MITSUBISHI MICROCOMPUTERS Y NAR M37733EHBXXXFP M37733EHBFS I . . nge tion ifica t to cha pec al s subjec in f ot a its are is n m This tric li ice: arame t o N p e Som IM REL P PROM VERSION OF M37733MHBXXXFP DESCRIPTION ●Single power supply ...................................................... 5 V ± 10% ●Low power dissipation (at 25 MHz frequency) ............................................47.5 mW (Typ.) ●Interrupts ............................................................ 19 types, 7 levels ●Multiple-function 16-bit timer ................................................. 5 + 3 ●Serial I/O (UART or clock synchronous) ..................................... 3 ●10-bit A-D converter ............................................ 8-channel inputs ●Watchdog timer ●Programmable input/output (ports P0, P1, P2, P3, P4, P5, P6, P7, P8) ............................... 68 ●Clock generating circuit ........................................ 2 circuits built-in The M37733EHBXXXFP is a single-chip microcomputer using the 7700 Family core. This single-chip microcomputer has a CPU and a bus interface unit. The CPU is a 16-bit parallel processor that can be an 8-bit parallel processor, and the bus interface unit enhances the memory access efficiency to execute instructions fast. This microcomputer also includes a 32 kHz oscillation circuit, in addition to the PROM, RAM, multiple-function timers, serial I/O, A-D converter, and so on. The M37733EHBXXXFP has the same function as the M37733MHBXXXFP except that the built-in ROM is PROM. (Refer to the basic function blocks description.) For program development, the M37733EHBFS with erasable ROM that is housed in a windowed ceramic LCC is also provided. APPLICATION Control devices for general commercial equipment such as office automation, office equipment, and so on. Control devices for general industrial equipment such as communication equipment, and so on. Note. Do not use the windowed EPROM version for mass production, because it is a tool for program development (for evaluation). FEATURES ●Number of basic instructions .................................................. 103 ●Memory size PROM ............................................. 124 Kbytes RAM ................................................ 3968 bytes ●Instruction execution time The fastest instruction at 25 MHz frequency ...................... 160 ns 41 42 43 44 45 47 46 48 49 50 51 53 52 54 55 57 56 59 58 60 62 61 64 32 P24/A20/D4 P25/A21/D5 P26/A22/D6 P27/A23/D7 P30/R/W P31/BHE P32/ALE P33/HLDA Vss 74 31 E 75 30 76 29 XOUT XIN 77 28 RESET 78 27 79 26 80 25 CNVSS BYTE P40/HOLD 65 40 66 39 67 38 68 37 69 36 70 35 71 34 72 33 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 1 2 8 M37733EHBXXXFP 73 P70/AN0 P67/TB2IN/φSUB P66/TB1IN P65/TB0IN P64/INT2 P63/INT1 P62/INT0 P61/TA4IN P60/TA4OUT P57/TA3IN/KI3 P56/TA3OUT/KI2 P55/TA2IN/KI1 P54/TA2OUT/KI0 P53/TA1IN P52/TA1OUT P51/TA0IN P50/TA0OUT P47 P46 P45 P44 P43 P42/φ1 P41/RDY P83/TXD0 P82/RXD0/CLKS0 P81/CLK0 P80/CTS0/RTS0/CLKS1 VCC AVCC VREF AVSS VSS P77/AN7/XcIN P76/AN6/XcOUT P75/AN5/ADTRG /TxD2 P74/AN4/RxD2 P73/AN3/CLK2 P72/AN2/CTS2 P71/AN1 63 P84/CTS1/RTS1 P85/CLK1 P86/RXD1 P87/TXD1 P00/A0 P01/A1 P02/A2 P03/A3 P04/A4 P05/A5 P06/A6 P07/A7 P10/A8/D8 P11/A9/D9 P12/A10/D10 P13/A11/D11 P14/A12/D12 P15/A13/D13 P16/A14/D14 P17/A15/D15 P20/A16/D0 P21/A17/D1 P22/A18/D2 P23/A19/D3 PIN CONFIGURATION (TOP VIEW) Outline 80P6N-A 1 MITSUBISHI MICROCOMPUTERS Y NAR M37733EHBXXXFP M37733EHBFS I . . nge tion ifica t to cha pec al s subjec in f ot a its are is n m This tric li ice: arame t o N p e Som P PROM VERSION OF M37733MHBXXXFP Reference External data bus width voltage input selection input VREF BYTE Data Bus(Even) Data Bus(Odd) P0(8) Instruction Queue Buffer Q0(8) Instruction Queue Buffer Q1(8) P1(8) Instruction Queue Buffer Q2(8) AVCC Instruction Register(8) Data Buffer DBL(8) Input/Output port P0 Data Buffer DBH(8) Address Bus Input/Output port P1 IM REL Incrementer/Decrementer(24) (0V) VSS Program Counter PC(16) Program Bank Register PG(8) Input/Output port P3 P2(8) A-D Converter(10) CNVss Data Address Register DA(24) P3(4) (0V) AVSS Program Address Register PA(24) Input/Output port P2 Incrementer(24) 2 P4(8) Input/Output port P4 Input/Output port P5 Input/Output port P6 Timer TB0(16) Timer TA0(16) P5(8) Timer TB1(16) P6(8) Timer TB2(16) Timer TA1(16) UART0(9) Watchdog Timer XCOUT XCIN Accumulatcr B(16) E Input/Output port P7 P7(8) 3968 bytes RAM Accumulator A(16) Input/Output port P8 124 Kbytes P8(8) XCOUT XCIN Arithmetic Logic Unit(16) PROM Clock Generating Circuit Enable output Index Register X(16) Timer TA4(16) Stack Pointer S(16) Timer TA2(16) RESET Direct Page Register DPR(16) Index Register Y(16) Clock input Clock output XIN XOUT M37733EHBXXXFP BLOCK DIAGRAM Reset input Processor Status Register PS(11) Timer TA3(16) Input Butter Register IB(16) UART1(9) UART2(9) VCC Data Bank Register DT(8) MITSUBISHI MICROCOMPUTERS Y NAR I . . nge tion ifica t to cha pec al s subjec in f ot a its are is n m This tric li ice: arame t o N p e Som IM REL P M37733EHBXXXFP M37733EHBFS PROM VERSION OF M37733MHBXXXFP FUNCTIONS OF M37733EHBXXXFP Parameter Number of basic instructions Instruction execution time Memory size Input/Output ports Multi-function timers PROM RAM P0 – P2, P4 – P8 P3 TA0, TA1, TA2, TA3, TA4 TB0, TB1, TB2 Serial I/O A-D converter Watchdog timer Interrupts Clock generating circuit Supply voltage Power dissipation Input/Output characteristic Input/Output voltage Output current Memory expansion Operating temperature range Device structure Package M37733EHBXXXFP M37733EHBFS Functions 103 160 ns (the fastest instruction at external clock 25 MHz frequency) 124 Kbytes 3968 bytes 8-bit ✕ 8 4-bit ✕ 1 16-bit ✕ 5 16-bit ✕ 3 (UART or clock synchronous serial I/O) ✕ 3 10-bit ✕ 1 (8 channels) 12-bit ✕ 1 3 external types, 16 internal types Each interrupt can be set to the priority level (0 – 7.) 