0: Clock asynchronous (UART) serial I/O 1: Clock synchronous serial I/O Serial I/O enable bit (SIOE) 0: Serial I/O disabled (pins P4 4 to P4 7 operate as ordinary I/O pins) 1: Serial I/O enabled (pins P4 4 to P4 7 operate as serial I/O pins) MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Serial I/O2 b7 b0 The serial I/O2 function can be used only for clock synchronous serial I/O. For clock synchronous serial I/O the transmitter and the receiver must use the same clock. If the internal clock is used, transfer is started by a write signal to the serial I/O2 register. Serial I/O2 control register (SIO2CON : address 001D16) Internal synchronous clock selection bits b2 b1 b0 0 0 0: f(XIN)/8 0 0 1: f(XIN)/16 0 1 0: f(XIN)/32 0 1 1: f(XIN)/64 1 1 0: f(XIN)/128 1 1 1: f(XIN)/256 Serial I/O2 control register (SIO2CON) 001D16 The serial I/O2 control register contains seven bits which control various serial I/O functions. Serial I/O2 port selection bit 0: I/O port 1: SOUT2,SCLK2 signal output SRDY2 output enable bit 0: I/O port 1: SRDY2 signal output Transfer direction selection bit 0: LSB first 1: MSB first Serial I/O2 synchronous clock selection bit 0: External clock 1: Internal clock Not used (returns “0” when read) Fig. 15 Structure of serial I/O2 control register 1/8 Divider 1/16 XIN Internal synchronous clock selection bits 1/32 Data bus 1/64 1/128 1/256 P73 latch Serial I/O2 synchronous clock selection bit P73/SRDY2 SRDY2 "1" Synchronization circuit "1" SRDY2 output enable bit SCLK2 "0" "0" External clock P72 latch "0" P72/SCLK2 "1" Serial I/O2 port selection bit Serial I/O counter 2 (3) Serial I/O2 interrupt request P71 latch "0" P71/SOUT2 "1" Serial I/O2 port selection bit P70/SIN2 Serial I/O shift register 2 (8) Fig. 16 Block diagram of serial I/O2 function 23 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Transfer clock (Note 1) Serial I/O2 register write signal (Note 2) Serial I/O2 output S OUT2 D0 D1 D2 D3 D4 D5 D6 D7 Serial I/O2 input S IN2 Receive enable signal SRDY2 Serial I/O2 interrupt request bit set Notes 1: When the internal clock is selected as the transfer clock, the divide ratio can be selected by setting bits 0 to 2 of the serial I/O2 control register. 2: When the internal clock is selected as the transfer clock, the S OUT2 pin goes to high impedance after transfer completion. Fig. 17 Timing of serial I/O2 function 24 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER A-D Converter [Comparator and Control circuit] The functional blocks of the A-D converter are described below. The comparator and control circuit compares an analog input voltage with the comparison voltage, then stores the result in the A-D conversion register. When an A-D conversion is complete, the control circuit sets the AD conversion completion bit and the AD interrupt request bit to “1”. Note that the comparator is constructed linked to a capacitor, so set f(XIN) to 500 kHz or more during an A-D conversion. [A-D conversion register] The A-D conversion register is a read-only register that stores the result of an A-D conversion. When reading this register during an A-D conversion, the previous conversion result is read. [AD/DA control register] The AD/DA control register controls the A-D conversion process. Bits 0 to 2 select a specific analog input pin. Bit 3 signals the completion of an A-D conversion. The value of this bit remains at “0” during an A-D conversion, and changes to “1” when an A-D conversion ends. Writing “0” to this bit starts the A-D conversion. Bits 6 and 7 are used to control the output of the D-A converter. b7 b0 AD/DA control register (ADCON : address 0034 16) Analog input pin selection bits b2 b1 b0 0 0 0 0 1 1 1 1 [Comparison voltage generator] The comparison voltage generator divides the voltage between AVSS and VREF into 256, and outputs the divided voltages. [Channel selector] 0 0 1 1 0 0 1 1 0: P60/AN0 1: P61/AN1 0: P62/AN2 1: P63/AN3 0: P64/AN4 1: P65/AN5 0: P66/AN6 1: P67/AN7 AD conversion completion bit 0: Conversion in progress 1: Conversion completed The channel selector selects one of the ports P60/AN0 to P67/AN7, and inputs the voltage to the comparator. Not used (return "0" When read) DA1 output enable bit 0: DA1 output disabled 1: DA1 output enabled DA2 output enable bit 0: DA2 output disabled 1: DA2 output enabled Fig.18 Structure of AD/DA control register Data bus AD/DA control register (Address 0034 16) b7 b0 3 A-D control circuit Channel selector P60/AN0 P61/AN 1 P62/AN 2 P63/AN 3 P64/AN 4 P65/AN 5 P66/AN 6 P67/AN 7 Comparator A-D interrupt request A-D conversion register (Address 0035 16) 8 Resistor ladder VREF AV SS Fig. 19 Block diagram of A-D converter 25 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER D-A Converter The 3806 group has two internal D-A converters (DA1 and DA2) with 8-bit resolutions. The D-A converter is performed by setting the value in the D-A conversion register. The result of D-A converter is output from the DA1 or DA2 pin by setting the DA output enable bit to “1”. When using the D-A converter, the corresponding port direction register bit (DA 1/P56 or DA2/P57) should be set to “0” (input status). The output analog voltage V is determined by the value n (base 10) in the D-A conversion register as follows: Data bus D-A1 conversion register (8) V = VREF ✕ n/256 (n = 0 to 255) Where VREF is the reference voltage. R-2R resistor ladder DA1 output enable bit P56/DA1 D-A2 conversion register (8) At reset, the D-A conversion registers are cleared to “00 16”, the DA output enable bits are cleared to “0”, and the P56/DA1 and P5 7/ DA2 pins are set to input (high impedance). The D-A output is not buffered, so connect an external buffer when driving a low-impedance load. Set VCC to 4.0 V or more when using the D-A converter. R-2R resistor ladder DA2 output enable bit P57/DA2 Fig. 20 Block diagram of D-A converter "0" DA1 output enable bit R P56/DA1 "1" 2R R 2R "0" "1" AV SS VREF Fig. 21 Equivalent connection circuit of D-A converter 26 2R R 2R R 2R R 2R R 2R 2R 2R LSB MSB D-A1 conversion register R MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Reset Circuit ______ To reset the microcomputer, the RESET pin should be held at an ______ “L” level for 2 µs or more. Then the RESET pin is returned to an “H” level (Note 1), reset is released. Internal operation does not begin until after 8 to 13 XIN clock cycles are completed. After the reset is completed, the program starts from the address contained in address FFFD16 (high-order byte) and address FFFC16 (low-order byte). Make sure that the reset input voltage is less than 0.8 V for VCC of 4.0 V (Note 2). Note 1. The power source voltage should be between the following voltage. • Between 3.0 V and 5.5 V for standard version • Between 4.0 V and 5.5 V for extended operating temperature version • Between 2.7 V and 5.5 V for high-speed version Note 2. Reset input voltage is less than the following voltage. • 0.6 V for VCC = 3.0 V • 0.8 V for VCC = 4.0 V • 0.54 V for VCC = 2.7 V 4.0V Power source 0V voltage 0.8V Reset input 0V voltage VCC 1 5 M51953AL 3 RESET 4 0.1 µ F VSS 3806 group Address (1) Port P0 direction register 0016 (2) Port P1 direction register (000316) • • • 0016 (3) Port P2 direction register (000516) • • • 0016 (4) Port P3 direction register (000716) • • • 0016 (5) Port P4 direction register (000916) • • • 0016 (6) Port P5 direction register (000B16) • • • 0016 (7) Port P6 direction register (000D16) • • • 0016 (8) Port P7 direction register (000F16) • • • 0016 (9) Port P8 direction register (001116) • • • 0016 (10) Serial I/O1 status register (001916) • • • 1 0 0 0 0 0 0 0 (11) Serial I/O1 control register (001A16) • • • (12) UART control register (001B16) • • • 1 1 1 0 0 0 0 0 (13) Serial I/O2 control register (001D16) • • • 0016 (14) Prescaler 12 (002016) • • • FF16 (15) Timer 1 (002116) • • • 0116 (16) Timer 2 (002216) • • • FF16 (17) Timer XY mode register (002316) • • • 0016 (18) Prescaler X (002416) • • • FF16 (19) Timer X (002516) • • • FF16 (20) Prescaler Y (002616) • • • FF16 (21) Timer Y (002716) • • • FF16 (22) AD/DA control register (003416) • • • 0 0 0 0 1 0 0 0 (23) D-A1 conversion register (003616) • • • 0016 (24) D-A2 conversion register (003716) • • • 0016 (25) Interrupt edge selection register (003A16) • • • 0016 0016 (26) CPU mode register (003B16) • • • 0 0 0 0 0 0 ✽ 0 (27) Interrupt request register 1 (003C16) • • • 0016 (28) Interrupt request register 2 (003D16) • • • 0016 (29) Interrupt control register 1 (003E16) • • • 0016 (30) Interrupt control register 2 (003F16) • • • 0016 (31) Processor status register Fig. 22 Example of reset circuit Register contents (000116) • • • (32) Program counter (PS) ✕ ✕ ✕ ✕ ✕ 1 ✕ ✕ (PCH) Contents of address FFFD 16 (PCL) Contents of address FFFC 16 Note. ✕ : Undefined ✽ : The initial values of CM 1 are determined by the level at the CNVSS pin. The contents of all other registers and RAM are undefined after a reset, so they must be initialized by software. Fig. 23 Internal status of microcomputer after reset 27 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER XIN φ RESET RESETOUT (internal reset) SYNC Address ? ? ? ? ? FFFC FFFD ADH, ADL Reset address from the vector table ? Data XIN: 8 to 13 clock cycles Fig. 24 Timing of reset 28 ? ? ? ? ADL ADH Notes 1: f(XIN) and f(φ) are in the relationship: f(X IN)=2 • f(φ). 