ON NCV8184DR2 Micropower 70 ma low dropout tracking regulator/line driver Datasheet

NCV8184
Micropower 70 mA
Low Dropout Tracking
Regulator/Line Driver
The NCV8184 is a monolithic integrated low dropout tracking
voltage regulator designed to provide an adjustable buffered output
voltage that closely tracks (±5.0 mV) the reference input.
The part can be used in automotive applications with remote
sensors, or any situation where it is necessary to isolate the output of
your regulator.
The NCV8184 also enables the user to bestow a quick upgrade to
their module when added current is needed, and the existing regulator
cannot provide.
The versatility of this part also enables it to be used as a high−side
driver.
http://onsemi.com
SO−8
D SUFFIX
CASE 751
8
1
DPAK
5−LEAD
DT SUFFIX
CASE 175AA
1
5
Features
• 70 mA Source Capability
• Output Tracks within ±5.0 mV
• Low Input Voltage Tracking Performance
VOUT
(Works Down to VREF = 2.1 V)
Low Dropout (0.35 V Typ. @ 50 mA)
Low Quiescent Current
Thermal Shutdown
Wide Operating Range
Internally Fused Leads in SO−8 Package
NCV Prefix, for Automotive and Other Applications Requiring Site
and Change Control
1
8
8184
ALYW
•
•
•
•
•
•
PIN CONNECTIONS AND
MARKING DIAGRAM
GND
GND
Adj
VIN
GND
GND
VREF/ENABLE
Pin 1. VIN
2. VOUT
Tab, 3. GND
4. Adj
5. VREF/ENABLE
8184
ALYWW
1
VIN
VOUT
Current Limit &
Saturation Sense
Adj
−
VREF/ENABLE
+
A
L
Y
WW, W
= Assembly Location
= Wafer Lot
= Year
= Work Week
ORDERING INFORMATION
Package
Shipping†
NCV8184D
SO−8
95 Units/Rail
NCV8184DR2
SO−8
2500 Tape & Reel
NCV8184DT
DPAK
50 Units/Rail
NCV8184DTRK
DPAK
2500 Tape & Reel
Device
GND
BIAS
Thermal
Shutdown
†For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specifications
Brochure, BRD8011/D.
Figure 1. Block Diagram
 Semiconductor Components Industries, LLC, 2004
August, 2004 − Rev. 15
1
Publication Order Number:
NCV8184/D
NCV8184
MAXIMUM RATINGS
Rating
Value
Unit
Storage Temperature
−65 to 150
°C
Supply Voltage Range (continuous)
−15 to 42
V
Supply Voltage Operating Range
4.0 to 42
V
42
V
Voltage Range (VOUT, Adj)
−3.0 to 42
V
Voltage Range (VREF/ENABLE)
−0.3 to 42
V
Maximum Junction Temperature
150
°C
2.5
200
kV
V
240 peak
(Note 2)
°C
Peak Transient Voltage (VIN = 14 V, Load Dump Transient = 28 V)
ESD Capability
Human Body Model
Machine Model
Lead Temperature Soldering:
Reflow: (SMD styles only) (Note 1)
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,
damage may occur and reliability may be affected.
1. 60 second maximum above 183°C.
2. −5°C / +0°C Allowable Conditions
THERMAL CHARACTERISTICS
See Package Thermal Data Section (Page 8)
ELECTRICAL CHARACTERISTICS (VIN = 14 V; VREF/ENABLE > 2.1 V; −40°C < TJ < +125°C; COUT = 1.0 F;
IOUT = 1.0 mA; Adj = VOUT; COUT−ESR = 1.0 , unless otherwise specified.)