2 circuits built-in (externally connected to a ceramic resonator or a quartz-crystal oscillator) 5 V ± 10% 47.5 mW (at external clock 25 MHz frequency) 5V 5 mA Maximum 16 Mbytes –20 to 85 °C CMOS high-performance silicon gate process 80-pin plastic molded QFP (80P6N-A) 80-pin ceramic LCC (with a window) (80D0) 3 MITSUBISHI MICROCOMPUTERS Y NAR M37733EHBXXXFP M37733EHBFS I . . nge tion ifica t to cha pec al s subjec in f ot a its are is n m This tric li ice: arame t o N p e Som IM REL P PROM VERSION OF M37733MHBXXXFP PIN DESCRIPTION Pin Vcc, Vss CNVss Name Input/Output Power source Apply 5 V ± 10% to Vcc and 0 V to Vss. CNVss input Input RESET Reset input Input XIN Clock input Input XOUT _____ Clock output Output E Enable output Output BYTE External data bus width selection input Analog power source input Reference voltage input I/O port P0 Input _ AVcc, AVss VREF P00 – P07 Input I/O P10 – P17 I/O port P1 I/O P20 – P27 I/O port P2 I/O P30 – P33 I/O port P3 I/O P40 – P47 I/O port P4 I/O P50 – P57 I/O port P5 I/O P60 – P67 I/O port P6 I/O P70 – P77 I/O port P7 I/O P80 – P87 I/O port P8 I/O 4 Functions This pin controls the processor mode. Connect to Vss for the single-chip mode and the memory expansion mode, and to Vcc for the microprocessor mode. When “L” level is applied to this pin, the microcomputer enters the reset state. These are pins of main-clock generating circuit. Connect a ceramic resonator or a quartzcrystal oscillator between XIN and XOUT. When an external clock is used, the clock source should be connected to the XIN pin, and the XOUT pin should be left open. This pin functions as the enable signal output pin which indicates the access status in the internal _ bus. When output level of E signal is “L”, data/instruction read or data write is performed. In the memory expansion mode or the microprocessor mode, this pin determines whether the external data bus has an 8-bit width or a 16-bit width. The data bus has a 16-bit width when “L” signal is input and an 8-bit width when “H” signal is input. Power source input pin for the A-D converter. Externally connect AVcc to Vcc and AVss to Vss. This is reference voltage input pin for the A-D converter. In the single-chip mode, port P0 becomes an 8-bit I/O port. An I/O direction register is available so that each pin can be programmed for input or output. These ports are in the input mode when reset. In the memory expansion mode or the microprocessor mode, these pins output address (A0 – A7). In the single-chip mode, these pins have the same functions as port P0. When the BYTE pin is set to “L” in the memory expansion mode or the microprocessor mode and external data bus has a 16-bit width, high-order data (D8 – D15) is input/output or an address (A8 – A15) is output. When the BYTE pin is “H” and an external data bus has an 8-bit width, only address (A8 – A15) is output. In the single-chip mode, these pins have the same functions as port P0. In the memory expansion mode or the microprocessor mode, low-order data (D0 – D7) is input/output or an address (A0 – A7) is output . In the single-chip mode, these pins have the same function as port P0. In the memory expansion __ ____ _____ mode or the microprocessor mode, R/W, BHE, ALE, and HLDA signals are output. In the single-chip mode, these pins have the same functions as_____ port P0. In____ the memory expansion mode or the microprocessor mode, P40, P41, and P42 become HOLD and RDY input pins, and a clock φ1 output pin, respectively. Functions of the other pins are the same as in the single-chip mode. However, in the memory expansion mode, P42 can be selected as an I/O port. In addition to having the same functions as port P0 in the single-chip mode, these pins also __ __ function as I/O pins for timers A0 to A3 and input pins for key input interrupt input (KI0 – KI3 ). In addition to having the same functions as port P0 in the single-chip mode, ____ these ____ pins also function as I/O pins for timer A4, input pins for external interrupt input (INT0 – INT2) and input pins for timers B0 to B2. P67 also functions as sub-clock φSUB output pin. In addition to having the same functions as port P0 in the single-chip mode, these pins function as input pins for A-D converter. P72 to P75 also function as I/O pins for UART2. Additionally, P76 and P77 have the function as the output pin (XCOUT) and the input pin (XCIN) of the sub-clock (32 kHz) oscillation circuit, respectively. When P76 and P77 are used as the XCOUT and XCIN pins, connect a resonator or an oscillator between the both. In addition to having the same functions as port P0 in the single-chip mode, these pins also function as I/O pins for UART 0 and UART 1. MITSUBISHI MICROCOMPUTERS Y NAR M37733EHBXXXFP M37733EHBFS I . . nge tion ifica t to cha pec al s subjec in f ot a its are is n m This tric li ice: arame t o N p e Som IM REL P PROM VERSION OF M37733MHBXXXFP PIN DESCRIPTION (EPROM MODE) Pin VCC, VSS CNVSS BYTE _____ RESET XIN XOUT _ E AVCC, AVSS VREF P00 – P07 P10 – P17 P20 – P27 P30 P31 – P33 P40 – P47 P50 – P57 Name Power supply VPP input VPP input Reset input Clock input Clock output Enable output Analog supply input Reference voltage input Address input (A0 – A7) Address input (A8 – A15) Data I/O (D0 – D7) Address input (A16) Input port P3 Input port P4 Control signal input P60 – P67 Input port P6 P70 – P77 P80 – P87 Input port P7 Input port P8 Input/Output Input Input Input Input Output Output Input Input Input I/O Input Input Input Input Input Input Input Functions Supply 5V±10% to VCC and 0V to VSS. Connect to VPP when programming or verifing. Connect to VPP when programming or verifing. Connect to VSS. Connect a ceramic resonator between XIN and XOUT. Keep open. Connect AVCC to VCC and AVSS to VSS. Connect to VSS. Port P0 functions as the lower 8 bits address input (A0 – A7). Port P1 functions as the higher 8 bits address input (A8 – A15). Port P2 functions as the 8 bits data input/output (D0 – D7). P30 functions as the most significant bit address input (A16). Connect to VSS. Connect to VSS. _____ ___ ___ P50, P51, and P52 function as PGM, OE, and CE input pins respectively. Connect P53, P54, P55, and P56 to VCC. Connect P57 to VSS. Connect to VSS. Connect to VSS. Connect to VSS. 5 MITSUBISHI MICROCOMPUTERS Y NAR M37733EHBXXXFP M37733EHBFS I . . nge tion ifica t to cha pec al s subjec in f ot a its are is n m This tric li ice: arame t o N p e Som IM REL P PROM VERSION OF M37733MHBXXXFP BASIC FUNCTION BLOCKS The M37733EHBXXXFP has the same functions as the M37733MHBXXXFP except for the following: (1) The built-in ROM is PROM. (2) The status of bit 3 of the oscillation circuit control register 1 (address 6F16) at a reset is different. (3) The usage condition of bit 3 of the oscillation circuit control register 1 is different. 7 6 5 4 3 0 1 2 1 Accordingly, refer to the basic function blocks description in the M37733MHBXXXFP except for Figure 1 (bit configuration of the oscillation circuit control register 1) and Figure 3 (microcomputer internal status during reset). In the M37733EHBXXXFP, bit 3 of the oscillation circuit control register 1 must be “1”. (Refer to Figure 1.) The status of this bit at a reset is “1”. 0 CC2 CC1 CC0 Oscillation circuit control register 1 Main clock division selection bit 0 : Main clock is divided by 2. 1 : Main clock is not divided by 2. Address 6F16 Note. Write to the oscillation circuit control register 1 as the flow shown in Figure 2. Main clock external input selection bit 0 : Main-clock oscillation circuit is operating by itself. Watchdog timer is used at returning from STP state. 1 : Main-clock is input externally. Watchdog timer is not used at returning from STP state. Sub clock external input selection bit 0 : Sub-clock oscillation circuit is operating by itself. Port P76 functions as XCOUT pin. Watchdog timer is used at returning from STP state. 1 : Sub-clock is input externally. Port P76 functions as I/O port. Watchdog timer is not used at returning from STP state. 