2: A question mark (?) indicates an undefined status that depends on the previous status. MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Clock Generating Circuit When the STP status is released, prescaler 12 and timer 1 will start counting and reset will not be released until timer 1 underflows, so set the timer 1 interrupt enable bit to “0” before the STP instruction is executed. An oscillation circuit can be formed by connecting a resonator between XIN and XOUT. To supply a clock signal externally, input it to the XIN pin and make the XOUT pin open. Oscillation control Stop Mode If the STP instruction is executed, the internal clock φ stops at an “H”. Timer 1 is set to “0116” and prescaler 12 is set to “FF16”. Oscillator restarts when an external interrupt is received, but the internal clock φ remains at an “H” until timer 1 underflow. This allows time for the clock circuit oscillation to stabilize. If oscillator is restarted by a reset, no wait time is generated, so ______ keep the RESET pin at an “L” level until oscillation has stabilized. XIN Wait Mode If the WIT instruction is executed, the internal clock φ stops at an “H” level, but the oscillator itself does not stop. The internal clock restarts if a reset occurs or when an interrupt is received. Since the oscillator does not stop, normal operation can be started immediately after the clock is restarted. To ensure that interrupts will be received to release the STP or WIT state, interrupt enable bits must be set to “1” before the STP or WIT instruction is executed. XOUT CIN COUT Fig. 25 Ceramic resonator circuit X IN XOUT Open Vcc External oscillation circuit Vss Fig. 26 External clock input circuit Interrupt request Interrupt disable flag (I) S Q S Q Q Reset S Reset R STP instruction WIT instruction R STP instruction R φ output Internal clock φ ONW pin Single-chip mode ONW control 1/2 1/8 Prescaler 12 Timer 1 Rd FF16 0116 Reset or STP instruction Rf XIN X OUT Fig. 27 Block diagram of clock generating circuit 29 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Processor Modes Single-chip mode, memory expansion mode, and microprocessor mode can be selected by changing the contents of the processor mode bits CM 0 and CM 1 (bits 0 and 1 of address 003B 16 ). In memory expansion mode and microprocessor mode, memory can be expanded externally through ports P0 to P3. In these modes, ports P0 to P3 lose their I/O port functions and become bus pins. Table 2. Functions of ports in memory expansion mode and microprocessor mode Port Name Function Port P0 Outputs low-order byte of address. Port P1 Outputs high-order byte of address. Operates as I/O pins for data D7 to D0 Port P2 (including instruction codes). P30 and P31 function only as output pins (except that the port latch cannot be read). _____ P32 is the ONW input pin. 000016 000816 000016 000816 SFR area 004016 SFR area 004016 Internal RAM reserved area 044016 Internal RAM reserved area 044016 ✽ YYYY16 Internal ROM FFFF16 FFFF16 Memory expansion mode Microprocessor mode The shaded areas are external memory areas. ✽ : YYYY16 is the start address of internal ROM. _________ Port P3 P33 is the RESETOUT output pin. (Note) P34 is the φ output pin. P35 is the SYNC output pin. ___ P36 is the WR output pin, and P3 7 is the ___ RD output pin. Note: If CNVSS is connected to V SS, the microcomputer goes to single-chip mode after a reset, so this pin cannot be used _________ as the RESETOUT output pin. Fig. 28 Memory maps in various processor modes b7 b0 CPU mode register (CPUM : address 003B 16) Processor mode bits b1 b0 Single-Chip Mode Select this mode by resetting the microcomputer with CNVSS connected to VSS. 0 0 : Single-chip mode 0 1 : Memory expansion mode 1 0 : Microprocessor mode 1 1 : Not available Memory Expansion Mode Select this mode by setting the processor mode bits to “01” in software with CNV SS connected to VSS. This mode enables external memory expansion while maintaining the validity of the internal ROM. Internal ROM will take precedence over external memory if addresses conflict. Stack page selection bit 0 : 0 page 1 : 1 page Not used (return “0” when read) Fig. 29 Structure of CPU mode register Microprocessor Mode Select this mode by resetting the microcomputer with CNVSS connected to V CC, or by setting the processor mode bits to “10” in software with CNVSS connected to VSS. In microprocessor mode, the internal ROM is no longer valid and external memory must be used. 30 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Bus control with memory expansion _____ The 3806 group has a built-in ONW function to facilitate access to external memory and I/O devices in memory expansion mode or microprocessor mode. _____ If an “L” level signal is input to the ONW pin when the CPU is in a read or write state, the corresponding read or write cycle ___ is extended by one cycle of φ. During this extended period, the RD or ___ WR signal remains at “L”. This extension period is valid only for writing to and reading from addresses 0000 16 to 0007 16 and 044016 to FFFF16 in microprocessor mode, 044016 to YYYY16 in memory expansion mode, and only read and write cycles are extended. Read cycle Dummy cycle Write cycle Read cycle Dummy cycle Write cycle φ AD15 to AD0 RD WR ONW ✽ ✽ ✽ ✽ : Period during which ONW input signal is received During this period, the ONW signal must be fixed at either “H” or “L”. At all other times, the input level of the ONW signal has no affect on operations. The bus cycles is not extended for an address in the area 000816 to 043F16, regardless of whether the ONW signal is received. _____ Fig. 30 ONW function timing 31 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER NOTES ON PROGRAMMING Processor Status Register The contents of the processor status register (PS) after a reset are undefined, except for the interrupt disable flag (I) which is “1”. After a reset, initialize flags which affect program execution. In particular, it is essential to initialize the index X mode (T) and the decimal mode (D) flags because of their effect on calculations. Serial I/O In clock synchronous serial I/O, if the receive side is using an ex_____ ternal clock and it is to output the SRDY1 _____ signal, set the transmit enable bit, the receive enable bit, and the SRDY1 output enable bit to “1”. Serial I/O1 continues to output the final bit from the TXD pin after transmission is completed. The SOUT2 pin from serial I/O2 goes to high impedance after transmission is completed. Interrupts The contents of the interrupt request bits do not change immediately after they have been written. After writing to an interrupt request register, execute at least one instruction before executing a BBC or BBS instruction. Decimal Calculations To calculate in decimal notation, set the decimal mode flag (D) to “1”, then execute an ADC or SBC instruction. Only the ADC and SBC instructions yield proper decimal results. After executing an ADC or SBC instruction, execute at least one instruction before executing a SEC, CLC, or CLD instruction. In decimal mode, the values of the negative (N), overflow (V), and zero (Z) flags are invalid. The carry flag can be used to indicate whether a carry or borrow has occurred. Initialize the carry flag before each calculation. Clear the carry flag before an ADC and set the flag before an SBC. Timers If a value n (between 0 and 255) is written to a timer latch, the frequency division ratio is 1/(n + 1). Multiplication and Division Instructions The index X mode (T) and the decimal mode (D) flags do not affect the MUL and DIV instruction. The execution of these instructions does not change the contents of the processor status register. Ports The contents of the port direction registers cannot be read. The following cannot be used: • The data transfer instruction (LDA, etc.) • The operation instruction when the index X mode flag (T) is “1” • The addressing mode which uses the value of a direction register as an index • The bit-test instruction (BBC or BBS, etc.) to a direction register • The read-modify-write instruction (ROR, CLB, or SEB, etc.) to a direction register Use instructions such as LDM and STA, etc., to set the port direction registers. 