Parameter
Test Conditions
Min
Typ
Max
Unit
−10
−
10
mV
−5.0
−
5.0
mV
Regular Output
VREF/ENABLE − VOUT
VOUT Tracking Error
6.0 V ≤ VIN ≤ 26 V, 100 A ≤ IOUT ≤ 50 mA
2.1 V ≤ VREF/ENABLE ≤ (VIN − 600 mV)
VIN = 12 V, IOUT = 5.0 mA, VREF/ENABLE = 5.0 V
Dropout Voltage (VIN − VOUT)
IOUT = 100 A
IOUT = 5.0 mA
IOUT = 50 mA
−
−
−
100
250
350
150
500
600
mV
mV
mV
Line Regulation
6.0 V ≤ VIN ≤ 26 V, VREF/ENABLE = 5.0 V
−
−
10
mV
Load Regulation
100 A ≤ IOUT ≤ 50 mA, VREF/ENABLE = 5.0 V
−
−
10
mV
Adj Input Bias Current
VREF/ENABLE = 5.0 V
−
0.2
1.0
A
Current Limit
VIN = 14 V, VREF/ENABLE = 5.0 V, VOUT = 90% of Adj
70
−
400
mA
Quiescent Current (IIN − IOUT)
VIN = 12 V, IOUT = 50 mA
VIN = 12 V, IOUT = 100 A
VIN = 12 V, VREF/ENABLE = 0 V
−
−
−
5.0
50
−
7.0
70
20
mA
A
A
Ripple Rejection
f = 120 Hz, IOUT = 50 mA, 6.0 V ≤ VIN ≤ 26 V
60
−
−
dB
Thermal Shutdown
Guaranteed by Design
150
180
210
°C
0.8
−
2.1
V
−
0.2
1.0
A
VREF/ENABLE
Enable Voltage
Input Bias Current
−
VREF/ENABLE = 5.0 V
http://onsemi.com
2
NCV8184
PACKAGE PIN DESCRIPTION
Package Lead Number
SO−8
DPAK, 5−LEAD
Lead Symbol
8
1
VIN
1
2
VOUT
Regulated output.
2, 3, 6, 7
Tab, 3
GND
Ground.
4
4
Adj
5
5
VREF/ENABLE
Function
Battery supply input voltage.
Adjust lead, noninverting input.
Reference voltage and ENABLE input.
http://onsemi.com
3
NCV8184
0.4
1.0
0.3
0.8
TRACKING ERROR (mV)
TRACKING ERROR (mV)
TYPICAL PERFORMANCE CHARACTERISTICS
0.2
0.1
0.0
−0.1
−0.2
0.6
0.4
−40°C
0.2
+25°C
0.0
−0.2
+125°C
−0.4
−0.3
−40
−20
0
20
40
60
80
TEMPERATURE (°C)
100
−0.6
120
0
Figure 2. Tracking Error vs. Temperature
50
70
4.0
3.5
Stable Region
40
3.0
35
Unstable Region
Unstable Region
30
ESR ()
ESR ()
60
Figure 3. Tracking Error vs. Output Current
VOUT = 5.0 V
45
20
30
40
50
OUTPUT CURRENT (mA)
10
25
20
2.5
2.0
1.5
15
Data is for 0.1 F only. Capacitor
values 0.5 F and above do not
exhibit instability with low ESR.
0.5
5
0
1.0
C2 = 10 F
10
C2 = 0.1 F
0
10
Stable Region
50
20
30
40
OUTPUT CURRENT (mA)
60
0.0
70
0
10
C2 = 0.1 F
VOUT = 5.0 V
20
30
40
50
OUTPUT CURRENT (mA)
60
70
Figure 5. Output Stability with 0.1 F at Low ESR
Figure 4. Output Stability with Capacitor Change
2.5
12
QUIESCENT CURRENT (mA)
QUIESCENT CURRENT (mA)
VREF / ENABLE = 5.0 V
10
+125°C
8
+25°C
6
−40°C
4
2
2
IOUT = 20 mA
1.5
1
0.5
IOUT = 1 mA
0
0
10
20
30
40
50
OUTPUT CURRENT (mA)
60
0
70
0
Figure 6. Quiescent Current vs. Output Current
5
10
15
INPUT VOLTAGE (V)
20
Figure 7. Quiescent Current vs. Input Voltage
http://onsemi.com
4
25
NCV8184
TYPICAL PERFORMANCE CHARACTERISTICS
6
OUTPUT VOLTAGE VOUT (V)
DROPOUT VOLTAGE (V)
0.5
+125°C
0.4
+25°C
0.3
0.2
−40°C
0.1
5
4
+25°C
3
+125°C
2
1
−40°C
0.0
0
10
20
30
40
50
OUTPUT CURRENT (mA)
60
0
70
0
Figure 8. Dropout Voltage vs. Output Current
25
30
0.7
REFERENCE CURRENT (A)