1 : Always “1” (“1” at reset) 0 : Always “0” (However, writing data “5516” shown in Figure 2 is possible.) Clock prescaler reset bit Fig. 1 Bit configuration of oscillation circuit control register 1 (corresponding to Figure 63 in data sheet “M37733MHBXXXFP”) Writing data “5516” (LDM instruction) Next instruction Writing data “8016” (LDM instruction) Reset clock prescaler • How to reset clock prescaler Writing data “0Y16” (LDM instruction) CC2 to CC0 selection bits • How to write in CC2 to CC0 selection bits Note. “Y” is the sum of bits to be set. For example, when setting bits 2 and 1 to “1”, “Y” becomes “6”. Fig. 2 How to write data in oscillation circuit control register 1 (identical with Figure 64 in data sheet “M37733MHBXXXFP”) 6 MITSUBISHI MICROCOMPUTERS Y NAR M37733EHBXXXFP M37733EHBFS I . . nge tion ifica t to cha pec al s subjec in f ot a its are is n m This tric li ice: arame t o N p e Som IM REL P PROM VERSION OF M37733MHBXXXFP Address Address (0416)••• 0016 Watchdog timer frequency selection flag (6116)••• Port P1 direction register (0516)••• 0016 Memory allocation control register 0 (6316)••• 0 0 0 0 0 0 0 1 Port P2 direction register (0816)••• 0016 UART2 transmit/receive mode register (6416)••• 0 0 0 0 0 0 0 1 0 0 0 Port P0 direction register 0 0 0 0 0 Port P3 direction register (0916)••• UART2 transmit/receive control register 0 (6816)••• Port P4 direction register (0C16)••• 0016 UART2 transmit/receive control register 1 (6916)••• 0 0 0 0 0 0 1 0 Port P5 direction register (0D16)••• 0016 Oscillation circuit control register 0 (6C16)••• 0 0 0 0 0 0 0 1 Port P6 direction register (1016)••• 0016 Port function control register (6D16)••• 0 Port P7 direction register (1116)••• 0016 Serial transmit control register (6E16)••• Port P8 direction register (1416)••• 0016 Oscillation circuit control register 1 (6F16)••• 0 0 0 0 0 0 ? ? ? A-D/UART2 trans./rece. interrupt control register A-D control register 0 (1E16)••• A-D control register 1 (1F16)••• 0 0 0 UART 0 transmit/receive mode register (3016)••• 0016 UART 0 receive interrupt control register UART 1 transmit/receive mode register (3816)••• 0016 UART 0 transmit/receive control register 0 UART 1 transmit/receive control register 0 UART 0 transmit/receive control register 1 UART 1 transmit/receive control register 1 Count start flag (3416)••• 0 0 0 0 1 0 0 0 0016 0 0 0 1 0 0 0 (7016)••• 0 0 0 0 UART 0 transmission interrupt control register (7116)••• 0 0 0 0 (7216)••• 0 0 0 0 UART 1 transmission interrupt control register (7316)••• 0 0 0 0 UART 1 receive interrupt control register (7416)••• 0 0 0 0 (3C16)••• 0 0 0 0 1 0 0 0 Timer A0 interrupt control register (7516)••• 0 0 0 0 (3516)••• 0 0 0 0 0 0 1 0 Timer A1 interrupt control register (7616)••• 0 0 0 0 (3D16)••• 0 0 0 0 0 0 1 0 Timer A2 interrupt control register (7716)••• 0 0 0 0 1 1 (4016)••• 0016 Timer A3 interrupt control register (7816)••• 0 0 0 0 One- shot start flag (4216)••• 0 0 0 0 0 Timer A4 interrupt control register (7916)••• 0 0 0 0 Up-down flag (4416)••• 0016 Timer B0 interrupt control register (7A16)••• 0 0 0 0 Timer A0 mode register (5616)••• 0016 Timer B1 interrupt control register (7B16)••• 0 0 0 0 Timer A1 mode register (5716)••• 0016 Timer B2 interrupt control register (7C16)••• 0 0 0 0 Timer A2 mode register (5816)••• 0016 INT0 interrupt control register (7D16)••• 0 0 0 0 0 0 Timer A3 mode register (5916)••• 0016 INT1 interrupt control register (7E16)••• 0 0 0 0 0 0 Timer A4 mode register (5A16)••• 0016 INT2/Key input interrupt control register (7F16)••• 0 0 0 0 0 0 Timer B0 mode register (5B16)••• 0 0 1 0 0 0 0 0 Timer B1 mode register (5C16)••• 0 0 1 0 0 0 0 Timer B2 mode register (5D16)••• 0 0 1 0 0 0 0 Processor mode register 0 (5E16)••• Processor mode register 1 (5F16)••• Watchdog timer register (6016)••• 0016 0 FFF16 Processor status register (PS) Program bank register (PG) 0 0 0 ? ? 0 0 0 1 ? ? 0016 Program counter (PCH) Content of FFFF16 Program counter (PCL) Content of FFFE16 Direct page register (DPR) Data bank register (DT) 000016 0016 Contents of other registers and RAM are undefined during reset. Initialize them by software. Fig. 3 Microcomputer internal status during reset 7 MITSUBISHI MICROCOMPUTERS Y NAR M37733EHBXXXFP M37733EHBFS I . . nge tion ifica t to cha pec al s subjec in f ot a its are is n m This tric li ice: arame t o N p e Som IM REL P PROM VERSION OF M37733MHBXXXFP EPROM MODE The M37733EHBXXXFP features an EPROM mode in addition to its _____ normal modes. When the RESET signal level is “L”, the chip automatically enters the EPROM mode. Table 1 list the correspondence between pins and Figure 4 shows the pin connections in the EPROM mode. The EPROM mode is the 1M mode for the EPROM that is equivalent to the M5M27C101K. When in the EPROM mode, ports P0, P1, P2, P30, P50, P51, P52, CNV SS, and BYTE are used for the EPROM (equivalent to the Table 1 Pin function in EPROM mode VCC VPP VSS Address input Data I/O ___ CE ___ OE _____ PGM 8 M37733EHBXXXFP VCC M5M27C101K VCC CNVSS, BYTE VSS VPP VSS A0 – A16 D0 – D7 Ports P0, P1, P30 Port P2 P52 P51 P50 ___ CE ___ OE _____ PGM M5M27C101K). When in this mode, the built-in PROM can be programmed or read from using these pins in the same way as with the M5M27C101K. This chip does not have Device Identifier Mode, so that set the corresponding program algorithm. The program area should specify address 0100016 – 1FFFF16. Connect the clock which is either ceramic resonator or external clock to XIN pin and XOUT pin. MITSUBISHI MICROCOMPUTERS Y NAR M37733EHBXXXFP M37733EHBFS I . . nge tion ifica t to cha pec al s subjec in f ot a its are is n m This tric li ice: arame t o N p e Som IM REL P 41 42 45 44 43 46 49 48 47 50 53 52 51 54 55 57 56 58 59 62 61 60 65 40 66 39 67 38 68 37 69 36 70 35 34 71 72 73 M37733EHBXXXFP 33 32 74 31 75 30 76 29 77 28 78 27 79 26 80 25 ↔ P24/A20 /D4 ↔ P25/A21 /D5 ↔ P26/A22 /D6 ↔ P27/A23 /D7 ↔ P30/R/W ↔ P31/BHE ↔ P32/ALE ↔ P33/HLDA VSS →E → XOUT ← XIN ← RESET CNVSS ← BYTE ↔ P40/HOLD D4 D5 D6 D7 A16 VSS ∗ VPP PGM CE OE P70/AN0 ↔ 1 P67/TB2IN/φSUB ↔ 2 P66/TB1IN ↔ 3 P65/TB0IN ↔ 4 P64/INT 2 ↔ 5 P63/INT 1 ↔ 6 P62 /INT 0 ↔ 7 P61/TA4IN ↔ 8 P60/TA4OUT ↔ 9 P57/TA3IN /KI3 ↔ 10 P56 /TA3OUT /KI 2 ↔ 11 P55/TA2IN /KI 1 ↔ 12 P54/TA2OUT /KI0 ↔ 13 P53/TA1IN ↔ 14 P52/TA1OUT ↔ 15 P51/TA0IN ↔ 16 P50/TA0OUT ↔ 17 P47 ↔ 18 P46 ↔ 19 P45 ↔ 20 P44 ↔ 21 P43 ↔ 22 P42/ φ1 ↔ 23 P41/RDY ↔ 24 VCC P83/TXD0 ↔ P82 /RXD 0/CLKS0 ↔ P81/CLK0 ↔ P80 /CTS 0/RTS 0/CLKS1 ↔ VCC AVCC VREF → AVSS VSS P77/AN7/XCIN ↔ P76/AN6/XCOUT ↔ P75 /AN5/AD TRG /TXD2 ↔ P74/AN4/RXD2 ↔ P73/AN3/CLK2 ↔ P72/AN2 /CTS 2 ↔ P71/AN1 ↔ 63 64 ↔ P84/CTS 1/RTS 1 ↔ P85 /CLK1 ↔ P86/RXD1 ↔ P87/TXD1 ↔ P00/A0 ↔ P01/A1 ↔ P02/A2 ↔ P03/A3 ↔ P04/A4 ↔ P05/A5 ↔ P06/A6 ↔ P07/A7 ↔ P10/A8/D8 ↔ P11/A9/D9 ↔ P12 /A10 /D10 ↔ P13/A11 /D11 ↔ P14/A12 /D12 ↔ P15/A13 /D13 ↔ P16/A14 /D14 ↔ P17/A15 /D15 ↔ P20/A16 /D0 ↔ P21/A17 /D1 ↔ P22/A18 /D2 ↔ P23/A19 /D3 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 