32 A-D Converter The comparator uses internal capacitors whose charge will be lost if the clock frequency is too low. Make sure that f(XIN ) is at least 500 kHz during an A-D conver____ sion. (If the ONW pin has been set to “L”, the A-D conversion will take twice as long to match the longer bus cycle, and so f(X IN) must be at least 1 MHz.) Do not execute the STP or WIT instruction during an A-D conversion. D-A Converter The accuracy of the D-A converter becomes poor rapidly under the VCC = 4.0 V or less condition. Instruction Execution Time The instruction execution time is obtained by multiplying the frequency of the internal clock φ by the number of cycles needed to execute an instruction. The number of cycles required to execute an instruction is shown in the list of machine instructions. The frequency of the internal clock φ is half of the XIN frequency. _____ When the ONW function is used in modes other than single-chip mode, the frequency of the internal clock φ may be one fourth the XIN frequency. Memory Expansion Mode and Microprocessor Mode Execute the LDM or STA instruction for writing to port P3 (address 000616) in memory expansion mode and microprocessor mode. Set areas which can be read out and write to port P3 (address 0006 16 ) in a memory, using the read-modify-write instruction (SEB, CLB). MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER DATA REQUIRED FOR MASK ORDERS ROM PROGRAMMING METHOD The following are necessary when ordering a mask ROM production: 1. Mask ROM Order Confirmation Form 2. Mark Specification Form 3. Data to be written to ROM, in EPROM form (three identical copies) The built-in PROM of the blank One Time PROM version and builtin EPROM version can be read or programmed with a generalpurpose PROM programmer using a special programming adapter. Set the address of PROM programmer in the user ROM area. Package Name of Programming Adapter 80P6N-A PCA4738F-80A 80P6S-A PCA4738G-80A 80D0 PCA4738L-80A The PROM of the blank One Time PROM version is not tested or screened in the assembly process and following processes. To ensure proper operation after programming, the procedure shown in Figure 40 is recommended to verify programming. Programming with PROM programmer Screening (Caution) (150°C for 40 hours) Verification with PROM programmer Functional check in target device Caution : The screening temperature is far higher than the storage temperature. Never expose to 150 °C exceeding 100 hours. Fig. 31 Programming and testing of One Time PROM version 33 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER ABSOLUTE MAXIMUM RATINGS Symbol VCC Parameter Power source voltage Input voltage P00–P07, P10–P17, P30–P37, P40–P47, P60–P67, P70–P77, VREF ______ Input voltage RESET, XIN Input voltage CNVSS Output voltage P00–P07, P10–P17, P30–P37, P40–P47, P60–P67, P70–P77, XOUT Power dissipation Operating temperature Storage temperature VI VI VI VO Pd Topr Tstg Ratings –0.3 to 7.0 Unit V –0.3 to VCC +0.3 V –0.3 to VCC +0.3 –0.3 to 13 V V –0.3 to VCC +0.3 V 500 –20 to 85 –40 to 125 mW °C °C Conditions P20–P27, P50–P57, P80–P87, All voltages are based on VSS. Output transistors are cut off. P20–P27, P50–P57, P80–P87, Ta = 25 °C RECOMMENDED OPERATING CONDITIONS (Vcc=3.0 to 5.5v, Ta=-20 to 85°C,unless otherwise noted) Symbol VCC VSS VREF AVSS VIA VIH VIH VIL VIL VIL VIL ΣIOH(peak) ΣIOH(peak) ΣIOL(peak) ΣIOL(peak) ΣIOH(avg) ΣIOH(avg) ΣIOL(avg) ΣIOL(avg) IOH(peak) IOL(peak) IOH(avg) IOL(avg) f(XIN) Parameter Power source voltage (f(XIN) < 2 MHz) (Note 1) Power source voltage (f(XIN) = 8 MHz) (Note 1) Power source voltage Analog reference voltage (when A-D converter is used) Analog reference voltage (when D-A converter is used) Analog power source voltage Analog input voltage AN0–AN7 “H” input voltage P00–P07, P10–P17, P20–P27, P30–P37, P40–P47, P50–P57, P60–P67, P70–P77, P80–P87 ______ “H” input voltage RESET, XIN, CNVSS “L” input voltage P00–P07, P10–P17, P20–P27, P30–P37, P40–P47, P50–P57, P60–P67, P70–P77, P80–P87 ______ “L” input voltage RESET “L” input voltage XIN “L” input voltage CNVSS “H” total peak output current P00–P07, P10–P17, P20–P27, P30–P37, P80–P87 (Note 2) “H” total peak output current P40–P47,P50–P57, P60–P67 (Note 2) “L” total peak output current P00–P07, P10–P17, P20–P27, P30–P37, P80–P87 (Note 2) “L” total peak output current P40–P47,P50–P57, P60–P67, P70–P77 (Note 2) “H” total average output current P00–P07, P10–P17, P20–P27, P30–P37, P80–P87 (Note 2) “H” total average output current P40–P47,P50–P57, P60–P67 (Note 2) “L” total average output current P00–P07, P10–P17, P20–P27, P30–P37, P80–P87 (Note 2) “L” total average output current P40–P47,P50–P57, P60–P67, P70–P77 (Note 2) “H” peak output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47, P50–P57, P60–P67, P80–P87 (Note 3) “L” peak output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47, P50–P57, P60–P67, P70–P77, P80–P87 (Note 3) “H” average output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47, P50–P57, P60–P67, P80–P87 (Note 4) “L” average output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47, P50–P57, P60–P67, P70–P77, P80–P87 (Note 4) Internal clock oscillation frequency (VCC = 4.0 to 5.5 V) Internal clock oscillation frequency (VCC = 3.0 to 4.0 V) Limits Min. 3.0 4.0 Typ. 5.0 5.0 0 2.0 3.0 Max. 5.5 5.5 Unit V V VCC VCC V AVSS VCC V V 0.8 VCC VCC V 0.8 VCC VCC V 0 0.2 VCC V 0 0 0 0.2 VCC 0.16 VCC 0.2 VCC –80 –80 80 80 –40 –40 40 40 V V V mA mA mA mA mA mA mA mA –10 mA 10 mA –5 mA 5 mA 0 8 MHz 6 VCC–16 Note 1: The minimum power source voltage is X + 16 [V] (f(XIN) = XMHz) on the condition of 2 MHz < f(XIN) < 8 MHz. 6 2: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured over 100 ms. The total peak current is the peak value of all the currents. 3: The peak output current is the peak current flowing in each port. 4: The average output current IOL(avg), IOH(avg) in an average value measured over 100 ms. 34 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER ELECTRICAL CHARACTERISTICS Symbol (VCC = 3.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted) Parameter Test conditions “H” output voltage P00–P07, P10–P17, P20–P27, P30–P37, P40–P47, P50–P57, P60–P67, P80–P87 (Note 1) VOH “L” output voltage P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,P50–P57, P60–P67, P70–P77, P80–P87 VOL VT+ – VT– VT+ – VT– VT+ – VT– Hysteresis Hysteresis Hysteresis “H” input current IIH IIH IIH “H” input current “H” input current “L” input current IIL IIL IIL VRAM ICC “L” input current “L” input current RAM hold voltage CNTR0, CNTR1, INT0–INT4 RXD, SCLK1, SIN2, SCLK2 ______ RESET P00–P07, P10–P17, P20–P27, P30–P37, P40–P47, P50–P57, P60–P67, P70–P77, P80–P87 ______ RESET, CNVSS XIN P00–P07, P10–P17, P20–P27, P30–P37, P40–P47, P50–P57, P60–P67, P70–P77, P80–P87 ______ RESET, CNVSS XIN Power source current Min. IOH = –10 mA VCC = 4.0 to 5.5 V IOH = –1.0 mA VCC = 3.0 to 5.5 V IOL = 10 mA VCC = 4.0 to 5.5 V IOL = 1.0 mA VCC = 3.0 to 5.5 V Limits Typ. Max. Unit VCC–2.0 V VCC–1.0 2.0 V 1.0 0.4 0.5 0.5 VI = VCC VI = VCC VI = VCC V V V 5.0 µA 5.0 µA µA –5.0 µA –5.0 µA µA V 4 VI = VSS VI = VSS VI = VSS When clock stopped f(XIN) = 8 MHz, VCC = 5 V f(XIN) = 5 MHz, VCC = 5 V f(XIN) = 2 MHz, VCC = 3 V When WIT instruction is executed with f(Xin) = 8MHz,Vcc=5V When WIT instruction is executed with f(Xin) = 5MHz,Vcc=5V When WIT instruction is executed with f(Xin) = 2MHz,Vcc=3V When STP instruction Ta = 25 °C is executed with clock (Note 2) stopped, output Ta = 85 °C transistors isolated. (Note 2) –4 2.0 6.4 4 0.8 5.5 13 8 2.0 1.5 mA 1 0.2 0.1 1 µA 10 Note 1: P45 is measured when the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”. 