6
5
4
3
2
1
0
1
2
3
4
5
REFERENCE VOLTAGE (V)
6
0.6
0.5
0.4
0.3
0.2
0.1
0.0
7
0
1
2
3
4
5
REFERENCE VOLTAGE (V)
120
115
110
105
100
95
90
85
80
0
1
6
Figure 11. Reference Current vs. Reference
Voltage
Figure 10. Output Voltage vs. Reference Voltage
THERMAL RESISTANCE, JUNCTION
TO AMBIENT, RJA, (°C/W)
OUTPUT VOLTAGE (V)
10
15
20
INPUT VOLTAGE VIN (V)
Figure 9. Output Voltage vs. Input Voltage
7
0
5
VREF/ENABLE = 5.0 V
2
3
4
COPPER AREA (in2)
5
Figure 12. SO−8, JA as a Function of the Pad
Copper Area (2.0 oz. Cu Thickness),
Board Material = 0.0625 G−10/R−4
http://onsemi.com
5
6
7
NCV8184
CIRCUIT DESCRIPTION
By pulling the VREF/ENABLE lead below 0.8 V, (see
Figure 16 or Figure 17), the IC is disabled and enters a sleep
state where the device draws less than 20 A from supply.
When the VREF/ENABLE lead is greater than 2.1 V, VOUT
tracks the VREF/ENABLE lead normally.
The output is capable of supplying 70 mA to the load
while configured as a similar (Figure 13), lower (Figure 15),
or higher (Figure 14) voltage as the reference lead. The Adj
lead acts as the inverting terminal of the op amp and the
VREF lead as the non−inverting.
The device can also be configured as a high−side driver as
displayed in Figure 18.
GND
C1*
1.0 F
GND
RF
GND
VREF/
ENABLE
Adj
VOUT, 70 mA
Loads
VOUT
C2**
GND
10 F
B+
VIN
GND
RA
Figure 13. Tracking Regulator at the Same Voltage
Adj
B+
VIN
C2**
10 F
C1*
1.0 F
GND
VOUT
GND
GND
GND
R1
VREF/
ENABLE
GND
GND
VREF
C3***
10 nF
Figure 14. Tracking Regulator at Higher Voltages
VOUT, 70 mA
NCV8184
GND
C1*
1.0 F
R
VOUT VREF(1 E)
RA
VOUT VREF
VOUT, 70 mA
Loads
VOUT
C2**
GND
10 F
B+
VIN
VREF/
ENABLE
Adj
5.0 V
C3***
10 nF
C3***
10 nF
Adj
VREF
R2
NCV8184
VOUT, 70 mA
Loads
VOUT
C2**
GND
10 F
NCV8184
Output Voltage
NCV8184
ENABLE Function
B+
VIN
C1*
1.0 F
GND
GND
R
VREF/
ENABLE
C3***
10 nF
VREF
from MCU
VOUT VREF( R2 )
R1 R2
Figure 15. Tracking Regulator at Lower Voltages
NCV8501
VREF (5.0 V)
70 mA
70 mA
VOUT
To Load 10 F
(e.g. sensor)
GND
GND
Adj
NCV8184
100 nF
GND
VIN
GND
C
C1*
1.0 F
GND
Adj
GND
VREF/
ENABLE
VOUT
I/O
C3***
10 nF
NCV8184
VIN
6.0 V−40 V
Figure 16. Tracking Regulator with ENABLE Circuit
B+
VIN
GND
GND
VREF/
ENABLE
C3***
10 nF
VOUT B VSAT
Figure 17. Alternative ENABLE Circuit
Figure 18. High−Side Driver
* C1 is required if the regulator is far from the power source filter.
** C2 is required for stability.
*** C3 is recommended for EMC susceptibility
http://onsemi.com
6
MCU
NCV8184
APPLICATION NOTES
VOUT Short to Battery
Figure 20. In this case the NCV8184 supply input voltage is
set at 7 V when a short to battery (14 V typical) occurs on
VOUT which normally runs at 5 V. The current into the
device (ammeter in Figure 20) will draw additional current
as displayed in Figure 21.