D0 D1 D2 D3 PROM VERSION OF M37733MHBXXXFP ✽ : Connect to ceramic oscillation circuit. Outline 80P6N-A : It is used in the EPROM mode. Fig. 4 Pin connection in EPROM mode 9 MITSUBISHI MICROCOMPUTERS Y NAR M37733EHBXXXFP M37733EHBFS I . . nge tion ifica t to cha pec al s subjec in f ot a its are is n m This tric li ice: arame t o N p e Som IM REL P FUNCTION IN EPROM MODE 1M mode (equivalent to the M5M27C101K) Reading ___ ___ To read the EPROM, set the CE and OE pins to a “L” level. Input the address of the data (A0 – A16) to be read, and the data will be output to the I/O pins D0 – D7. The data I/O pins will be floating when either __ __ the CE or OE pins are in the “H” state. Programming Programming must be performed in 8 bits by a byte program. To ___ ___ program to the EPROM, set the CE pin to a “L” level and the OE pin to a “H” level. The CPU will enter the programming mode when 12.5 V is applied to the VPP pin. The address to be programmed to is selected with pins A0 –_____ A16, and the data to be programmed is input to pins D0 – D7. Set the PGM pin to a “L” level to being programming. PROM VERSION OF M37733MHBXXXFP Programming operation To program the M37733EHBXXXFP, first set VCC = 6 V, VPP = 12.5 V, and set the address to 0100016. Apply a 0.2 ms programming pulse, check that the data can be read, and if it cannot be read OK, repeat the procedure, applying a 0.2 ms programming pulse and checking that the data can be read until it can be read OK. Record the accumulated number of pulse applied (X) before the data can be read OK, and then write the data again, applying a further once this number of pulses (0.2 ✕ X ms). When this series of programming operations is complete, increment the address, and continue to repeat the procedure above until the last address has been reached. Finally, when all addresses have been programmed, read with VCC = VPP = 5 V (or VCC = VPP = 5.5 V). Table 2. I/O signal in each mode Pin Erasing To erase data on this chip, use an ultraviolet light source with a 2537 Angstrom wave length. The minimum radiation power necessary for erasing is 15 J/cm2. ___ ___ _____ CE OE PGM VPP VCC Data I/O VIL VIL VIL VIH VIL VIH X VIH X X 5V 5V 5V 5V Output Floating X 5V 5V VIL 12.5 V 6 V Floating Input Programming Verify VIL VIL VIH 12.5 V 6 V Output Program Disable VIH VIH VIH 12.5 V 6 V Floating Mode Read-out Output Disable Programming Note 1 : An X indicates either VIL or VIH. Programming operation (equivalent to the M5M27C101K) AC ELECTRICAL CHARACTERISTICS (Ta = 25 ± 5 °C, VCC = 6 V ± 0.25 V, VPP = 12.5 ± 0.3 V, unless otherwise noted) Symbol Parameter Test conditions Min. 2 tAS Address setup time tOES tDS tAH tDH tDFP tVCS OE setup time 2 Data setup time Address hold time Data hold time Output enable to output float delay VCC setup time VPP setup time 2 tVPS tPW tOPW tCES tOE 10 ___ _____ 2 0.19 2 CE setup time __ Data valid from OE 130 0 2 PGM over program pulse width Unit µs µs 2 0.19 ___ Max. 0 PGM pulse width _____ Limits Typ. 0.2 0.21 µs µs µs ns µs µs 5.25 ms ms 150 µs ns MITSUBISHI MICROCOMPUTERS Y NAR M37733EHBXXXFP M37733EHBFS I . . nge tion ifica t to cha pec al s subjec in f ot a its are is n m This tric li ice: arame t o N p e Som IM REL P PROM VERSION OF M37733MHBXXXFP AC waveforms PROGRAM VERIFY VIH ADDRESS VIL tAH tAS VIH/VOH DATA DATA OUTPUT VALID DATA SET VIL/VOL tDS tDH tDFP VPP VPP VCC VCC +1 VCC VCC tVPS tVCS VIH CE VIL tCES VIH PGM tOES VIL tOE tPW VIH tOPW OE VIL Test conditions for A.C. characteristics Input voltage : VIL = 0.45 V, VIH = 2.4 V Input rise and fall times (10 % – 90 %) : ≤ 20 ns Reference voltage at timing measurement : Input, Output “L” = 0.8 V, “H” = 2 V Programming algorithm flow chart START ADDR=FIRST LOCATION VCC=6.0 V VPP=12.5 V X=0 PROGRAM ONE PULSE OF 0.2 ms X=X+1 YES X=25? NO FAIL VERIFY BYTE FAIL VERIFY BYTE PASS PROGRAM PULSE OF 0.2X ms DURATION DEVICE FAILED PASS NO INCREMENT ADDR LAST ADDR? YES VCC=VPP=*5.0 V VERIFY ALL BYTE FAIL DEVICE FAILED PASS DEVICE PASSED *4.5 V ≤ VCC = VPP ≤ 5.5 V 11 MITSUBISHI MICROCOMPUTERS IN ARY M37733EHBXXXFP M37733EHBFS . . nge tion ifica t to cha pec al s subjec in f ot a its are is n m This tric li ice: arame t o N p e Som P IM REL PROM VERSION OF M37733MHBXXXFP SAFETY INSTRUCTIONS (1) Sunlight and fluorescent lamp contain light that can erase written information. When using in read mode, be sure to cover the transparent glass portion with a seal or other materials (ceramic package product). (2) Mitsubishi Electric corp. provides the seal for covering the transparent glass. Take care that the seal does not touch the read pins (ceramic package product). (3) Clean the transparent glass before erasing. Fingers’ fat and paste disturb the passage of ultraviolet rays and may affect badly the erasure capability (ceramic package product). (4) A high voltage is used for programming. Take care that overvoltage is not applied. Take care especially at power on. (5) The programmable M37733EHBFP that is shipped in blank is also provided. For the M37733EHBFP, Mitsubishi Electric corp. does not perform PROM programming test and screening following the assembly processes. To improve reliability after programming, performing programming and test according to the flow below before use is recommended. Programming with PROM programmer Screening (Caution) (Leave at 150 °C for 40 hours) Verify test with PROM programmer Function check in target device Caution : Never expose to 150 °C exceeding 100 hours. 12 ADDRESSING MODES The M37733EHBXXXFP has 28 powerful addressing modes. Refer to the “7700 Family Software Manual” for the details. MACHINE INSTRUCTION LIST The M37733EHBXXXFP has 103 machine instructions. Refer to the “7700 Family Software Manual” for the details. DATA REQUIRED FOR PROM ORDERING Please send the following data for writing to PROM. (1) M37733EHBXXXFP writing to PROM order confirmation form (2) 80P6N mark specification form (3) ROM data (EPROM 3 sets) MITSUBISHI MICROCOMPUTERS Y NAR M37733EHBXXXFP M37733EHBFS I . . nge tion ifica t to cha pec al s subjec in f ot a its are is n m This tric li ice: arame t o N p e Som IM REL P PROM VERSION OF M37733MHBXXXFP ABSOLUTE MAXIMUM RATINGS Symbol Vcc AVcc VI VI VO Pd Topr Tstg Parameter Conditions Power source voltage Analog power_____ source voltage Input voltage RESET, CNVss, BYTE Input voltage P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87, VREF, XIN Output voltage P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P47, P50 – P57, 7, P70 – P77, P80 – P87, P60 – P6 _ XOUT, E Power dissipation Ta = 25 °C Operating temperature Storage temperature Ratings –0.3 to +7 –0.3 to +7 –0.3 to +12 (Note) Unit V V V –0.3 to Vcc + 0.3 V –0.3 to Vcc + 0.3 V 300 –20 to +85 –40 to +150 mW °C °C Note. When the EPROM is programmed, input voltage of pins CNVss and BYTE is 13 V respectively. RECOMMENDED OPERATING CONDITIONS (Vcc = 5 V ± 10%, Ta = –20 to +85 °C, unless otherwise