Freescale Semiconductor Data Sheet: Advance Information Document Number: K11P121M50SF4 Rev. 3, 08/2012 K11P121M50SF4 K11 Sub-Family Data Sheet Supports the following: MK11DX128VMC5, MK11DX256VMC5, MK11DN512VMC5 Features • Operating Characteristics – Voltage range: 1.71 to 3.6 V – Flash write voltage range: 1.71 to 3.6 V – Temperature range (ambient): -40 to 105°C • Performance – Up to 50 MHz ARM Cortex-M4 core with DSP instructions delivering 1.25 Dhrystone MIPS per MHz • Memories and memory interfaces – Up to 512 KB of program flash for devices without FlexNVM. – Up to 256 KB program flash for devices with FlexNVM. – 64 KB FlexNVM on FlexMemory devices – 4 KB FlexRAM on FlexMemory devices – Up to 64 KB RAM – Serial programming interface (EzPort) • Clocks – 3 to 32 MHz crystal oscillator – 32 kHz crystal oscillator – Multi-purpose clock generator • Human-machine interface – General-purpose input/output • Analog modules – 16-bit SAR ADC – 12-bit DAC – Two analog comparators (CMP) containing a 6-bit DAC and programmable reference input – Voltage reference • Timers – Programmable delay block – Two 2-channel general purpose timers, one with quadrature decoder functionality – Periodic interrupt timers – 16-bit low-power timer – Carrier modulator transmitter – Real-time clock • Communication interfaces – Two SPI modules – Two I2C modules – Four UART modules – I2S module • System peripherals – Multiple low-power modes to provide power optimization based on application requirements – External watchdog monitor – Software watchdog – Low-leakage wakeup unit • Security and integrity modules – Hardware CRC module to support fast cyclic redundancy checks – Tamper detect and secure storage – Hardware random-number generator – Hardware encryption supporting DES, 3DES, AES, MD5, SHA-1, and SHA-256 algorithms – 128-bit unique identification (ID) number per chip This document contains information on a new product. Specifications and information herein are subject to change without notice. © 2012–2013 Freescale Semiconductor, Inc. Table of Contents 1 Ordering parts...........................................................................3 5.4 Thermal specifications.......................................................20 1.1 Determining valid orderable parts......................................3 5.4.1 Thermal operating requirements...........................20 2 Part identification......................................................................3 5.4.2 Thermal attributes.................................................20 2.1 Description.........................................................................3 6 Peripheral operating requirements and behaviors....................21 2.2 Format...............................................................................3 6.1 Core modules....................................................................21 2.3 Fields.................................................................................3 6.1.1 JTAG electricals....................................................21 2.4 Example............................................................................4 6.2 System modules................................................................24 3 Terminology and guidelines......................................................4 6.3 Clock modules...................................................................24 3.1 Definition: Operating requirement......................................4 6.3.1 MCG specifications...............................................24 3.2 Definition: Operating behavior...........................................5 6.3.2 Oscillator electrical specifications.........................26 3.3 Definition: Attribute............................................................5 6.3.3 32 kHz Oscillator Electrical Characteristics...........28 3.4 Definition: Rating...............................................................6 6.4 Memories and memory interfaces.....................................29 3.5 Result of exceeding a rating..............................................6 6.4.1 Flash electrical specifications................................29 3.6 Relationship between ratings and operating 6.4.2 EzPort Switching Specifications............................32 requirements......................................................................6 6.5 Security and integrity modules..........................................33 3.7 Guidelines for ratings and operating requirements............7 6.6 Analog...............................................................................33 3.8 Definition: Typical value.....................................................7 6.6.1 ADC electrical specifications.................................33 3.9 Typical value conditions....................................................8 6.6.2 CMP and 6-bit DAC electrical specifications.........37 4 Ratings......................................................................................9 6.6.3 12-bit DAC electrical characteristics.....................40 4.1 Thermal handling ratings...................................................9 6.6.4 Voltage reference electrical