The NCV8184 will survive a short to battery when hooked
up the conventional way as shown in Figure 19. No damage
to the part will occur. The part also endures a short to battery
when powered by an isolated supply at a lower voltage as in
Short to battery
C2**
10 F
B+
VOUT
VIN
NCV8184
VOUT 70 mA
Loads
GND
GND
C1*
1.0 F
GND
GND
VREF/
ENABLE
Adj
+ Automotive Battery
− typically 14 V
5.0 V
+
5.0 V
−
C3***
10 nF
VOUT = VREF
Figure 19.
Short to battery
A
Loads
VOUT
B+
70 mA
VOUT
C2**
10 F
GND
GND
Adj
* C1 is required if the regulator is far from the power source filter.
** C2 is required for stability.
*** C3 is recommended for EMC susceptibility.
VIN
NCV8184
Automotive Battery
typically 14 V
C1*
7V
1.0 F
GND
+
−
GND
VREF/
ENABLE
VOUT = VREF
C3***
10 nF
5.0 V
+
5.0 V
−
Figure 20.
18
Switched Application
16
The NCV8184 has been designed for use in systems where
the reference voltage on the VREF/ENABLE pin is
continuously on. Typically, the current into the
VREF/ENABLE pin will be less than 1.0 A when the
voltage on the VIN pin (usually the ignition line) has been
switched out (VIN can be at high impedance or at ground.)
Reference Figure 22.
12
10
8
6
Ignition
Switch
VOUT
4
VOUT
2
C2
10 F
0
5 6 7 8 9 10 1112 1314 15 1617 1819 20 2122 2324 25 26
VOUT VOLTAGE (V)
GND
GND
Figure 21. VOUT Short to Battery
Adj
VIN
NCV8184
CURRENT (mA)
14
GND
7
VBAT
GND
VREF/
ENABLE
Figure 22.
http://onsemi.com
C1
1.0 F
< 1.0 A
VREF
5.0 V
NCV8184
External Capacitors
The value of RJA can then be compared with those in the
Package Thermal Data Section of the data sheet. Those
packages with RJA’s less than the calculated value in
equation 2 will keep the die temperature below 150°C.
In some cases, none of the packages will be sufficient to
dissipate the heat generated by the IC, and an external heat
sink will be required.
The output capacitor for the NCV8184 is required for
stability. Without it, the regulator output will oscillate.
Actual size and type may vary depending upon the
application load and temperature range. Capacitor effective
series resistance (ESR) is also a factor in the IC stability.
Worst−case is determined at the minimum ambient
temperature and maximum load expected.
The output capacitor can be increased in size to any
desired value above the minimum. One possible purpose of
this would be to maintain the output voltage during brief
conditions of negative input transients that might be
characteristic of a particular system.
The capacitor must also be rated at all ambient
temperatures expected in the system. To maintain regulator
stability down to −40°C, a capacitor rated at that temperature
must be used.
More information on capacitor selection for SMART
REGULATORs is available in the SMART REGULATOR
application note, “Compensation for Linear Regulators,”
document number SR003AN/D, available through our
website at http://www.onsemi.com.
IIN
VIN
VOUT
IQ
Figure 23. Single Output Regulator with Key
Performance Parameters Labeled
Heatsinks
A heatsink effectively increases the surface area of the
package to improve the flow of heat away from the IC and
into the surrounding air.
Each material in the heat flow path between the IC and the
outside environment will have a thermal resistance. Like
series electrical resistances, these resistances are summed to
determine the value of RJA:
The maximum power dissipation for a single output
regulator (Figure 23) is:
PD(max) {VIN(max) VOUT(min)} IOUT(max)
(eq. 1)
RJA RJC RCS RSA
where:
VIN(max) is the maximum input voltage,
VOUT(min) is the minimum output voltage,
IOUT(max) is the maximum output current, for the
application,and
IQ is the quiescent current the regulator consumes at
IOUT(max).
Once the value of PD(max) is known, the maximum
permissible value of RJA can be calculated:
RJA 150°C TA
PD
IOUT
Control
Features
Calculating Power Dissipation in a Single Output
Linear Regulator
VIN(max)IQ
SMART
REGULATOR
(eq. 3)
where:
RJC = the junction−to−case thermal resistance,
RCS = the case−to−heatsink thermal resistance, and
RSA = the heatsink−to−ambient thermal resistance.