noted) Symbol Vcc AVcc Vss AVss VIH VIH VIH VIL VIL VIL IOH(peak) IOH(avg) IOL(peak) IOL(peak) IOL(avg) IOL(avg) f(XIN) f(XCIN) Parameter f(XIN) : Operating Power source voltage f(XIN) : Stopped, f(XCIN) = 32.768 kHz Analog power source voltage Power source voltage Analog power source voltage 3, P40 – P47, P50 – P57, P60 – P67, High-level input voltage P00 – P07, P30 – P3 _______ P70 – P77, P80 – P87, XIN, RESET, CNVss, BYTE, XCIN (Note 3) High-level input voltage P10 – P17, P20 – P27 (in single-chip mode) High-level input voltage P10 – P17, P20 – P27 (in memory expansion mode and microprocessor mode) 3, P40 – P47, P50 – P57, P60 – P67, Low-level input voltage P00 – P07, P30 – P3_______ P70 – P77, P80 – P87, XIN, RESET, CNVss, BYTE, XCIN (Note 3) Low-level input voltage P10 – P17, P20 – P27 (in single-chip mode) Low-level input voltage P10 – P17, P20 – P27 (in memory expansion mode and microprocessor mode) High-level peak output current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87 High-level average output current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87 Low-level peak output current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P43, P54 – P57, P60 – P67, P70 – P77, P80 – P87 Low-level peak output current P44 – P47, P50 – P53 Low-level average output current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P43, P54 – P57, P60 – P67, P70 – P77, P80 – P87 Low-level average output current P44 – P47, P50 – P53 Main-clock oscillation frequency (Note 4) Sub-clock oscillation frequency Min. 4.5 2.7 Limits Typ. 5.0 Max. 5.5 5.5 Vcc 0 0 Unit V V V V 0.8 Vcc Vcc V 0.8 Vcc Vcc V 0.5 Vcc Vcc V 0 0.2Vcc V 0 0.2Vcc V 0 0.16Vcc V –10 mA –5 mA 10 mA 20 mA 5 mA 15 25 50 mA MHz kHz 32.768 Notes 1. Average output current is the average value of a 100 ms interval. 2. The sum of IOL(peak) for ports P0, P1, P2, P3, and P8 must be 80 mA or less, the sum of IOH(peak) for ports P0, P1, P2, P3, and P8 must be 80 mA or less, the sum of IOL(peak) for ports P4, P5, P6, and P7 must be 100 mA or less, and the sum of IOH(peak) for ports P4, P5, P6, and P7 must be 80 mA or less. 3. Limits VIH and VIL for XCIN are applied when the sub clock external input selection bit = “1”. 4. The maximum value of f(XIN) = 12.5 MHz when the main clock division selection bit = “1”. 13 MITSUBISHI MICROCOMPUTERS Y NAR M37733EHBXXXFP M37733EHBFS I . . nge tion ifica t to cha pec al s subjec in f ot a its are is n m This tric li ice: arame t o N p e Som IM REL P PROM VERSION OF M37733MHBXXXFP ELECTRICAL CHARACTERISTICS (Vcc = 5 V, Vss = 0 V, Ta = –20 to 85 °C, f(XIN) = 25 MHz, unless otherwise noted) Symbol VOH VOH VOH VOH VOL VOL VOL VOL VOL VT+ – VT– VT+ – VT– VT+ – VT– VT+ – VT– IIH IIL IIL VRAM 14 Parameter Test conditions High-level output voltage P00 – P07, P10 – P17, P20 – P27, P33, P40 – P47, P50 – P57, IOH = –10 mA P60 – P67, P70 – P77, P80 – P87 High-level output voltage P00 – P07, P10 – P17, P20 – P27, IOH = –400 mA P33 IOH = –10 mA High-level output voltage P30 – P32 ICH = –400 µA _ IOH = –10 mA High-level output voltage E IOH = –400 µA Low-level output voltage P00 – P07, P10 – P17, P20 – P27, P33, P40 – P43, P54 – P57, IOL = 10 mA P60 – P67, P70 – P75, P80 – P87 Low-level output voltage P44 – P47, P50 – P53 IOL = 20 mA Low-level output voltage P00 – P07, P10 – P17, P20 – P27, IOL = 2 mA P33 IOL = 10 mA Low-level output voltage P30 – P32 IOL = 2 mA _ IOL = 10 mA Low-level output voltage E IOL = 2 mA ______ ____ Hysteresis ___ HOLD, ___ RDY, ____ TA0IN –___ TA4IN , TB0IN – TB2IN, ___ ___ INT0 – INT2, AD TRG, __ CTS0, CTS1, CTS2, CLK0, __ CLK1, CLK2, KI0 – KI3 _____ Hysteresis RESET Hysteresis XIN Hysteresis XCIN (When external clock is input) High-level input current P00 – P07, P10 – P17, P20 – P27, P30 – P33, VI = 5 V – P57, P60 – P67, P70 – P77, P40 – P47, P50 _____ P80 – P87, XIN, RESET, CNVss, BYTE Low-level input current P00 – P07, P10 – P17, P20 – P27, P30 – P33, VI = 0 V P61, P65 – P67, P40 – P47, P50 – P53, P60,_____ P70 – P77, P80 – P87, XIN, RESET, CNVss, BYTE VI = 0 V, Low-level input current P54 – P57, P62 – P64 RAM hold voltage Min. Limits Typ. Unit 3 V 4.7 V 3.1 4.8 3.4 4.8 V V 2 V 2 V 0.45 V 1.9 0.43 1.6 0.4 V V 0.4 1 V 0.2 0.1 0.1 0.5 0.4 0.4 V V V without a pull-up transistor VI = 0 V, with a pull-up transistor When clock is stopped. Max. –0.25 2 –0.5 5 µA –5 µA –5 µA –1.0 mA V MITSUBISHI MICROCOMPUTERS Y NAR M37733EHBXXXFP M37733EHBFS I . . nge tion ifica t to cha pec al s subjec in f ot a its are is n m This tric li ice: arame t o N p e Som IM REL P PROM VERSION OF M37733MHBXXXFP ELECTRICAL CHARACTERISTICS (Vcc = 5 V, Vss = 0 V, Ta = –20 to 85 °C, unless otherwise noted) Symbol Parameter Limits Typ. Max. Unit 9.5 19 mA 1.3 2.6 mA VCC = 5V, f(XIN) = 25 MHz (square waveform), f(XCIN) = 32.768 kHz, when a WIT instruction is executed (Note 2) 10 20 µA VCC = 5 V, f(XIN) : Stopped, f(XCIN) : 32.768 kHz, in operating (Note 3) 50 100 µA Test conditions Min. VCC = 5 V, f(XIN) = 25 MHz (square waveform), (f(f2) = 12.5 MHz), f(XCIN) = 32.768 kHz, in operating (Note 1) VCC = 5 V, f(XIN) = 25 MHz (square waveform), (f(f2) = 1.5625 MHz), f(XCIN) = Stopped, in operating (Note 1) Power source current ICC Notes 1. 2. 3. 4. In single-chip mode, output pins are open, and other pins are VSS. VCC = 5 V, f(XIN) : Stopped, 5 10 µA f(XCIN) : 32.768 kHz, when a WIT instruction is executed (Note 4) Ta = 25 °C, 1 µA when clock is stopped Ta = 85 °C, 20 µA when clock is stopped This applies when the main clock external input selection bit = “1”, the main clock division selection bit = “0”, and the signal output stop bit = “1”. This applies when the main clock external input selection bit = “1” and the system clock stop bit at wait state = “1”. This applies when CPU and the clock timer are operating with the sub clock (32.768 kHz) selected as the system clock. This applies when the XCOUT drivability selection bit = “0” and the system clock stop bit at wait state = “1”. A–D CONVERTER CHARACTERISTICS (VCC = AVCC = 5 V, VSS = AVSS = 0 V, Ta = –20 to 85 °C, f(XIN) = 25 MHz (Note), unless otherwise noted) Symbol Parameter Test conditions Resolution VREF = VCC Absolute accuracy VREF = VCC RLADDER Ladder resistance VREF = VCC tCONV Conversion time VREF Reference voltage Analog input voltage VIA Note. This applies when the main clock division selection bit = “0” and f(f2) = 12.5 MHz. Min. — — 10 9.44 2 0 Limits Typ. Max. 10 ±3 25 VCC VREF Unit Bits LSB kΩ µs V V 15 MITSUBISHI MICROCOMPUTERS Y NAR M37733EHBXXXFP M37733EHBFS I . . nge tion ifica t to cha pec al s subjec in f ot a its are is n m This tric li ice: arame t o N p e Som IM REL P PROM VERSION OF M37733MHBXXXFP TIMING REQUIREMENTS (VCC = 5 V ± 10%, VSS = 0 V, Ta = –20 to 85 °C, f(XIN) = 25 MHz, unless otherwise noted (Note)) Notes 1. This applies when the main clock division selection bit = “0” and f(f2) = 12.5 MHz. 2. Input signal’s rise/fall time must be 100 ns or less, unless otherwise