IRF IRF2804LPBF Automotive mosfet Datasheet

PD - 95332A
IRF2804PbF
IRF2804SPbF
IRF2804LPbF
AUTOMOTIVE MOSFET
Features
l
l
l
l
l
l
HEXFET® Power MOSFET
Advanced Process Technology
Ultra Low On-Resistance
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Lead-Free
D
VDSS = 40V
RDS(on) = 2.0mى
G
Description
ID = 75A
S
Specifically designed for Automotive applications,
this HEXFET® Power MOSFET utilizes the latest
processing techniques to achieve extremely low
on-resistance per silicon area. Additional features
of this design are a 175°C junction operating
temperature, fast switching speed and improved
repetitive avalanche rating . These features combine to make this design an extremely efficient
and reliable device for use in Automotive applications and a wide variety of other applications.
TO-220AB
IRF2804PbF
D2Pak
IRF2804SPbF
TO-262
IRF2804LPbF
Absolute Maximum Ratings
Parameter
Max.
Units
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V (Silicon Limited)
270
A
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V (See Fig. 9)
190
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V (Package Limited)
IDM
Pulsed Drain Current
Maximum Power Dissipation
1080
300
W
2.0
± 20
W/°C
V
540
mJ
EAS (tested)
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy (Thermally Limited)
Single Pulse Avalanche Energy Tested Value
PD @TC = 25°C
VGS
EAS
i
c
IAR
Avalanche Current
EAR
Repetitive Avalanche Energy
TJ
Operating Junction and
TSTG
Storage Temperature Range
d
h
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 screw
Thermal Resistance
Parameter
RθJC
RθCS
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
RθJA
Junction-to-Ambient
RθJA
75
c
Junction-to-Ambient (PCB Mount, steady state)j
1160
See Fig.12a,12b,15,16
A
mJ
°C
-55 to + 175
300 (1.6mm from case )
10 lbf•in (1.1N•m)
Typ.
Max.
Units
–––
°C/W
0.50
0.50
–––
–––
62
–––
40
l
HEXFET® is a registered trademark of International Rectifier.
www.irf.com
1
08/25/05
IRF2804/S/LPbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)DSS
∆ΒVDSS/∆TJ
RDS(on) SMD
RDS(on) TO-220
VGS(th)
Min. Typ. Max. Units
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
LD
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Internal Drain Inductance
40
–––
–––
–––
2.0
130
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
0.031
1.5
1.8
–––
–––
–––
–––
–––
–––
160
41
66
13
120
130
130
4.5
–––
–––
2.0
2.3
4.0
–––
20
250
200
-200
240
62
99
–––
–––
–––
–––
–––
LS
Internal Source Inductance
–––
7.5
–––
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
–––
–––
–––
–––
–––
–––
6450
1690
840
5350
1520
2210
–––
–––
–––
–––
–––
–––
gfs
IDSS
IGSS
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
Drain-to-Source Leakage Current
f
f
f
f
6mm (0.25in.)
from package
pF
Diode Characteristics
Parameter
Min. Typ. Max. Units
IS
Continuous Source Current
–––
–––
270
ISM
(Body Diode)
Pulsed Source Current
–––
–––
1080
VSD
trr
Qrr
ton
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
–––
–––
–––
–––
56
67
1.3
84
100
c
G
S
and center of die contact
VGS = 0V
VDS = 25V
ƒ = 1.0MHz, See Fig. 5
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
VGS = 0V, VDS = 32V, ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 32V
Conditions
MOSFET symbol
A
V
ns
nC
D
showing the
integral reverse
G
p-n junction diode.
TJ = 25°C, IS = 75A, VGS = 0V
TJ = 25°C, IF = 75A, VDD = 20V
di/dt = 100A/µs
f
f
S
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
 Repetitive rating; pulse width limited by
†
max. junction temperature. (See fig. 11).
‚ Limited by TJmax, starting TJ = 25°C,
‡
L=0.24mH, RG = 25Ω, IAS = 75A, VGS =10V.
Part not recommended for use above this value.
ˆ
ƒ ISD ≤ 75A, di/dt ≤ 220A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 175°C.
„ Pulse width ≤ 1.0ms; duty cycle ≤ 2%.
‰
Coss eff. is a fixed capacitance that gives the same Š
charging time as Coss while VDS is rising from 0 to 80%
VDSS.
2
Conditions
V VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 75A
VGS = 10V, ID = 75A
V VDS = VGS, ID = 250µA
S VDS = 10V, ID = 75A
µA VDS = 40V, VGS = 0V
VDS = 40V, VGS = 0V, TJ = 125°C
nA VGS = 20V
VGS = -20V
nC ID = 75A
VDS = 32V
VGS = 10V
ns VDD = 20V
ID = 75A
RG = 2.5Ω
VGS = 10V
D
nH Between lead,
Limited by T Jmax , see Fig.12a, 12b, 15, 16 for typical repetitive
avalanche performance.
This value determined from sample failure population. 100%
tested to this value in production.
This is applied to D 2Pak, when mounted on 1" square PCB
( FR-4 or G-10 Material ). For recommended footprint and
soldering techniques refer to application note #AN-994.
Max R DS(on) for D2Pak and TO-262 (SMD) devices.