RJC appears in the package section of the data sheet. Like
RJA, it is a function of package type. RCS and RSA are
functions of the package type, heatsink and the interface
between them. These values appear in heat sink data sheets
of heatsink manufacturers.
(eq. 2)
http://onsemi.com
8
NCV8184
PACKAGE THERMAL DATA
Test Conditions
Typical Value
Parameter
SO−8 Package
Units
Min−Pad Board (Figure 24)
1.0 in Pad Board (Figure 25)
Junction−to−Case top (−JT, JT)
39
32
°C/W
Junction−to−Pin 8 (−JL8, JL8)
63
58
°C/W
98
°C/W
Junction−to−Ambient (RJA, JA)
DPAK 5−Pin Package
121
0.5
in2
Spreader Board (Figure 26)
1.0
in2
Spreader Board (Figure 27)
15
15
°C/W
Junction−to−Pin 3 (tab) (−JL3, JL3)
16
16
°C/W
Junction−to−Ambient (RJA, JA)
100
69
°C/W
Junction−to−Board (−JB, JB)
Figure 24. 2.0 oz. copper, 40 mil traces
Figure 25. 1.0 oz. copper,
approx. 1/8 in2 per lead, 1.0 in2 total
Figure 26. 1.0 oz. copper, 0.3 in2 drain pad,
0.5 in2 including traces
Figure 27. 2.0 oz. copper, 0.5 in2 drain
pad, 1.0 in2 including traces
http://onsemi.com
9
NCV8184
Table 1. SO−8 Thermal RC Network Models*
Board Type
Min−Pad
(SPICE Deck Format)
1.0 inch Pad
Min−Pad
Cauer Network
1.0 inch Pad
Foster Network
Min
1.0 inch
Units
Tau
Tau
Units
C_C1
Junction
Gnd
7.06879E−7
7.06879E−7
W−s/C
2.99E−7
2.99E−7
sec
C_C2
node1
Gnd
3.34499E−6
3.34499E−6
W−s/C
4.40E−6
4.40E−6
sec
C_C3
node2
Gnd
1.00350E−5
1.00350E−5
W−s/C
4.48E−5
4.48E−5
sec
C_C4
node3
Gnd
3.68358E−5
3.68358E−5
W−s/C
2.46E−4
2.46E−4
sec
C_C5
node4
Gnd
4.29554E−4
4.29554E−4
W−s/C
4.72E−3
4.72E−3
sec
C_C6
node5
Gnd
7.20791E−3
7.20791E−3
W−s/C
7.18E−2
7.25E−2
sec
C_C7
node6
Gnd
3.52182E−2
3.76156E−2
W−s/C
1.61E+0
1.31E+0
sec
C_C8
node7
Gnd
7.16622E−1
1.33747E+0
W−s/C
2.08E+1
1.62E+1
sec
C_C9
node8
Gnd
6.57830E+0
3.97588E+0
W−s/C
1.33E+2
1.08E+2
sec
Min
1.0 inch
R’s
R’s
R_R1
Junction
node1
5.17805E−1
5.1780E−1
°C/W
0.34137
0.34137
°C/W
R_R2
node1
node2
1.55341E+0
1.5534E+0
°C/W
0.83581
0.83581
°C/W
R_R3
node2
node3
4.66024E+0
4.6602E+0
°C/W
2.36526
2.36526
°C/W
R_R4
node3
node4
4.98386E+0
4.9838E+0
°C/W
6.76959
6.76960
°C/W
R_R5
node4
node5
1.04570E+1
1.0457E+1
°C/W
10.39190
10.39200
°C/W
R_R6
node5
node6
1.14509E+1
1.1450E+1
°C/W
8.68648
8.81855
°C/W
R_R7
node6
node7
3.94880E+1
2.9500E+1
°C/W
38.62760
31.37390
°C/W
R_R8
node7
node8
3.10554E+1
1.6877E+1
°C/W
27.65780
8.93175
°C/W
R_R9
node8
node9
1.77562E+1
1.8812E+1
°C/W
26.24690
28.98470
°C/W
100 mm2
653 mm2
Table 2. DPAK 5−Lead Thermal RC Network Models*
Drain Copper Area (1 oz thick)
(SPICE Deck Format)
100 mm2
653 mm2
Cauer Network
100 mm2
653 mm2
Foster Network
Units
Tau
Tau
Units
C_C1
Junction
Gnd
1.51E−06
1.51E−06
W−s/C
1.00E−06
1.00E−06
sec
C_C2
node1
Gnd
6.00E−06
5.91E−06
W−s/C
1.00E−05
1.00E−05
sec
C_C3
node2
Gnd
1.90E−05
1.81E−05
W−s/C
1.00E−04
1.00E−04
sec
C_C4
node3
Gnd
1.05E−04
9.59E−05
W−s/C
7.00E−04
6.00E−04
sec
C_C5
node4
Gnd