noted. External clock input Symbol Parameter Limits Unit Max. tc External clock input cycle time (Note 1) ns tw(H) External clock input high-level pulse width (Note 2) ns tw(L) External clock input low-level pulse width (Note 2) ns tr External clock rise time 8 ns External clock fall time 8 ns tf Notes 1. When the main clock division selection bit = “1”, the minimum value of tc = 80 ns. 2. When the main clock division selection bit = “1”, values of tw(H) / tc and tw(L) / tc must be set to values from 0.45 through 0.55. Min. 40 15 15 Single-chip mode Symbol tsu(P0D–E) tsu(P1D–E) tsu(P2D-E) tsu(P3D–E) tsu(P4D–E) tsu(P5D–E) tsu(P6D–E) tsu(P7D–E) tsu(P8D–E) th(E–P0D) th(E–P1D) th(E–P2D) th(E–P3D) th(E–P4D) th(E–P5D) th(E–P6D) th(E–P7D) th(E–P8D) Parameter Port P0 input setup time Port P1 input setup time Port P2 input setup time Port P3 input setup time Port P4 input setup time Port P5 input setup time Port P6 input setup time Port P7 input setup time Port P8 input setup time Port P0 input hold time Port P1 input hold time Port P2 input hold time Port P3 input hold time Port P4 input hold time Port P5 input hold time Port P6 input hold time Port P7 input hold time Port P8 input hold time Limits Min. 60 60 60 60 60 60 60 60 60 0 0 0 0 0 0 0 0 0 Max. Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Memory expansion mode and microprocessor mode Symbol tsu(D–E) tsu(RDY–φ1) tsu(HOLD–φ1) th(E–D) th(φ1–RDY) th(φ1–HOLD) 16 Parameter Data input setup time RDY input setup time HOLD input setup time Data input hold time ___ RDY input hold time ____ HOLD input hold time ___ ____ Limits Min. 32 55 55 0 0 0 Max. Unit ns ns ns ns ns ns MITSUBISHI MICROCOMPUTERS Y NAR M37733EHBXXXFP M37733EHBFS I . . nge tion ifica t to cha pec al s subjec in f ot a its are is n m This tric li ice: arame t o N p e Som IM REL P Timer A input (Count input in event counter mode) Symbol tc(TA) tw(TAH) tw(TAL) PROM VERSION OF M37733MHBXXXFP parameter TAiIN input cycle time TAiIN input high-level pulse width TAiIN input low-level pulse width Limits Min. 80 40 40 Max. Unit ns ns ns Timer A input (Gating input in timer mode) Symbol tc(TA) tw(TAH) tw(TAL) parameter TAiIN input cycle time (Note) TAiIN input high-level pulse width (Note) TAiIN input low-level pulse width (Note) Limits Min. 320 160 160 Max. Unit ns ns ns Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS” on page 19. Timer A input (External trigger input in one-shot pulse mode) Symbol t c(TA) tw(TAH) tw(TAL) parameter TAiIN input cycle time (Note) TAiIN input high-level pulse width TAiIN input low-level pulse width Limits Min. 320 80 80 Max. Unit ns ns ns Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS” on page 19. Timer A input (External trigger input in pulse width modulation mode) Symbol tw(TAH) tw(TAL) parameter TAiIN input high-level pulse width TAiIN input low-level pulse width Limits Min. 80 80 Max. Unit ns ns Timer A input (Up-down input in event counter mode) Symbol tc(UP) tw(UPH) tw(UPL) tsu(UP–TIN) th(TIN–UP) parameter TAiOUT input cycle time TAiOUT input high-level pulse width TAiOUT input low-level pulse width TAiOUT input setup time TAiOUT input hold time Limits Min. 2000 1000 1000 400 400 Max. Unit ns ns ns ns ns Timer A input (Two-phase pulse input in event counter mode) Symbol t c(TA) TAjIN input cycle time tsu(TAjIN–TAjOUT) TAjIN input setup time tsu(TAjOUT–TAjIN) TAjOUT input setup time parameter Limits Min. 800 200 200 Max. Unit ns ns ns 17 MITSUBISHI MICROCOMPUTERS Y NAR M37733EHBXXXFP M37733EHBFS I . . nge tion ifica t to cha pec al s subjec in f ot a its are is n m This tric li ice: arame t o N p e Som IM REL P PROM VERSION OF M37733MHBXXXFP Timer B input (Count input in event counter mode) Symbol tc(TB) tw(TBH) tw(TBL) tc(TB) tw(TBH) tw(TBL) Limits Parameter Min. 80 40 40 160 80 80 TBiIN input cycle time (one edge count) TBiIN input high-level pulse width (one edge count) TBiIN input low-level pulse width (one edge count) TBiIN input cycle time (both edges count) TBiIN input high-level pulse width (both edges count) TBiIN input low-level pulse width (both edges count) Max. Unit ns ns ns ns ns ns Timer B input (Pulse period measurement mode) Symbol tc(TB) tw(TBH) tw(TBL) Limits Parameter Min. 320 160 160 TBiIN input cycle time (Note) TBiIN input high-level pulse width (Note) TBiIN input low-level pulse width (Note) Max. Unit ns ns ns Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS” on page 19. Timer B input (Pulse width measurement mode) Symbol tc(TB) tw(TBH) tw(TBL) Limits Parameter Min. 320 160 160 TBiIN input cycle time (Note) TBiIN input high-level pulse width (Note) TBiIN input low-level pulse width (Note) Max. Unit ns ns ns Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS” on page 19. A-D trigger input Symbol Limits Parameter Min. 1000 125 ____ tc(AD) tw(ADL) ADTRG input cycle time (minimum allowable trigger) ____ ADTRG input low-level pulse width Max. Unit ns ns Serial I/O Symbol tc(CK) tw(CKH) tw(CKL) td(C–Q) th(C–Q) tsu(D–C) th(C–D) Limits Parameter Min. 200 100 100 CLKi input cycle time CLKi input high-level pulse width CLKi input low-level pulse width TXDi output delay time TXDi hold time RXDi input setup time RXDi input hold time Max. 80 0 30 90 ____ Unit ns ns ns ns ns ns ns ___ External interrupt INTi input, key input interrupt KIi input Symbol Parameter ___ tw(INH) tw(INL) tw(KIL) 18 INTi input high-level pulse width INTi input low-level pulse width KIi input low-level pulse width ___ __ Limits Min. 250 250 250 Max. Unit ns ns ns MITSUBISHI MICROCOMPUTERS Y NAR M37733EHBXXXFP M37733EHBFS I . . nge tion ifica t to cha pec al s subjec in f ot a its are is n m This tric li ice: arame t o N p e Som IM REL P PROM VERSION OF M37733MHBXXXFP DATA FORMULAS Timer A input (Gating input in timer mode) Symbol Parameter tc(TA) TAiIN input cycle time tw(TAH) TAiIN input high-level pulse width tw(TAL) TAiIN input low-level pulse width Limits Min. 8 ✕ 109 2 · f(f2) 4 ✕ 109 2 · f(f2) 4 ✕ 109 2 · f(f2) Max. Unit ns ns ns Timer A input (External trigger input in one-shot pulse mode) Symbol tc(TA) Parameter TAiIN input cycle time Limits Min. 8 ✕ 109 2 · f(f2) Max. Unit ns Timer B input (In pulse period measurement mode or pulse width measurement mode) Symbol Parameter tc(TB) TBiIN input cycle time tw(TBH) TBiIN input high-level pulse width tw(TBL) TBiIN input low-level pulse width Limits Min. 8 ✕ 109 2 · f(f2) 4 ✕ 109 2 · f(f2) 4 ✕ 109 2 · f(f2) Max. Unit ns ns ns Note. f(f2) represents the clock f2 frequency. For the relation to the main clock and sub clock, refer to Table 9 in data sheet “M37733MHBXXXFP”. 