2: With output transistors isolated and A-D converter having completed conversion, and not including current flowing through V REF pin. A-D CONVERTER CHARACTERISTICS (VCC = 3.0 to 5.5 V, VSS = AVSS = 0 V, VREF = 2.0 V to VCC, Ta = –20 to 85 °C, unless otherwise noted) Symbol — — tCONV RLADDER IVREF II(AD) Parameter Resolution Absolute accuracy (excluding quantization error) Conversion time Ladder resistor Reference power source input current (Note) A-D port input current Test conditions VREF = 5.0 V Min. 50 Limits Max. Typ. 8 ±1 ±2.5 50 35 150 200 0.5 5.0 Unit Bits LSB tC(φ) kΩ µA µA Note: When D-A conversion registers (addresses 003616 and 003716) contain “0016”. 35 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER D-A CONVERTER CHARACTERISTICS (VCC = 3.0 to 5.5 V, VSS = AVSS = 0 V, VREF = 3.0 V to VCC, Ta = –20 to 85 °C, unless otherwise noted) Symbol — — tsu RO IVREF Parameter Test conditions Min. Limits Typ. Resolution Absolute accuracy VCC = 4.0 to 5.5 V VCC = 3.0 to 4.0 V Setting time Output resistor Reference power source input current (Note) 1 2.5 Max. 8 1.0 2.5 3 4 3.2 Unit Bits % µs kΩ mA Note: Using one D-A converter, with the value in the D-A conversion register of the other D-A converter being “0016”, and excluding currents flowing through the A-D resistance ladder. 36 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER TIMING REQUIREMENTS 1 (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted) Symbol _____ tw(RESET) tc(XIN) twH(XIN) twL(XIN) tc(CNTR) twH(CNTR) twH(INT) twL(CNTR) twL(INT) tc(SCLK1) tc(SCLK2) twH(SCLK1) twH(SCLK2) twL(SCLK1) twL(SCLK2) tsu(RXD–SCLK1) tsu(SIN2–SCLK2) th(SCLK1–RXD) th(SCLK2–SIN2) Parameter Reset input “L” pulse width External clock input cycle time External clock input “H” pulse width External clock input “L” pulse width CNTR0, CNTR1 input cycle time CNTR0, CNTR1 input “H” pulse width INT0 to INT4 input “H” pulse width CNTR0, CNTR1 input “L” pulse width INT0 to INT4 input “L” pulse width Serial I/O1 clock input cycle time (Note) Serial I/O2 clock input cycle time Serial I/O1 clock input “H” pulse width (Note) Serial I/O2 clock input “H” pulse width Serial I/O1 clock input “L” pulse width (Note) Serial I/O2 clock input “L” pulse width Serial I/O1 input set up time Serial I/O2 input set up time Serial I/O1 input hold time Serial I/O2 input hold time Min. 2 125 50 50 200 80 80 80 80 800 1000 370 400 370 400 220 200 100 200 Limits Typ. Max. Unit µs ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Note: When bit 6 of address 001A16 is “1”. Divide this value by four when bit 6 of address 001A16 is “0”. TIMING REQUIREMENTS 2 (VCC = 3.0 to 4.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted) Symbol _____ Parameter tw(RESET) Reset input “L” pulse width tc(XIN) External clock input cycle time twH(XIN) External clock input “H” pulse width twL(XIN) External clock input “L” pulse width tc(CNTR) twH(CNTR) twH(INT) twL(CNTR) twL(INT) tc(SCLK1) tc(SCLK2) twH(SCLK1) twH(SCLK2) twL(SCLK1) twL(SCLK2) tsu(RXD–SCLK1) tsu(SIN2–SCLK2) th(SCLK1–RXD) th(SCLK2–SIN2) CNTR0, CNTR1 input cycle time CNTR0, CNTR1 input “H” pulse width INT0 to INT4 input “H” pulse width CNTR0, CNTR1 input “L” pulse width INT0 to INT4 input “L” pulse width Serial I/O1 clock input cycle time (Note) Serial I/O2 clock input cycle time Serial I/O1 clock input “H” pulse width (Note) Serial I/O2 clock input “H” pulse width Serial I/O1 clock input “L” pulse width (Note) Serial I/O2 clock input “L” pulse width Serial I/O1 input set up time Serial I/O2 input set up time Serial I/O1 input hold time Serial I/O2 input hold time Min. 2 500/ (3 VCC–8) 200/ (3 VCC–8) 200/ (3 VCC–8) 500 230 230 230 230 2000 2000 950 950 950 950 400 400 200 300 Limits Typ. Max. Unit µs ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Note : When bit 6 of address 001A16 is “1”. Divide this value by four when bit 6 of address 001A16 is “0”. 37 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER SWITCHING CHARACTERISTICS 1 (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted) Symbol twH(SCLK1) twL(SCLK1) td(SCLK1–TXD) tv(SCLK1–TXD) tr(SCLK1) tf(SCLK1) twH(SCLK2) twL(SCLK2) td(SCLK2–SOUT2) tv(SCLK2–SOUT2) tf(SCLK2) tr(CMOS) tf(CMOS) Parameter Serial I/O1 clock output “H” pulse width Serial I/O1 clock output “L” pulse width Serial I/O1 output delay time (Note 1) Serial I/O1 output valid time (Note 1) Serial I/O1 clock output rising time Serial I/O1 clock output falling time Serial I/O2 clock output “H” pulse width Serial I/O2 clock output “L” pulse width Serial I/O2 output delay time Serial I/O2 output valid time Serial I/O2 clock output falling time CMOS output rising time (Note 2) CMOS output falling time (Note 2) Test conditions Fig. 32 Min. tc(SCLK1)/2–30 tc(SCLK1)/2–30 Limits Typ. Max. 140 –30 30 30 tc(SCLK2)/2–160 tc(SCLK2)/2–160 Fig. 33 200 0 40 30 30 10 10 Fig. 32 Unit ns ns ns ns ns ns ns ns ns ns ns ns ns Note1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”. 2: Pins XOUT and P70–P77 are excluded. SWITCHING CHARACTERISTICS 2 (VCC = 3.0 to 4.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted) Symbol twH(SCLK1) twL(SCLK1) td(SCLK1–TXD) tv(SCLK1–TXD) tr(SCLK1) tf(SCLK1) twH(SCLK2) twL(SCLK2) td(SCLK2–SOUT2) tv(SCLK2–SOUT2) tf(SCLK2) tr(CMOS) tf(CMOS) Parameter Serial I/O1 clock output “H” pulse width Serial I/O1 clock output “L” pulse width Serial I/O1 output delay time (Note 1) Serial I/O1 output valid time (Note 1) Serial I/O1 clock output rising time Serial I/O1 clock output falling time Serial I/O2 clock output “H” pulse width Serial I/O2 clock output “L” pulse width Serial I/O2 output delay time Serial I/O2 output valid time Serial I/O2 clock output falling time CMOS output rising time (Note 2) CMOS output falling time (Note 2) Test conditions Fig. 32 Limits Min. tc(SCLK1)/2–50 tc(SCLK1)/2–50 Typ. 350 –30 50 50 tc(SCLK2)/2–240 tc(SCLK2)/2–240 400 Fig. 33 0 Fig. 32 20 20 Note1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”. 2: Pins XOUT and P70–P77 are excluded. 38 Max. 50 50 50 Unit ns ns ns ns ns ns ns ns ns ns ns ns ns MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER TIMING REQUIREMENTS 1 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE Symbol ____ tsu(ONW–φ) ____ th(φ–ONW) tsu(DB–φ) th(φ–DB) ____ __ tsu(ONW–RD) ____ ___ tsu(ONW–WR) __ ____ th(RD–ONW) ___ ____ th(WR–ONW) __ tsu(DB–RD) __ th(RD–DB) _____ Before φ ONW input set up time _____ After φ ONW input hold time Before φ data bus set up time After φ data bus hold time ___ _____ Before RD ___ ONW _____ input set up time Before WR ONW input set up time ___ _____ After RD ___ ONW _____ input hold time After WR ONW input hold time ___ Before RD data bus set up time ___ After RD data bus hold time (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted) Limits Parameter Unit Min. Typ. Max. ns –20 ns –20 ns 60 ns 0 –20 ns –20 ns 65 0 ns ns SWITCHING CHARACTERISTICS 1 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted) Symbol Parameter φ clock cycle time φ clock “H” pulse width φ clock “L” pulse width After φ AD15–AD8 delay time After φ AD15–AD8 valid time After φ AD7–AD0 delay time After φ AD7–AD0 valid time SYNC delay time SYNC valid time ___ ___ RD and WR delay time ___ ___ RD and WR valid time After φ data bus delay time After φ data bus valid time ___ ___ RD pulse width, WR pulse width __ ___ ___ twL(RD) ___ RD pulse width, WR pulse width twL(WR) (When one-wait is valid) ___ __ td(AH–RD) After AD15–AD8 ___ RD delay time ___ td(AH–WR) After AD15–AD8 WR delay time ___ __ td(AL–RD) After AD7–AD0 ___ RD delay time ___ td(AL–WR) After AD7–AD0 WR delay time ___ __ tv(RD–AH) After ___ RD AD15–AD8 valid time ___ tv(WR–AH) After WR AD15–AD8 valid time ___ __ tv(RD–AL) After ___ RD AD7–AD0 valid time ___ tv(WR–AL) After WR AD7–AD0 valid time ___ ___ td(WR–DB) After WR data bus delay time ___ ___ tv(WR–DB) After WR data bus valid time _________ ___ _____ td(RESET–RESETOUT) RESETOUT output delay time (Note 1) _________ _____ tv(φ–RESET) RESETOUT output valid time (Note 1) Test conditions Min. tc(φ) twH(φ) twL(φ) td(φ–AH) tv(φ–AH) td(φ–AL) tv(φ–AL) td(φ–SYNC) tv(φ–SYNC) ___ td(φ–WR) ___ tv(φ–WR) td(φ–DB) tv(φ–DB) Limits Typ. 2tc(XIN) Max. 15 tc(XIN)–10 ns ns ns ns ns ns ns ns ns ns ns ns ns ns 3tc(XIN)–10 ns tc(XIN)–10 tc(XIN)–10 6 6 3 Fig. 32 Unit 20 10 25 10 20 10 10 5 20 40 45 20 10 70 tc(XIN)–35 tc(XIN)–15 ns tc(XIN)–40 tc(XIN)–20 ns 0 5 ns 0 5 ns 15 65 10 0 200 200 ns ns ns ns __________ Note 1: The______ RESETOUT output goes “H” in sync with the fall of the φ clock that is anywhere between about 8 cycle and 13 cycles after the RESET input goes “H”. 