2.98E−03
3.21E−03
W−s/C
1.03E−02
1.03E−02
sec
C_C6
node5
Gnd
2.37E−02
7.87E−02
W−s/C
1.71E−01
1.71E−01
sec
C_C7
node6
Gnd
4.95E−02
7.88E−02
W−s/C
1.17E+00
1.17E+00
sec
C_C8
node7
Gnd
2.32E−01
1.03E+00
W−s/C
7.63E+00
7.63E+00
sec
C_C9
node8
Gnd
6.95E−01
1.58E+00
W−s/C
3.93E+01
3.93E+01
sec
C_C10
node9
Gnd
6.91E+00
1.16E+01
W−s/C
1.42E+02
1.42E+02
sec
100 mm2
653 mm2
R’s
R’s
R_R1
Junction
node1
0.845
0.850
°C/W
0.507
0.507
°C/W
R_R2
node1
node2
1.886
1.933
°C/W
1.096
1.096
°C/W
R_R3
node2
node3
4.758
5.070
°C/W
3.467
3.467
°C/W
R_R4
node3
node4
5.336
4.862
°C/W
7.168
7.168
°C/W
R_R5
node4
node5
3.735
3.201
°C/W
3.394
3.394
°C/W
R_R6
node5
node6
10.537
5.293
°C/W
4.000
0.720
°C/W
R_R7
node6
node7
19.583
6.828
°C/W
15.000
8.912
°C/W
R_R8
node7
node8
38.068
13.172
°C/W
20.000
3.636
°C/W
R_R9
node8
node9
43.000
16.466
°C/W
50.000
15.161
°C/W
R_R10
node9
gnd
16.884
8.868
°C/W
40.000
22.480
°C/W
*Bold face items in the tables above represent the package without the external thermal system.
http://onsemi.com
10
NCV8184
tools, whereas Foster networks may be more easily
implemented using mathematical tools (for instance, in a
spreadsheet program), according to the following formula:
The Cauer networks generally have physical significance
and may be divided between nodes to separate thermal
behavior due to one portion of the network from another.
The Foster networks, though when sorted by time constant
(as above) bear a rough correlation with the Cauer networks,
are really only convenient mathematical models. Cauer
networks can be easily implemented using circuit simulating
R(t) n
Ri 1−e−ttaui i1
Copper Area (in2)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
160
150
140
JA (°C/W)
130
120
110
1.0 oz. Cu
100
90
2.0 oz. Cu
80
70
60
50
0
100
200
300
400
Copper Area
500
600
700
(mm2)
Figure 28. DPAK 5−Lead, JA as a Function of the Pad Copper Area Including Traces,
Board Material 0.62” Thick FR4
100
RJA 1.0 in. pad (°C/W)
50% Duty Cycle
20%
10
10%
5%
2%
1%
1
0.000001
Non−Normalized Response
0.00001
0.0001
0.001
0.1
0.01
Pulse Width (s)
1
10
Figure 29. SO−8 Thermal Duty Cycle Curves on 1.0 in. Spreader Test Board
http://onsemi.com
11
100
1000
NCV8184
R (°C/W)
EFFECTIVE THERMAL RESISTANCE
100
50% Duty Cycle
20%
10 10%
5%
2%
Notes:
PDM
1 1%
t1
Single Pulse
t2
t1
Duty Cycle, D = t
2
(1.0 in pad PCB) Die Size = 2.08 x 1.55 x 0.40 5.0% Active Area
0.1
0.000001
0.00001
0.0001
0.001
0.01
0.1
1
10
100
1000
t1 (s)
Figure 30. DPAK 5−Lead Thermal Duty Cycle Curves on 1.0 in. Spreader Test Board
1000
Die Size = 2.08 x 1.55 x 0.40 5.0% Active Area
min pad (Cu Area = 100 mm2)
R (°C/W)
100
1.0 in pad (Cu Area = 653 mm2)
10
1
0.1
0.000001
0.00001
0.0001
0.001
0.01
0.1
1
10
100
Time (s)
Figure 31. DPAK 5−Lead Thermal Transient Response on Typical Test Boards
R1
Junction
C1
R2
C2
R3
Rn
Cn
C3
Time constants are not simple RC products.