19 MITSUBISHI MICROCOMPUTERS Y NAR M37733EHBXXXFP M37733EHBFS I . . nge tion ifica t to cha pec al s subjec in f ot a its are is n m This tric li ice: arame t o N p e Som IM REL P PROM VERSION OF M37733MHBXXXFP SWITCHING CHARACTERISTICS (VCC = 5 V ± 10%, VSS = 0 V, Ta = –20 to 85°C, f(XIN) = 25 MHz (Note), unless otherwise noted) Single-chip mode Symbol Parameter Test conditions td(E–P0Q) Port P0 data output delay time td(E–P1Q) Port P1 data output delay time td(E–P2Q) Port P2 data output delay time td(E–P3Q) Port P3 data output delay time Fig. 5 td(E–P4Q) Port P4 data output delay time td(E–P5Q) Port P5 data output delay time td(E–P6Q) Port P6 data output delay time td(E–P7Q) Port P7 data output delay time Port P8 data output delay time td(E–P8Q) Note. This applies when the main clock division selection bit = “0” and f(f2) = 12.5 MHz. P0 P1 P2 P3 50 pF P4 P5 P6 P7 P8 φ1 E Fig. 5 Measuring circuit for ports P0 – P8 and φ1 20 Limits Min. Max. 80 80 80 80 80 80 80 80 80 Unit ns ns ns ns ns ns ns ns ns MITSUBISHI MICROCOMPUTERS Y NAR M37733EHBXXXFP M37733EHBFS I . . nge tion ifica t to cha pec al s subjec in f ot a its are is n m This tric li ice: arame t o N p e Som IM REL P PROM VERSION OF M37733MHBXXXFP Memory expansion mode and microprocessor mode (VCC = 5 V ± 10%, VSS = 0 V, Ta = 25 °C, f(XIN) = 25 MHz (Note 1), unless otherwise noted) Symbol td(An–E) td(A–E) Parameter Address output delay time Address output delay time th(E–An) Address hold time tw(ALE) ALE pulse width tsu(A–ALE) th(ALE–A) Address output setup time Address hold time td(ALE–E) ALE output delay time td(E–DQ) th(E–DQ) Data output delay time Data hold time tw(EL) tpxz(E–DZ) tpzx(E–DZ) _ E pulse width BHE output delay time _ td(R/W–E) R/ W output delay time ___ th(E–BHE) th(E–R/W) td(E–φ1) td(φ1–HLDA) No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 Fig. 5 Limits Min. Max. No wait Wait 1 Wait 0 ns 87 ns 12 ns 75 ns 18 ns 22 ns 57 ns 5 ns 45 ns 9 ns 15 ns 4 ns 18 50 ns ns ns ns 130 ns 10 20 ns ns 12 ns 87 ns 12 ns 87 18 18 0 ns ns ns ns ns 5 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 BHE hold time _ R/ W hold time φ1 output delay time ____ HLDA output delay time Unit 12 45 Floating start delay time Floating release delay time ___ td(BHE–E) Test (Note 2) Wait mode conditions No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 18 50 Notes 1. This applies when the main clock division selection bit = “0” and f(f2) = 12.5 MHz. 2. No wait : Wait bit = “1”. Wait 1 : The external memory area is accessed with wait bit = “0” and wait selection bit = “1”. Wait 0 : The external memory area is accessed with wait bit = “0” and wait selection bit = “0”. 21 MITSUBISHI MICROCOMPUTERS Y NAR M37733EHBXXXFP M37733EHBFS I . . nge tion ifica t to cha pec al s subjec in f ot a its are is n m This tric li ice: arame t o N p e Som IM REL P PROM VERSION OF M37733MHBXXXFP Memory expansion mode and microprocessor mode Bus timing data formulas (VCC = 5 V ± 10%, VSS = 0 V, Ta = –20 to 85 °C, Symbol td(An–E) Parameter Address output delay time f(XIN) = 25 MHz (Max., Note 1), unless otherwise noted) Wait mode No wait Wait 1 Wait 0 td(A–E) Address output delay time No wait Wait 1 Wait 0 th(E–An) Address hold time tw(ALE) ALE pulse width No wait Wait 1 Wait 0 tsu(A–ALE) Address output setup time No wait Wait 1 Wait 0 th(ALE–A) Address hold time No wait Wait 1 ALE output delay time No wait Wait 1 Wait 0 td(ALE–E) Wait 0 td(E–DQ) th(E–DQ) No wait tpxz(E–DZ) Floating start delay time tpzx(E–DZ) Floating release delay time ___ td(BHE–E) BHE output delay time Wait 1 Wait 0 _ R/W output delay time No wait Wait 1 No wait Wait 1 Wait 0 ___ th(E–BHE) BHE hold time _ th(E–R/W) R/W hold time td(E–φ1) φ1 output delay time 1 ✕ 109 2 · f(f2) 2 ✕ 109 2 · f(f2) 4 ✕ 109 2 · f(f2) 1 ✕ 109 2 · f(f2) 1 ✕ 109 2 · f(f2) 3 ✕ 109 2 · f(f2) 1 ✕ 109 2 · f(f2) 3 ✕ 109 2 · f(f2) 1 ✕ 109 2 · f(f2) 1 ✕ 109 2 · f(f2) 0 Notes 1. This applies when the main-clock division selection bit = “0”. 2. f(f2) represents the clock f2 frequency. For the relation to the main clock and sub clock, refer to Table 9 in data sheet “M37733MHBXXXFP”. 22 ns ns ns ns ns ns ns ns – 25 ns ns – 30 ns ns – 22 ns – 30 ns – 30 ns 5 Wait 0 td(R/W–E) ns 4 1 ✕ 109 2 · f(f2) Unit ns 45 Data hold time E pulse width Max. 9 1 ✕ 109 2 · f(f2) Data output delay time _ tw(EL) Limits Min. 1 ✕ 109 – 28 2 · f(f2) 3 ✕ 109 – 33 2 · f(f2) 1 ✕ 109 – 28 2 · f(f2) 3 ✕ 109 – 45 2 · f(f2) 9 1 ✕ 10 – 22 2 · f(f2) 9 1 ✕ 10 – 18 2 · f(f2) 9 2 ✕ 10 – 23 2 · f(f2) 9 1 ✕ 10 – 35 2 · f(f2) 9 2 ✕ 10 – 35 2 · f(f2) ns – 20 ns – 28 ns – 33 ns – 28 ns – 33 ns – 22 ns – 22 ns 18 ns MITSUBISHI MICROCOMPUTERS Y NAR M37733EHBXXXFP M37733EHBFS I . . nge tion ifica t to cha pec al s subjec in f ot a its are is n m This tric li ice: arame t o N p e Som IM REL P TIMING DIAGRAM PROM VERSION OF M37733MHBXXXFP tr tf tc tw(H) tw(L) XIN E td(E–P0Q) Port P0 output tsu(P0D–E) th(E–P0D) Port P0 input td(E–P1Q) Port P1 output tsu(P1D–E) th(E–P1D) Port P1 input td(E–P2Q) Port P2 output tsu(P2D–E) th(E–P2D) Port P2 input td(E–P3Q) Port P3 output tsu(P3D–E) th(E–P3D) Port P3 input td(E–P4Q) Port P4 output tsu(P4D–E) th(E–P4D) Port P4 input td(E–P5Q) Port P5 output tsu(P5D–E) th(E–P5D) Port P5 input td(E–P6Q) Port P6 output tsu(P6D–E) th(E–P6D) Port P6 input td(E–P7Q) Port P7 output tsu(P7D–E) th(E–P7D) Port P7 input td(E–P8Q) Port P8 output tsu(P8D–E) th(E–P8D) Port P8 input 23 MITSUBISHI MICROCOMPUTERS Y NAR M37733EHBXXXFP M37733EHBFS I . . nge tion ifica t to cha pec al s subjec in f ot a its are is n m This tric li ice: arame t o N p e Som IM REL P PROM VERSION OF M37733MHBXXXFP tc(TA) tw(TAH) TAiIN input tw(TAL) tc(UP) tw(UPH) TAiOUT input tw(UPL) In event counter mode TAiOUT input (Up-down input) TAiIN input (when count by falling) TAiIN input (when count by rising) th(TIN–UP) tsu(UP–TIN) In event counter mode (When two-phase pulse input is selected) tc(TA) TAjIN input tsu(TAjIN–TAjOUT) tsu(TAjIN–TAjOUT) tsu(TAjOUT–TAjIN) TAjOUT input tsu(TAjOUT–TAjIN) tc(TB) tw(TBH) TBiIN input tw(TBL) 24 MITSUBISHI MICROCOMPUTERS Y NAR M37733EHBXXXFP M37733EHBFS I . . nge tion ifica t to cha pec al s subjec in f ot a its are is n m This tric li ice: arame t o N p e Som IM REL P PROM VERSION OF M37733MHBXXXFP tc(AD) tw(ADL) ADTRG input tc(CK) tw(CKH) CLKi tw(CKL) th(C–Q) TxDi td(C–Q) tsu(D–C) th(C–D) RxDi tw(INL) INTi input Kli input tw(INH) tw(KNL) 25 MITSUBISHI MICROCOMPUTERS Y NAR M37733EHBXXXFP M37733EHBFS I . . nge tion ifica t to cha pec al s subjec in f ot a its are is n m This tric li ice: arame t o N p e Som IM REL P PROM VERSION OF M37733MHBXXXFP Memory expansion mode and microprocessor mode (When wait bit = “1”) φ1 E RDY input tsu(RDY–φ1) th(φ1–RDY) ( When wait bit = “0”) φ1 E RDY input tsu(RDY–φ1) th(φ1–RDY) (When wait bit = “1” or “0” in common) φ1 tsu(HOLD–φ1) th(φ1–HOLD) HOLD input td(φ1–HLDA) HLDA output Test conditions • VCC = 5 V ± 10% • Input timing voltage : V IL = 1.0 V, VIH = 4.0 V • Output timing voltage : V OL = 0.8 V, VOH = 2.0 V 26 td(φ1–HLDA) MITSUBISHI MICROCOMPUTERS Y NAR M37733EHBXXXFP M37733EHBFS I . . nge tion ifica t to cha pec al s subjec in f ot a its are is n m This tric li ice: arame t o N p e Som IM REL P PROM VERSION OF M37733MHBXXXFP Memory expansion mode and microprocessor mode (No wait : When wait bit = “1”) tw(L) tw(H) tf