39 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER TIMING REQUIREMENTS 2 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE (VCC = 3.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted) Parameter Symbol ____ tsu(ONW–φ) ____ th(φ–ONW) tsu(DB–φ) th(φ–DB) ____ __ tsu(ONW–RD) ____ ___ tsu(ONW–WR) __ ____ th(RD–ONW) ___ ____ th(WR–ONW) __ tsu(DB–RD) __ th(RD–DB) Min. –20 –20 180 0 _____ Before φ ONW input set up time _____ After φ ONW input hold time Before φ data bus set up time After φ data bus hold time ___ _____ Before RD ___ ONW _____ input set up time Before WR ONW input set up time ___ _____ After RD ___ ONW _____ input hold time After WR ONW input hold time ___ Before RD data bus set up time ___ After RD data bus hold time Limits Typ. Unit Max. ns ns ns ns –20 ns –20 ns 185 0 ns ns SWITCHING CHARACTERISTICS 2 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE (VCC = 3.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted) Parameter Symbol tc(φ) twH(φ) twL(φ) td(φ–AH) tv(φ–AH) td(φ–AL) tv(φ–AL) td(φ–SYNC) tv(φ–SYNC) ___ td(φ–WR) ___ tv(φ–WR) td(φ–DB) tv(φ–DB) Min. φ clock cycle time φ clock “H” pulse width φ clock “L” pulse width After φ AD15–AD8 delay time After φ AD15–AD8 valid time After φ AD7–AD0 delay time After φ AD7–AD0 valid time SYNC delay time SYNC valid time ___ ___ 15 tc(XIN)–20 3tc(XIN)–20 ns tc(XIN)–145 ns tc(XIN)–145 ns 10 15 10 15 40 20 15 7 150 3 25 15 200 Fig. 32 ___ ___ __ td(AH–RD) ___ td(AH–WR) __ td(AL–RD) ___ td(AL–WR) __ tv(RD–AH) ___ tv(WR–AH) __ tv(RD–AL) ___ tv(WR–AL) ___ td(WR–DB) ___ tv(WR–DB) ___ _____ td(RESET–RESETOUT) _____ tv(φ–RESET) Unit 150 ___ RD pulse width, WR pulse width ___ RD pulse width, WR pulse width (when one-wait is valid) Max. ns ns ns ns ns ns ns ns ns ns ns ns ns ns ___ RD and WR valid time After φ data bus delay time After φ data bus valid time Typ. 2tc(XIN) tc(XIN)–20 tc(XIN)–20 RD and WR delay time ___ ___ __ twL(RD) ___ twL(WR) Limits Test conditions After AD15–AD8 ___ RD delay time After AD15–AD8 WR delay time ___ After AD7–AD0 ___ RD delay time After AD7–AD0 WR delay time ___ After ___ RD AD15–AD8 valid time After WR AD15–AD8 valid time ___ After ___ RD AD7–AD0 valid time After WR AD7–AD0 valid time 5 10 ns 5 10 ns ___ 195 After WR data bus delay time ___ 10 After WR data bus valid time _________ RESETOUT output delay time (Note 1) 300 _________ 0 300 RESET OUT output valid time (Note 1) __________ Note1: The______ RESETOUT output goes “H” in sync with the fall of the φ clock that is anywhere between about 8 cycle and 13 cycles the RESET input goes “H”. 40 ns ns ns ns after S p MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER ABSOLUTE MAXIMUM RATINGS (Extended operating temperature version) Symbol VCC VI VI VI VO Pd Topr Tstg Parameter Power source voltage Input voltage P00–P07, P10–P17, P30–P37, P40–P47, P60–P67, P70–P77, VREF ______ Input voltage RESET, XIN Input voltage CNVSS Output voltage P00–P07, P10–P17, P30–P37, P40–P47, P60–P67, P70–P77, XOUT Power dissipation Operating temperature Storage temperature Ratings –0.3 to 7.0 Unit V –0.3 to VCC +0.3 V –0.3 to VCC +0.3 –0.3 to 13 V V –0.3 to VCC +0.3 V 500 –40 to 85 –65 to 150 mW °C °C Conditions P20–P27, P50–P57, P80–P87, All voltage are based on VSS. Output transistors are cut off. P20–P27, P50–P57, P80–P87, Ta = 25 °C RECOMMENDED OPERATING CONDITIONS (Extended operating temperature version) (VCC = 4.0 to 5.5 V, Ta = –40 to 85 °C, unless otherwise noted) Symbol VCC VSS VREF AVSS VIA VIH VIH VIL VIL VIL ΣIOH(peak) ΣIOH(peak) ΣIOL(peak) ΣIOL(peak) ΣIOH(avg) ΣIOH(avg) ΣIOL(avg) ΣIOL(avg) IOH(peak) IOL(peak) IOH(avg) IOL(avg) f(XIN) Parameter Power source voltage Power source voltage Analog reference voltage (when A-D converter is used) Analog reference voltage (when D-A converter is used) Analog power source voltage Analog input voltage AN0–AN7 “H” input voltage P00–P07, P10–P17, P20–P27, P30–P37, P40–P47, P50–P57, P60–P67, P70–P77, P80–P87 ______ “H” input voltage RESET, XIN, CNVSS “L” input voltage P00–P07, P10–P17, P20–P27, P30–P37, P40–P47, P50–P57, P60–P67, P70–P77, P80–P87 ______ “L” input voltage RESET, CNVSS “L” input voltage XIN “H” total peak output current P00–P07, P10–P17, P20–P27, P30–P37, P80–P87 (Note 1) “H” total peak output current P40–P47,P50–P57, P60–P67 (Note 1) “L” total peak output current P00–P07, P10–P17, P20–P27, P30–P37, P80–P87 (Note 1) “L” total peak output current P40–P47,P50–P57, P60–P67, P70–P77 (Note 1) “H” total average output current P00–P07, P10–P17, P20–P27, P30–P37, P80–P87 (Note 1) “H” total average output current P40–P47,P50–P57, P60–P67 (Note 1) “L” total average output current P00–P07, P10–P17, P20–P27, P30–P37, P80–P87 (Note 1) “L” total average output current P40–P47,P50–P57, P60–P67, P70–P77 (Note 1) “H” peak output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47, P50–P57, P60–P67, P80–P87 (Note 2) “L” peak output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47, P50–P57, P60–P67, P70–P77, P80–P87 (Note 2) “H” average output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47, P50–P57, P60–P67, P80–P87 (Note 3) “L” average output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47, P50–P57, P60–P67, P70–P77, P80–P87 (Note 3) Internal clock oscillation frequency Min. 4.0 Limits Typ. 5.0 0 2.0 4.0 Max. 5.5 VCC VCC 0 Unit V V V AVSS VCC V V 0.8 VCC VCC V 0.8 VCC VCC V 0 0.2 VCC V 0 0 0.2 VCC 0.16 VCC –80 –80 80 80 –40 –40 40 40 V V mA mA mA mA mA mA mA mA –10 mA 10 mA –5 mA 5 mA 8 MHz Note 1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured over 100 ms. The total peak current is the peak value of all the currents. 2: The peak output current is the peak current flowing in each port. 3: The average output current IOL(avg), IOH(avg) in an average value measured over 100 ms. 41 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER ELECTRICAL CHARACTERISTICS (Extended operating temperature version) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted) Symbol VOH VOL VT+ – VT– VT+ – VT– VT+ – VT– IIH IIH IIH IIL IIL IIL VRAM ICC Parameter “H” output voltage P00–P07, P10–P17, P20–P27, P30–P37, P40–P47, P50–P57, P60–P67, P80–P87 (Note 1) “L” output voltage P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,P50–P57, P60–P67, P70–P77, P80–P87 Hysteresis CNTR0, CNTR1, INT0–INT4 Hysteresis RXD, SCLK1, SIN2, SCLK2 ______ Hysteresis RESET “H” input current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47, P50–P57, P60–P67, P70–P77, P80–P87 ______ “H” input current RESET, CNVSS “H” input current XIN “L” input current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47, P50–P57, P60–P67, P70–P77, P80–P87 ______ “L” input current RESET, CNVSS “L” input current XIN RAM hold voltage Power source current Test conditions IOH = –10 mA Min. Limits Typ. Max. VCC–2.0 V 2.0 IOL = 10 mA 0.4 0.5 0.5 VI = VCC VI = VCC VI = VCC VI = VSS 5.0 µA 5.0 µA µA –5.0 µA –5.0 µA µA V –4 2.0 6.4 4 V V V V 4 VI = VSS VI = VSS When clock stopped f(XIN) = 8 MHz f(XIN) = 5 MHz When WIT instruction is executed with f(XIN) = 8 MHz When WIT instruction is executed with f(XIN) = 5 MHz When STP instruction Ta = 25 °C is executed with clock (Note 2) stopped, output Ta = 85 °C transistors isolated. (Note 2) Unit 5.5 13 8 mA 1.5 1 0.1 1 µA 10 Note 1: P45 is measured when the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”. 