TO-220 device will have an Rth value of 0.45°C/W.
www.irf.com
IRF2804/S/LPbF
10000
10000
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
1000
TOP
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
100
10
4.5V
1000
15V
15V
10V
10V
8.0V
8.0V
7.0V
7.0V
6.0V
6.0V
5.5V
5.5V
5.0V
BOTTOM 5.0V
4.5V
BOTTOM 4.5V
100
4.5V
20µs PULSE WIDTH
Tj = 25°C
1
20µs PULSE WIDTH
Tj = 175°C
10
0.1
1
10
100
0.1
VDS, Drain-to-Source Voltage (V)
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000
300
G fs , Forward Transconductance ( S)
ID, Drain-to-Source Current (Α)
VGS
V
GS
T J = 175°C
100
T J = 25°C
10
VDS = 10V
20µs PULSE WIDTH
1
4.0
5.0
6.0
7.0
8.0
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
250
T J = 25°C
200
T J = 175°C
150
100
50
VDS = 10V
20µs PULSE WIDTH
0
9.0
0
40
80
120
160
200
ID, Drain-to-Source Current (A)
Fig 4. Typical Forward Transconductance
vs. Drain Current
3
IRF2804/S/LPbF
12000
20
10000
VGS , Gate-to-Source Voltage (V)
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
C, Capacitance (pF)
Coss = Cds + Cgd
8000
Ciss
6000
4000
Coss
2000
VDS= 32V
VDS= 20V
VDS= 8.0V
16
12
8
4
Crss
0
0
1
ID= 75A
10
0
100
120
160
200
240
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
10000
ID, Drain-to-Source Current (A)
1000.0
ISD, Reverse Drain Current (A)
80
Q G Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
T J = 175°C
100.0
10.0
1.0
T J = 25°C
VGS = 0V
0.1
0.2
0.6
1.0
1.4
1.8
VSD, Source-toDrain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
40
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1000
100µsec
1msec
100
10msec
10
Tc = 25°C
Tj = 175°C
Single Pulse
1
2.2
0
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF2804/S/LPbF
2.0
200
150
100
50
0
25
50
75
100
125
150
ID = 75A
VGS = 10V
1.5
(Normalized)
Limited By Package
250
ID, Drain Current (A)
RDS(on) , Drain-to-Source On Resistance
300
1.0
0.5
-60 -40 -20
175
0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
T C , Case Temperature (°C)
Fig 10. Normalized On-Resistance
vs. Temperature
Fig 9. Maximum Drain Current vs.
Case Temperature
1
Thermal Response ( Z thJC )
D = 0.50
0.1
0.20
0.10
0.05
0.02
0.01
0.01
0.001
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-008
1E-007
1E-006
1E-005
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRF2804/S/LPbF
15V
VGS
20V
+
V
- DD
IAS
A
0.01Ω
tp
EAS , Single Pulse Avalanche Energy (mJ)
D.U.T
RG
ID
31A
53A
BOTTOM 75A
TOP
1000
DRIVER
L
VDS
1200
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
800
600
400
200
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
I AS
Fig 12c. Maximum Avalanche Energy
vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
10 V
QGS
QGD
VG
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
12V
.2µF
.3µF
D.U.T.
+
V
- DS
VGS(th) Gate threshold Voltage (V)
4.0
ID = 250µA
3.0
2.0
1.0
-75 -50 -25
VGS
0
25
50
75
100 125 150 175
T J , Temperature ( °C )
3mA
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
6
Fig 14. Threshold Voltage vs. Temperature
www.irf.com
IRF2804/S/LPbF
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses
0.01
100
0.05
0.10
10
1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
EAR , Avalanche Energy (mJ)
600
TOP
Single Pulse
BOTTOM 10% Duty Cycle
ID = 75A
500
400
300
200
100
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
vs. Temperature
www.irf.com
175
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T jmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asT jmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav ) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
7
IRF2804/S/LPbF
D.U.T
Driver Gate Drive
ƒ
+
‚
-
P.W.
+
„
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
V DD
• dv/dt controlled by RG
• Driver same type as D.U.T.
• I SD controlled by Duty Factor "D"
• D.U.T. - Device Under Test
P.W.
Period
*

RG
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
Period
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple ≤ 5%
*
VGS = 5V for Logic Level Devices
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V DS
V GS
RG
RD
D.U.T.
+
-V DD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
VDS
90%
10%
VGS
td(on)
tr
t d(off)
tf
Fig 18b. Switching Time Waveforms
8
www.irf.com
IRF2804/S/LPbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
(;$03/( 7+,6,6$1,5)
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(&
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
www.irf.com
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
'$7(&2'(
<($5 :((.
/,1(&
9
IRF2804/S/LPbF
D2Pak Package Outline
Dimensions are shown in millimeters (inches)
D2Pak Part Marking Information
7+,6,6$1,5)6:,7+
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(/
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
25
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
10
3$57180%(5
)6
'$7(&2'(
<($5 :((.
/,1(/
3$57180%(5
)6
'$7(&2'(
3 '(6,*1$7(6/($')5((
352'8&7 237,21$/
<($5 :((.
$ $66(0%/<6,7(&2'(
www.irf.com
IRF2804/S/LPbF
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information
(;$03/( 7+,6,6$1,5//
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(&
1RWH3LQDVVHPEO\OLQH
SRVLWLRQLQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
'$7(&2'(
<($5 :((.
/,1(&
OR
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
www.irf.com
3$57180%(5
'$7(&2'(
3 '(6,*1$7(6/($')5((
352'8&7 237,21$/
<($5 :((.
$ $66(0%/<6,7(&2'(
11
IRF2804/S/LPbF
D2Pak Tape & Reel Information
Dimensions are shown in millimeters (inches)
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
0.368 (.0145)
0.342 (.0135)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
10.90 (.429)
10.70 (.421)
1.75 (.069)
1.25 (.049)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
60.00 (2.362)
MIN.
30.40 (1.197)
MAX.
26.40 (1.039)
24.40 (.961)
3
4
TO-220AB package is not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Automotive [Q101] market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 08/05
12
www.irf.com
Similar pages