tr tc XIN φ1 td(E-φ1) td(E-φ1) tw(EL) E td(An-E) An th(E-An) Address tw(ALE) Address Address td(ALE-E) ALE th(ALE-A) th(E-DQ) tsu(A-ALE) Am/Dm Address Data tpxz(E-DZ) tpzx(E-DZ) Address Address th(E-D) td(E-DQ) td(A-E) tsu(D-E) DmIN Data td(BHE-E) th(E-BHE) BHE td(R/W-E) th(E-R/W) R/W Test conditions • VCC = 5 V ± 10% • Output timing voltage : VOL = 0.8 V, VOH = 2.0 V • Data input DmIN : VIL = 0.8 V, VIH = 2.5 V 27 MITSUBISHI MICROCOMPUTERS Y NAR M37733EHBXXXFP M37733EHBFS I . . nge tion ifica t to cha pec al s subjec in f ot a its are is n m This tric li ice: arame t o N p e Som IM REL P PROM VERSION OF M37733MHBXXXFP Memory expansion mode and microprocessor mode (Wait 1 : The external memory area is accessed when wait bit = “0” and wait selection bit = “1”.) tw(L) tw(H) tf tr tc XIN φ1 td(E–φ1) td(E–φ1) tw(EL) E td(An–E) th(E–An) Address An tw(ALE) Address td(ALE–E) ALE th(ALE–A) tsu(A–ALE) Am/Dm th(E–DQ) Address td(A–E) Data tpzx(E–DZ) tpxz(E–DZ) Address Address td(E–DQ) th(E–D) tsu(D–E) DmIN Data td(BHE–E) th(E–BHE) td(R/W–E) th(E–R/W) BHE R/W Test conditions • Vcc = 5 V ± 10% • Output timing voltage : V OL = 0.8 V, V OH = 2.0 V • Data input Dm IN : VIL = 0.8 V, VIH = 2.5 V 28 MITSUBISHI MICROCOMPUTERS Y NAR M37733EHBXXXFP M37733EHBFS I . . nge tion ifica t to cha pec al s subjec in f ot a its are is n m This tric li ice: arame t o N p e Som IM REL P PROM VERSION OF M37733MHBXXXFP Memory expansion mode and microprocessor mode (Wait 0 : The external memory area is accessed when wait bit = “0” and wait selection bit = “0”.) tw(L) tw(H) tf tr tc XIN φ1 td(E–φ1) td(E–φ1) tw(EL) E td(An–E) th(E–An) Address An tw(ALE) td(ALE–E) tsu(A–ALE) th(ALE–A) Address Address ALE th(E–DQ) Am/Dm Address Data tpzx(E–DZ) tpxz(E–DZ) Address Address td(E–DQ) td(A–E) tsu(D–E) th(E–D) Data DmIN td(BHE–E) th(E–BHE) BHE td(R/W–E) th(E–R/W) R/W Test conditions • Vcc = 5 V ± 10% • Output timing voltage : V OL = 0.8 V, V OH = 2.0 V • Data input Dm IN : VIL = 0.8 V, VIH = 2.5 V 29 Y NAR I . . nge tion ifica t to cha pec al s subjec in f ot a its are is n m This tric li ice: arame t o N p e Som IM REL P PACKAGE OUTLINE 30 MITSUBISHI MICROCOMPUTERS M37733EHBXXXFP M37733EHBFS PROM VERSION OF M37733MHBXXXFP GZZ–SH00–80B<84A0> ROM number 7700 FAMILY WRITING TO PROM ORDER CONFIRMATION FORM SINGLE-CHIP 16-BIT MICROCOMPUTER M37733EHBXXXFP MITSUBISHI ELECTRIC Receipt Date: Section head Supervisor signature signature TEL ( Company name Customer Date issued ) Date: Issuance signatures Note : Please fill in all items marked Responsible officer Supervisor 1. Confirmation Specify the name of the product being ordered and the type of EPROMs submitted. Three sets of EPROMs are required for each pattern. If at least two of the three sets of EPROMs submitted contain the identical data, we will produce writing to PROM based on this data. We shall assume the responsibility for errors only if the written PROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted. Checksum code for entire EPROM areas (hexadecimal notation) EPROM Type : (1) Set “FF 16” in the shaded area. 27C201 (2) Address 0 16 to 0F16 are the area for storing the data on model designation.This area must be written with the data shown below. Address and data are written in hexadecimal notation. 00000 00010 20000 128K DATA 3FFFF Note : Make sure that address 01FFFF16 of the microcomputer’s internal ROM corresponds to address 3FFFF16 of EPROM. 4D 33 37 37 33 33 45 48 Address 0 1 2 3 4 5 6 7 42 FF FF FF FF FF FF FF Address 8 9 A B C D E F 2. Mark specification Mark specification must be submitted using the correct form for the type of package being ordered fill out the appropriate 80P6N Mark Specification Form (for M37733EHBXXXFP) and attach to the Writing to PROM Order Confirmation Form. 3. Comments 80P6N (80-PIN QFP) MARK SPECIFICATION FORM Mitsubishi IC catalog name Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed). A. Standard Mitsubishi Mark 64 41 40 65 Mitsubishi IC catalog name Mitsubishi product number (6-digit, or 7-digit) 25 80 1 24 B. Customer’s Parts Number + Mitsubishi IC Catalog Name 64 41 40 65 25 80 1 24 Customer’s Parts Number Note : The fonts and size of characters are standard Mitsubishi type. Mitsubishi IC catalog name Notes 1 : The mark field should be written right aligned. 2 : The fonts and size of characters are standard Mitsubishi type. 3 : Customer’s parts number can be up to 14 alphanumeric characters for capital letters, hyphens, commas, periods and so on. 4 : If the Mitsubishi logo is not required, check the box below. Mitsubishi logo is not required C. Special Mark Required 64 41 65 40 80 25 1 Notes1 : If special mark is to be printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated technically as close as possible. Mitsubishi product number (6-digit, or 7-digit) and Mask ROM number (3-digit) are always marked for sorting the products. 2 : If special character fonts (e,g., customer’s trade mark logo) must be used in Special Mark, check the box below. For the new special character fonts, a clean font original (ideally logo drawing) must be submitted. 24 Special character fonts required Y NAR I . . nge tion ifica t to cha pec al s subjec in f ot a its are is n m This tric li ice: arame t o N p e Som IM REL P MITSUBISHI MICROCOMPUTERS M37733EHBXXXFP M37733EHBFS PROM VERSION OF M37733MHBXXXFP Keep safety first in your circuit designs! ¡ Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials ¡ These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party. ¡ Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials. ¡ All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. ¡ Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. ¡ The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials. ¡ If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. ¡ Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein. © 1996 MITSUBISHI ELECTRIC CORP. H-LF449-A KI-9610 Printed in Japan (ROD) 2 New publication, effective Oct. 1996. 32 Specifications subject to change without notice. REVISION DESCRIPTION LIST Rev. No. M37733EHBXXXFP, M37733EHBFS Datasheet Rev. date Revision Description 1.00 First Edition 970604 1.01 The following are added: 980526 • PROM ORDER CONFIRMATION FORM • MARK SPECIFICATION FORM 2.00 The following are revised: Page P12 Right Column Line 2 980731 Previous Version Revised Version The M37733EHBXXXFP has 28 powerful addressing modes. Refer to the MITSUBISHI SEMICONDUCTORS DATA BOOK SINGLECHIP 16-BIT MICROCOMPUTERS for the details of each addressing mode. The M37733EHBXXXFP has 28 powerful addressing modes. Refer to the “7700 Family Software Manual” for the details. MACHINE INSTRUCTION LIST The M37733EHBXXXFP has 103 machine instructions. Refer to the MITSUBISHI SEMICONDUCTORS DATA BOOK SINGLECHIP 16-BIT MICROCOMPUTERS for details. (1) MACHINE INSTRUCTION LIST The M37733EHBXXXFP has 103 machine instructions. Refer to the “7700 Family Software Manual” for the details.