2: With output transistors isolated and A-D converter having completed conversion, and not including current flowing through V REF pin. A-D CONVERTER CHARACTERISTICS(Extended operating temperature version) (VCC = 4.0 to 5.5 V, VSS = AVSS = 0 V, VREF = 2.0 V to VCC, Ta = –40 to 85 °C, unless otherwise noted) Symbol Parameter — — Resolution Absolute accuracy (excluding quantization error) Conversion time Ladder resistor Reference power source input current (Note) A-D port input current tCONV RLADDER IVREF II(AD) Test conditions Limits Typ. ±1 VREF = 5.0 V Note: When D-A conversion registers (addresses 003616 and 003716) contain “0016”. 42 Min. 50 35 150 0.5 Max. 8 ±2.5 50 200 5.0 Unit Bits LSB tC(φ) kΩ µA µA MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER D-A CONVERTER CHARACTERISTICS (Extended operating temperature version) (VCC = 4.0 to 5.5 V, VSS = AVSS = 0 V, VREF = 3.0 V to VCC, Ta = –40 to 85 °C, unless otherwise noted) Symbol — — tsu RO IVREF Parameter Resolution Absolute accuracy Setting time Output resistor Reference power source input current (Note) Test conditions Min. 1 Limits Typ. 2.5 Max. 8 1.0 3 4 3.2 Unit Bits % µs kΩ mA Note: Using one D-A converter, with the value in the D-A conversion register of the other D-A converter being “0016”, and excluding currents flowing through the A-D resistance ladder. 43 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER TIMING REQUIREMENTS (Extended operating temperature version) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted) Symbol _____ tw(RESET) tc(XIN) twH(XIN) twL(XIN) tc(CNTR) twH(CNTR) twH(INT) twL(CNTR) twL(INT) tc(SCLK1) tc(SCLK2) twH(SCLK1) twH(SCLK2) twL(SCLK1) twL(SCLK2) tsu(RXD–SCLK1) tsu(SIN2–SCLK2) th(SCLK1–RXD) th(SCLK2–SIN2) Parameter Min. 2 125 50 50 200 80 80 80 80 800 1000 370 400 370 400 220 200 100 200 Reset input “L” pulse width External clock input cycle time External clock input “H” pulse width External clock input “L” pulse width CNTR0, CNTR1 input cycle time CNTR0, CNTR1 input “H” pulse width INT0 to INT4 input “H” pulse width CNTR0, CNTR1 input “L” pulse width INT0 to INT4 input “L” pulse width Serial I/O1 clock input cycle time (Note) Serial I/O2 clock input cycle time Serial I/O1 clock input “H” pulse width (Note) Serial I/O2 clock input “H” pulse width Serial I/O1 clock input “L” pulse width (Note) Serial I/O2 clock input “L” pulse width Serial I/O1 input set up time Serial I/O2 input set up time Serial I/O1 input hold time Serial I/O2 input hold time Limits Typ. Max. Unit µs ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Note: When bit 6 of address 001A16 is “1”. Divide this value by four when bit 6 of address 001A16 is “0”. SWITCHING CHARACTERISTICS (Extended operating temperature version) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted) Symbol twH(SCLK1) twL(SCLK1) td(SCLK1–TXD) tv(SCLK1–TXD) tr(SCLK1) tf(SCLK1) twH(SCLK2) twL(SCLK2) td(SCLK2–SOUT2) tv(SCLK2–SOUT2) tf(SCLK2) tr(CMOS) tf(CMOS) Parameter Serial I/O1 clock output “H” pulse width Serial I/O1 clock output “L” pulse width Serial I/O1 output delay time (Note 1) Serial I/O1 output valid time (Note 1) Serial I/O1 clock output rise time Serial I/O1 clock output fall time Serial I/O2 clock output “H” pulse width Serial I/O2 clock output “L” pulse width Serial I/O2 output delay time Serial I/O2 output valid time Serial I/O2 clock output fall time CMOS output rise time (Note 2) CMOS output fall time (Note 2) Test conditions Fig. 32 Min. tc(SCLK1)/2–30 tc(SCLK1)/2–30 Limits Typ. 140 –30 30 30 tc(SCLK2)/2–160 tc(SCLK2)/2–160 Fig. 33 200 0 Fig. 32 10 10 Note1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”. 2: Pins XOUT pin and P70–P77 are excluded. 44 Max. 40 30 30 Unit ns ns ns ns ns ns ns ns ns ns ns ns ns MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER TIMING REQUIREMENTS IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE (Extended operating temperature version) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted) Symbol ____ tsu(ONW–φ) ____ th(φ–ONW) tsu(DB–φ) th(φ–DB) ____ __ tsu(ONW–RD) ____ ___ tsu(ONW–WR) __ ____ th(RD–ONW) ___ ____ th(WR–ONW) __ tsu(DB–RD) __ th(RD–DB) Parameter Min. _____ Before φ ONW input set up time _____ After φ ONW input hold time Before φ data bus set up time After φ data bus hold time ___ _____ Before RD ___ ONW _____ input set up time Before WR ONW input set up time ___ _____ After RD ___ ONW _____ input hold time After WR ONW input hold time ___ Before RD data bus set up time ___ After RD data bus hold time Limits Typ. Max. Unit –20 –20 60 0 ns ns ns ns –20 ns –20 ns 65 0 ns ns SWITCHING CHARACTERISTICS IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE (Extended operating temperature version) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted) Symbol Parameter φ clock cycle time φ clock “H” pulse width φ clock “L” pulse width After φ AD15–AD8 delay time After φ AD15–AD8 valid time After φ AD7–AD0 delay time After φ AD7–AD0 valid time SYNC delay time SYNC valid time ___ ___ RD and WR delay time ___ ___ RD and WR valid time After φ data bus delay time After φ data bus valid time ___ ___ __ RD pulse width, WR pulse width ___ ___ twL(RD) __ RD pulse width, WR pulse width twL(WR) (When one-wait is valid) ___ __ td(AH–RD) After AD15–AD8 ___ RD delay time ___ td(AH–WR) After AD15–AD8 WR delay time ___ __ td(AL–RD) After AD7–AD0 ___ RD delay time ___ td(AL–WR) After AD7–AD0 WR delay time ___ __ tv(RD–AH) After ___ RD AD15–AD8 valid time ___ tv(WR–AH) After WR AD15–AD8 valid time ___ __ tv(RD–AL) After ___ RD AD7–AD0 valid time ___ tv(WR–AL) After WR AD7–AD0 valid time ___ ___ td(WR–DB) After WR data bus delay time ___ ___ tv(WR–DB) After WR data bus valid time _________ ___ _____ td(RESET–RESETOUT) RESETOUT output delay time (Note 1) _________ _____ tv(φ–RESET) RESETOUT output valid time (Note 1) Test conditions Min. tc(φ) twH(φ) twL(φ) td(φ–AH) tv(φ–AH) td(φ–AL) tv(φ–AL) td(φ–SYNC) tv(φ–SYNC) ___ td(φ–WR) ___ tv(φ–WR) td(φ–DB) tv(φ–DB) Limits Typ. 2tc(XIN) Max. 15 tc(XIN)–10 ns ns ns ns ns ns ns ns ns ns ns ns ns ns 3tc(XIN)–10 ns tc(XIN)–10 tc(XIN)–10 6 6 3 Fig. 32 Unit 20 10 25 10 20 10 10 5 20 40 45 20 10 70 tc(XIN)–35 tc(XIN)–15 ns tc(XIN)–40 tc(XIN)–20 ns 0 5 ns 0 5 ns 15 65 10 0 200 200 ns ns ns ns _________ Note 1: The______ RESETOUT output goes “H” in sync with the fall of the φ clock that is anywhere between about 8 cycle and 13 cycles after the RESET input goes “H”. 45 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER ABSOLUTE MAXIMUM RATINGS (High-speed version) Symbol VCC VI VI VI VO Pd Topr Tstg Parameter Power source voltage Input voltage P00–P07, P10–P17, P20–P27, P30–P37, P40–P47, P50–P57, P60–P67, P70–P77, P80–P87, VREF, XIN ______ Input voltage RESET Mask ROM version Input voltage CNVSS PROM version Output voltage P00–P07, P10–P17, P20–P27, P30–P37, P40–P47, P50–P57, P60–P67, P70–P77, P80–P87, XOUT Power dissipation Operating temperature Storage temperature Ratings –0.3 to 7.0 Unit V –0.3 to VCC +0.3 V –0.3 to 7.0 –0.3 to 7.0 –0.3 to 13 V –0.3 to VCC +0.3 V 500 –20 to 85 –40 to 125 mW °C °C Conditions All voltages are based on VSS. Output transistors are cut off. Ta = 25 °C V RECOMMENDED OPERATING CONDITIONS (High-speed version) (VCC = 2.7 to 5.5 V, Ta = –20 to 85 °C, unless otherwise noted) Symbol VCC VSS VREF AVSS VIA VIH VIL VIL ΣIOH(peak) ΣIOH(peak) ΣIOL(peak) ΣIOL(peak) ΣIOH(avg) ΣIOH(avg) ΣIOL(avg) ΣIOL(avg) IOH(peak) IOL(peak) IOH(avg) IOL(avg) f(XIN) Parameter Min. 2.7 4.0 Power source voltage (f(XIN) < 4.15 MHz) Power source voltage (f(XIN) = 10 MHz) Power source voltage Analog reference voltage (when A-D converter is used) 2.0 Analog reference voltage (when D-A converter is used) 2.7 Analog power source voltage Analog input voltage AN0–AN7 AVSS “H” input voltage P00–P07, P10–P17, P20–P27, P30–P37, ______ P40–P47, P50–P57, P60–P67, P70–P77, P80–P87, RESET, XIN, 0.8 VCC CNVSS “L” input voltage P00–P07, P10–P17, P20–P27, P30–P3______ 7, P40–P47, 0 P50–P57, P60–P67, P70–P77, P80–P87, RESET, CNVSS “L” input voltage XIN 0 “H” total peak output current P00–P07, P10–P17, P20–P27, P30–P37, P80–P87 (Note 1) “H” total peak output current P40–P47,P50–P57, P60–P67 (Note 1) “L” total peak output current P00–P07, P10–P17, P20–P27, P30–P37, P80–P87 (Note 1) “L” total peak output current P40–P47,P50–P57, P60–P67, P70–P77 (Note 1) “H” total average output current P00–P07, P10–P17, P20–P27, P30–P37, P80–P87 (Note 1) “H” total average output current P40–P47,P50–P57, P60–P67 (Note 1) “L” total average output current P00–P07, P10–P17, P20–P27, P30–P37, P80–P87 (Note 1) “L” total average output current P40–P47,P50–P57, P60–P67, P70–P77 (Note 1) “H” peak output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47, P50–P57, P60–P67, P80–P87 (Note 2) “L” peak output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47, P50–P57, P60–P67, P70–P77, P80–P87 (Note 2) “H” average output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47, P50–P57, P60–P67, P80–P87 (Note 3) “L” average output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47, P50–P57, P60–P67, P70–P77, P80–P87 (Note 3) Internal clock oscillation frequency (4.0 V < VCC < 5.5 V) Internal clock oscillation frequency (2.7 V < VCC < 4.0 V) Limits Typ. 5.0 5.0 0 Max. 5.5 5.5 Unit V V VCC VCC 0 V VCC V V VCC V 0.2 VCC V 0.16 VCC –80 –80 80 80 –40 –40 40 40 V mA mA mA mA mA mA mA mA –10 mA 10 mA –5 mA 5 mA 10 4.5VCC–8 MHz Note 1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured over 100 ms. The total peak current is the peak value of all the currents. 