Amplitudes of mathematical solution are not the resistance values.
Ambient
(thermal ground)
Figure 32. Grounded Capacitor Thermal Network (“Cauer” Ladder)
Junction
R1
R2
R3
Rn
C1
C2
C3
Cn
Each rung is exactly characterized by its RC−product time constant;
Amplitudes are the resistances
Figure 33. Non−Grounded Capacitor Thermal Ladder (“Foster” Ladder)
http://onsemi.com
12
Ambient
(thermal ground)
1000
NCV8184
PACKAGE DIMENSIONS
SO−8
D SUFFIX
CASE 751−07
ISSUE AB
−X−
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER
SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN
EXCESS OF THE D DIMENSION AT MAXIMUM
MATERIAL CONDITION.
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW
STANDAARD IS 751−07
A
8
5
0.25 (0.010)
S
B
1
M
Y
M
4
K
−Y−
G
C
N
X 45 DIM
A
B
C
D
G
H
J
K
M
N
S
SEATING
PLANE
−Z−
0.10 (0.004)
H
D
0.25 (0.010)
M
Z Y
S
X
M
J
S
SOLDERING FOOTPRINT
1.52
0.060
7.0
0.275
4.0
0.155
0.6
0.024
1.270
0.050
SCALE 6:1
http://onsemi.com
13
mm inches
MILLIMETERS
MIN
MAX
4.80
5.00
3.80
4.00
1.35
1.75
0.33
0.51
1.27 BSC
0.10
0.25
0.19
0.25
0.40
1.27
0
8
0.25
0.50
5.80
6.20
INCHES
MIN
MAX
0.189
0.197
0.150
0.157
0.053
0.069
0.013
0.020
0.050 BSC
0.004
0.010
0.007
0.010
0.016
0.050
0
8
0.010
0.020
0.228
0.244
NCV8184
PACKAGE DIMENSIONS
DPAK 5−LEAD CENTER LEAD CROP
DT SUFFIX
CASE 175AA−01
ISSUE O
C
B
V
NOTES:
1. DIMENSIONING AND TOLERANCING
PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
SEATING
PLANE
−T−
E
R
R1
Z
A
S
1 2 3 4 5
U
K
F
J
L
H
D
G
5 PL
0.13 (0.005)
M
T
DIM
A
B
C
D
E
F
G
H
J
K
L
R
R1
S
U
V
Z
INCHES
MIN
MAX
0.235 0.245
0.250 0.265
0.086 0.094
0.020 0.028
0.018 0.023
0.024 0.032
0.180 BSC
0.034 0.040
0.018 0.023
0.102 0.114
0.045 BSC
0.170 0.190
0.185 0.210
0.025 0.040
0.020
−−−
0.035 0.050
0.155 0.170
MILLIMETERS
MIN
MAX
5.97
6.22
6.35
6.73
2.19
2.38
0.51
0.71
0.46
0.58
0.61
0.81
4.56 BSC
0.87
1.01
0.46
0.58
2.60
2.89
1.14 BSC
4.32
4.83
4.70
5.33
0.63
1.01
0.51
−−−
0.89
1.27
3.93
4.32
Note: Pin 3 and the tab are internally connected
SMART REGULATOR is a registered trademark of Semiconductor Components Industries, LLC (SCILLC).
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Phone: 81−3−5773−3850
http://onsemi.com
14
For additional information, please contact your
local Sales Representative.
NCV8184/D
Similar pages