2: The peak output current is the peak current flowing in each port. 3: The average output current IOL(avg), IOH(avg) in an average value measured over 100 ms. 46 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER ELECTRICAL CHARACTERISTICS (High-speed version) (VCC = 2.7 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted) Symbol VOH VOL VT+ – VT– VT+ – VT– VT+ – VT– Parameter “H” output voltage P00–P07, P10–P17, P20–P27, P30–P37, P40–P47, P50–P57, P60–P67, P80–P87 (Note 1) “L” output voltage P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,P50–P57, P60–P67, P70–P77, P80–P87 Hysteresis Hysteresis Hysteresis “H” input current IIH IIH IIH “H” input current “H” input current “L” input current IIL IIL VRAM ICC “L” input current RAM hold voltage CNTR0, CNTR1, INT0–INT4 RXD, SCLK1, SIN2, SCLK2 ______ RESET P00–P07, P10–P17, P20–P27, P30–P37, P40–P47, P50–P57, P60–P67, P70–P77, P80–P87 ______ RESET, CNVSS XIN P00–P07, P10–P17, P20–P27, P30–P37, P40–P47, P50–P57, P60–P67, P70–P77, P80–P87, ______ RESET, CNVSS XIN Power source current Test conditions IOH = –10 mA VCC = 4.0 to 5.5 V IOH = –1.0 mA VCC = 2.7 to 5.5 V IOL = 10 mA VCC = 4.0 to 5.5 V IOL = 1.0 mA VCC = 2.7 to 5.5 V Min. Limits Typ. Max. VCC–2.0 V VCC–1.0 2.0 V 1.0 0.4 0.5 0.5 VI = VCC VI = VCC VI = VCC V V V 5.0 µA 5.0 µA µA –5.0 µA 4 VI = VSS VI = VSS With clock stopped f(XIN) = 10 MHz, VCC = 5 V f(XIN) = 4 MHz, VCC = 2.7 V When WIT instruction is executed with f(XIN) = 10 MHz, VCC = 5 V When WIT instruction is executed with f(XIN) = 4 MHz, VCC = 2.7 V When STP instruction Ta = 25 °C is executed with clock (Note 2) stopped, output Ta = 85 °C transistors isolated. (Note 2) Unit –4 2.0 8 1.3 5.5 16 2 µA V mA 2 0.3 0.1 1 µA 10 Note 1: P45 is measured when the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”. 2: With output transistors isolated and A-D converter having completed conversion, and not including current flowing through V REF pin. A-D CONVERTER CHARACTERISTICS (High-speed version) (VCC = 2.7 to 5.5 V, VSS = AVSS = 0 V, VREF = 2.0 V to VCC, Ta = –20 to 85 °C, unless otherwise noted) Symbol Parameter — — Resolution Absolute accuracy (excluding quantization error) Conversion time Ladder resistor Reference power source input current (Note) A-D port input current tCONV RLADDER IVREF II(AD) Test conditions Min. Limits Typ. ±1 VREF = 5.0 V 50 35 150 0.5 Max. 8 ±2.5 50 200 5.0 Unit Bits LSB tC(φ) kΩ µA µA Note: When D-A conversion registers (addresses 003616 and 003716) contain “0016”. 47 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER D-A CONVERTER CHARACTERISTICS (High-speed version) (VCC = 2.7 to 5.5 V, VSS = AVSS = 0 V, VREF = 2.7 V to VCC, Ta = –20 to 85 °C, unless otherwise noted) Symbol — — tsu RO IVREF Parameter Test conditions Min. Limits Typ. Resolution Absolute accuracy VCC = 4.0 to 5.5 V VCC = 2.7 to 5.5 V Setting time Output resistor Reference power source input current (Note) 1 2.5 Max. 8 1.0 2.5 3 4 3.2 Unit Bits % µs kΩ mA Note: Using one D-A converter, with the value in the D-A conversion register of the other D-A converter being “0016”, and excluding currents flowing through the A-D resistance ladder. 48 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER TIMING REQUIREMENTS 1 (High-speed version) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted) Symbol _____ tw(RESET) tc(XIN) twH(XIN) twL(XIN) tc(CNTR) twH(CNTR) twH(INT) twL(CNTR) twL(INT) tc(SCLK1) tc(SCLK2) twH(SCLK1) twH(SCLK2) twL(SCLK1) twL(SCLK2) tsu(RXD–SCLK1) tsu(SIN2–SCLK2) th(SCLK1–RXD) th(SCLK2–SIN2) Parameter Reset input “L” pulse width External clock input cycle time External clock input “H” pulse width External clock input “L” pulse width CNTR0, CNTR1 input cycle time CNTR0, CNTR1 input “H” pulse width INT0 to INT4 input “H” pulse width CNTR0, CNTR1 input “L” pulse width INT0 to INT4 input “L” pulse width Serial I/O1 clock input cycle time (Note) Serial I/O2 clock input cycle time Serial I/O1 clock input “H” pulse width (Note) Serial I/O2 clock input “H” pulse width Serial I/O1 clock input “L” pulse width (Note) Serial I/O2 clock input “L” pulse width Serial I/O1 input set up time Serial I/O2 input set up time Serial I/O1 input hold time Serial I/O2 input hold time Min. 2 100 40 40 200 80 80 80 80 800 1000 370 400 370 400 220 200 100 200 Limits Typ. Max. Unit µs ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Note: When f(XIN) = 8 MHz and bit 6 of address 001A 16 is “1”. Divide this value by four when f(X IN) = 8 MHz and bit 6 of address 001A 16 is “0”. TIMING REQUIREMENTS 2 (High-speed version) VCC = 2.7 to 4.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted) Symbol _____ Parameter tw(RESET) Reset input “L” pulse width tc(XIN) External clock input cycle time twH(XIN) External clock input “H” pulse width twL(XIN) External clock input “L” pulse width tc(CNTR) twH(CNTR) twH(INT) twL(CNTR) twL(INT) tc(SCLK1) tc(SCLK2) twH(SCLK1) twH(SCLK2) twL(SCLK1) twL(SCLK2) tsu(RXD–SCLK1) tsu(SIN2–SCLK2) th(SCLK1–RXD) th(SCLK2–SIN2) CNTR0, CNTR1 input cycle time CNTR0, CNTR1 input “H” pulse width INT0 to INT4 input “H” pulse width CNTR0, CNTR1 input “L” pulse width INT0 to INT4 input “L” pulse width Serial I/O1 clock input cycle time (Note) Serial I/O2 clock input cycle time Serial I/O1 clock input “H” pulse width (Note) Serial I/O2 clock input “H” pulse width Serial I/O1 clock input “L” pulse width (Note) Serial I/O2 clock input “L” pulse width Serial I/O1 input set up time Serial I/O2 input set up time Serial I/O1 input hold time Serial I/O2 input hold time Min. 2 1000/ (4.5 VCC–8) 400/ (4.5 VCC–8) 400/ (4.5 VCC–8) 500 230 230 230 230 2000 2000 950 950 950 950 400 400 200 300 Limits Typ. Max. Unit µs ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Note: When f(XIN) = 2 MHz and bit 6 of address 001A 16 is “1”. Divide this value by four when f(X IN) = 2 MHz and bit 6 of address 001A 16 is “0”. 49 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER SWITCHING CHARACTERISTICS 1 (High-speed version) Symbol twH(SCLK1) twL(SCLK1) td(SCLK1–TXD) tv(SCLK1–TXD) tr(SCLK1) tf(SCLK1) twH(SCLK2) twL(SCLK2) td(SCLK2–SOUT2) tv(SCLK2–SOUT2) tf(SCLK2) tr(CMOS) tf(CMOS) Parameter Serial I/O1 clock output “H” pulse width Serial I/O1 clock output “L” pulse width Serial I/O1 output delay time (Note 1) Serial I/O1 output valid time (Note 1) Serial I/O1 clock output rising time Serial I/O1 clock output falling time Serial I/O2 clock output “H” pulse width Serial I/O2 clock output “L” pulse width Serial I/O2 output delay time Serial I/O2 output valid time Serial I/O2 clock output falling time CMOS output rising time (Note 2) CMOS output falling time (Note 2) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted) Limits Test conditions Unit Min. Typ. Max. tc(SCLK1)/2–30 ns tc(SCLK1)/2–30 ns 140 ns Fig. 32 –30 ns 30 ns 30 ns tc(SCLK2)/2–160 ns tc(SCLK2)/2–160 ns Fig. 33 200 ns 0 ns 30 ns 10 30 ns Fig. 32 10 30 ns Note1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”. 2: XOUT pin is excluded. SWITCHING CHARACTERISTICS 2 (High-speed version) (VCC = 2.7 to 4.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted) Symbol twH(SCLK1) twL(SCLK1) td(SCLK1–TXD) tv(SCLK1–TXD) tr(SCLK1) tf(SCLK1) twH(SCLK2) twL(SCLK2) td(SCLK2–SOUT2) tv(SCLK2–SOUT2) tf(SCLK2) tr(CMOS) tf(CMOS) Parameter Serial I/O1 clock output “H” pulse width Serial I/O1 clock output “L” pulse width Serial I/O1 output delay time (Note 1) Serial I/O1 output valid time (Note 1) Serial I/O1 clock output rising time Serial I/O1 clock output falling time Serial I/O2 clock output “H” pulse width Serial I/O2 clock output “L” pulse width Serial I/O2 output delay time Serial I/O2 output valid time Serial I/O2 clock output falling time CMOS output rising time (Note 2) CMOS output falling time (Note 2) Test conditions Fig. 32 Min. tc(SCLK1)/2–50 tc(SCLK1)/2–50 Limits Typ. 350 –30 50 50 tc(SCLK2)/2–240 tc(SCLK2)/2–240 Fig. 33 400 0 Fig. 32 20 20 Note 1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”. 2: XOUT pin is excluded. 50 Max. 50 50 50 Unit ns ns ns ns ns ns ns ns ns ns ns ns ns MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER TIMING REQUIREMENTS 1 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE (High-speed version) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted) Parameter Symbol ____ tsu(ONW–φ) ____ th(φ–ONW) tsu(DB–φ) th(φ–DB) ____ __ tsu(ONW–RD) ____ ___ tsu(ONW–WR) __ ____ th(RD–ONW) ___ ____ th(WR–ONW) __ tsu(DB–RD) __ th(RD–DB) Min. –20 –20 50 0 _____ Before φ ONW input set up time _____ After φ ONW input hold time Before φ data bus set up time After φ data bus hold time ___ _____ Before RD ___ ONW _____ input set up time Before WR ONW input set up time ___ _____ After RD ___ ONW _____ input hold time After WR ONW input hold time ___ Before RD data bus set up time ___ After RD data bus hold time Limits Typ. Max. Unit ns ns ns ns 25 –20 ns –20 ns 50 0 25 ns ns SWITCHING CHARACTERISTICS 1 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted) (High-speed version) Symbol Parameter φ clock cycle time φ clock “H” pulse width φ clock “L” pulse width After φ AD15–AD8 delay time After φ AD15–AD8 valid time After φ AD7–AD0 delay time After φ AD7–AD0 valid time SYNC delay time SYNC valid time After φ data bus delay time After φ data bus valid time ___ ___ RD pulse width, WR pulse width __ ___ ___ twL(RD) ___ RD pulse width, WR pulse width twL(WR) (when one-wait is valid) ___ __ td(AH–RD) After AD15–AD8 ___ RD delay time ___ td(AH–WR) After AD15–AD8 WR delay time ___ __ td(AL–RD) After AD7–AD0 ___ RD delay time ___ td(AL–WR) After AD7–AD0 WR delay time ___ __ tv(RD–AH) After ___ RD AD15–AD8 valid time ___ tv(WR–AH) After WR AD15–AD8 valid time ___ __ tv(RD–AL) After ___ RD AD7–AD0 valid time ___ tv(WR–AL) After WR AD7–AD0 valid time ___ ___ td(WR–DB) After WR data bus delay time ___ ___ tv(WR–DB) After WR data bus valid time _________ ___ _____ td(RESET–RESETOUT) RESETOUT output delay time (Note 1) _________ _____ tv(φ–RESET) RESETOUT output valid time (Note 1) Test conditions tc(φ) twH(φ) twL(φ) td(φ–AH) tv(φ–AH) td(φ–AL) tv(φ–AL) td(φ–SYNC) tv(φ–SYNC) td(φ–DB) tv(φ–DB) Min. Limits Typ. 2tc(XIN) Max. 10 tc(XIN)–10 ns ns ns ns ns ns ns ns ns ns ns ns 3tc(XIN)–10 ns tc(XIN)–10 tc(XIN)–10 2 2 Fig. 32 Unit 16 5 20 5 16 5 15 35 40 30 tc(XIN)–35 tc(XIN)–16 ns tc(XIN)–40 tc(XIN)–20 ns 2 5 ns 2 5 ns 15 30 10 0 200 100 ns ns ns ns _________ Note 1: The______ RESETOUT output goes “H” in sync with the fall of the φ clock that is anywhere between about 8 cycle and 13 cycles after the RESET input goes “H”. 51 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER TIMING REQUIREMENTS 2 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE (VCC = 2.7 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted) (High-speed version) Symbol Parameter Min. –20 –20 120 0 _____ ____ tsu(ONW–φ) ____ th(φ–ONW) tsu(DB–φ) th(φ–DB) ____ __ tsu(ONW–RD) ____ ___ tsu(ONW–WR) __ ____ th(RD–ONW) ___ ____ th(WR–ONW) __ tsu(DB–RD) __ th(RD–DB) Before φ ONW input set up time _____ After φ ONW input hold time Before φ data bus set up time After φ data bus hold time ___ _____ Before RD ___ ONW _____ input set up time Before WR ONW input set up time ___ _____ After RD ___ ONW _____ input hold time After WR ONW input hold time ___ Before RD data bus set up time ___ After RD data bus hold time Limits Typ. Max. Unit ns ns ns ns 60 –20 ns –20 ns 120 0 60 ns ns SWITCHING CHARACTERISTICS 2 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE (High-Speed Version) (VCC = 2.7 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted) Symbol Parameter Test conditions φ clock cycle time φ clock “H” pulse width φ clock “L” pulse width AD15–AD8 delay time AD15–AD8 valid time AD7–AD0 delay time AD7–AD0 valid time SYNC delay time SYNC valid time Data bus delay time Data bus valid time ___ ___ RD pulse width, WR pulse width __ ___ ___ twL(RD) ___ RD pulse width, WR pulse width twL(WR) (when one-wait is valid) ___ __ td(AH–RD) After AD15–AD8 ___ RD delay time ___ td(AH–WR) After AD15–AD8 WR delay time ___ __ td(AL–RD) After AD7–AD0 ___ RD delay time ___ td(AL–WR) After AD7–AD0 WR delay time ___ __ tv(RD–AH) After ___ RD AD15–AD8 valid time ___ tv(WR–AH) After WR AD15–AD8 valid time ___ __ tv(RD–AL) After ___ RD AD7–AD0 valid time ___ tv(WR–AL) After WR AD7–AD0 valid time ___ ___ td(WR–DB) After WR data bus delay time ___ ___ tv(WR–DB) After WR data bus valid time _________ ___ _____ td(RESET–RESETOUT) RESETOUT output delay time (Note 1) _________ _____ tv(φ–RESET) RESETOUT output valid time (Note 1) Min. tc(φ) twH(φ) twL(φ) td(φ–AH) tv(φ–AH) td(φ–AL) tv(φ–AL) td(φ–SYNC) tv(φ–SYNC) td(φ–DB) tv(φ–DB) Limits Typ. 2tc(XIN) Max. 10 tc(XIN)–20 ns ns ns ns ns ns ns ns ns ns ns ns 3tc(XIN)–20 ns tc(XIN)–20 tc(XIN)–20 5 5 Fig. 32 Unit 40 10 50 10 40 10 30 100 100 80 tc(XIN)–100 tc(XIN)–40 ns tc(XIN)–100 tc(XIN)–50 ns 5 10 ns 5 10 ns 30 80 10 300 150 0 _________ ns ns ns ns Note 1: The______ RESETOUT output goes “H” in sync with the rise of the φ clock that is anywhere between about 8 cycle and 13 cycles after the RESET input goes “H”. 1kΩ Measurement output pin Measurement output pin 100pF 100pF N-channel open-drain output CMOS output Fig. 32 52 Circuit for measuring output switching characteristics (1) Fig. 33 Circuit for measuring output switching characteristics (2) MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER TIMING DIAGLAM (1) Timing Diagram tC(CNTR) tWL(CNTR) tWH(CNTR) 0.8 VCC CNTR0, CNTR1 0.2 VCC tWL(INT) tWH(INT) 0.8 VCC INT0–INT4 0.2 VCC tW(RESET) RESET 0.8 VCC 0.2 VCC tC(XIN) tWL(XIN) tWH(XIN) 0.8 VCC XIN tf SCLK1 SCLK2 0.2 VCC tC(SCLK1), tC(SCLK2) tWL(SCLK1), tWL(SCLK2) tWH(SCLK1), tWH(SCLK2) tr 0.8 VCC 0.2 VCC tsu(RXD-SCLK1), tsu(SIN2-SCLK2) RXD SIN2 th(SCLK1-RXD), th(SCLK2- SIN2) 0.8 VCC 0.2 VCC td(SCLK1-TXD),td(SCLK2-SOUT2) tv(SCLK1-TXD), tv(SCLK2-SOUT2) TX D SOUT2 53 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER (2)Timing Diagram in Memory Expansion Mode and Microprocessor Mode (a) tC(φ) tWL(φ) tWH(φ) φ 0.5 VCC tv(φ-AH) td(φ-AH) AD15–AD8 0.5 VCC td(φ-AL) AD7–AD0 tv(φ-AL) 0.5 VCC tv(φ-SYNC) td(φ-SYNC) SYNC 0.5 VCC td(φ-WR) RD,WR tv(φ-WR) 0.5 VCC th(φ-ONW) tSU(ONW-φ) 0.8 VCC 0.2 VCC ONW tSU(DB-φ) 0.8 VCC 0.2 VCC DB0–DB7 (At CPU reading) td(φ-DB) DB0–DB7 (At CPU writing) tv(φ-DB) 0.5 VCC (3)Timing Diagram in Microprocessor Mode RESET 0.8 VCC 0.2 VCC φ 0.5 VCC td(RESET- RESET OUT) RESETOUT 54 th(φ-DB) 0.5 VCC tv(φ- RESET OUT) MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER (4) Timing Diagram in Memory Expansion Mode and Microprocessor Mode (b) tWL(RD) tWL(WR) RD,WR 0.5 VCC td(AH-RD) td(AH-WR) AD15–AD8 tv(RD-AH) tv(WR-AH) 0.5 VCC td(AL-RD) td(AL-WR) AD7–AD0 tv(RD-AL) tv(WR-AL) 0.5 VCC th(RD-ONW) th(WR-ONW) tsu(ONW-RD) tsu(ONW-WR) ONW 0.8 VCC 0.2 VCC (At CPU reading) tWL(RD) RD 0.5 VCC tSU(DB-RD) 0.8 VCC 0.2 VCC DB0–DB7 (At CPU writing) tWL(WR) WR 0.5 VCC tv(WR-DB) td(WR-DB) DB0–DB7 th(RD-DB) 0.5 VCC 55 MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Keep safety first in your circuit designs! • Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap. • These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party. Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials. All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein. Notes regarding these materials • • • • • • © 1996 MITSUBISHI ELECTRIC CORP. H-DF047-C KI-9609 New publication, effective Sep. 1996. Specifications subject to change without notice. REVISION DESCRIPTION LIST Rev. No. 1.0 3806GROUP DATA SHEET Revision Description First Edition Rev. date 971128 (1/1)