specifications............43 4.2 Moisture handling ratings..................................................9 6.7 Timers................................................................................44 4.3 ESD handling ratings.........................................................9 6.8 Communication interfaces.................................................44 4.4 Voltage and current operating ratings...............................9 6.8.1 5 General.....................................................................................10 DSPI switching specifications (limited voltage range)....................................................................44 5.1 AC electrical characteristics..............................................10 6.8.2 DSPI switching specifications (full voltage range).46 5.2 Nonswitching electrical specifications...............................10 6.8.3 I2C switching specifications..................................48 5.2.1 Voltage and current operating requirements.........10 6.8.4 UART switching specifications..............................48 5.2.2 LVD and POR operating requirements.................11 6.8.5 Normal Run, Wait and Stop mode performance 5.2.3 Voltage and current operating behaviors..............12 5.2.4 Power mode transition operating behaviors..........13 5.2.5 Power consumption operating behaviors..............14 over the full operating voltage range.....................50 5.2.6 EMC radiated emissions operating behaviors.......17 7 Dimensions...............................................................................52 5.2.7 Designing with radiated emissions in mind...........18 7.1 Obtaining package dimensions.........................................52 5.2.8 Capacitance attributes..........................................18 8 Pinout........................................................................................52 5.3 Switching specifications.....................................................18 8.1 K11 Signal Multiplexing and Pin Assignments..................52 over the full operating voltage range.....................48 6.8.6 VLPR, VLPW, and VLPS mode performance 5.3.1 Device clock specifications...................................18 8.2 K11 Pinouts.......................................................................56 5.3.2 General switching specifications...........................19 9 Revision History........................................................................57 K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. 2 Freescale Semiconductor, Inc. Ordering parts 1 Ordering parts 1.1 Determining valid orderable parts Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to www.freescale.com and perform a part number search for the following device numbers: PK11 and MK11 . 2 Part identification 2.1 Description Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received. 2.2 Format Part numbers for this device have the following format: Q K## A M FFF R T PP CC N 2.3 Fields This table lists the possible values for each field in the part number (not all combinations are valid): Field Description Values Q Qualification status • M = Fully qualified, general market flow • P = Prequalification K## Kinetis family • K11 A Key attribute • D = Cortex-M4 w/ DSP • F = Cortex-M4 w/ DSP and FPU M Flash memory type • N = Program flash only • X = Program flash and FlexMemory Table continues on the next page... K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. Freescale Semiconductor, Inc. 3 Terminology and guidelines Field Description Values FFF Program flash memory size • • • • • • 32 = 32 KB 64 = 64 KB 128 = 128 KB 256 = 256 KB 512 = 512 KB 1M0 = 1 MB R Silicon revision • Z = Initial • (Blank) = Main • A = Revision after main T Temperature range (°C) • V = –40 to 105 • C = –40 to 85 PP Package identifier • • • • • • • • • • • FM = 32 QFN (5 mm x 5 mm) FT = 48 QFN (7 mm x 7 mm) LF = 48 LQFP (7 mm x 7 mm) LH = 64 LQFP (10 mm x 10 mm) MP = 64 MAPBGA (5 mm x 5 mm) LK = 80 LQFP (12 mm x 12 mm) LL = 100 LQFP (14 mm x 14 mm) MC = 121 MAPBGA (8 mm x 8 mm) LQ = 144 LQFP (20 mm x 20 mm) MD = 144 MAPBGA (13 mm x 13 mm) MJ = 256 MAPBGA (17 mm x 17 mm) CC Maximum CPU frequency (MHz) • • • • • 5 = 50 MHz 7 = 72 MHz 10 = 100 MHz 12 = 120 MHz 15 = 150 MHz N Packaging type • R = Tape and reel • (Blank) = Trays 2.4 Example This is an example part number: MK11DN512VMC5 3 Terminology and guidelines 3.1 Definition: Operating requirement An operating requirement is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip. K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. 4 Freescale Semiconductor, Inc. Terminology and guidelines 3.1.1 Example This is an example of an operating requirement, which you must meet for the accompanying operating behaviors to be guaranteed: Symbol VDD Description 1.0 V core supply voltage Min. 0.9 Max. 1.1 Unit V 3.2 Definition: Operating behavior An operating behavior is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions. 3.2.1 Example This is an example of an operating behavior, which is guaranteed if you meet the accompanying operating requirements: Symbol IWP Description Min. Digital I/O weak pullup/ 10 pulldown current Max. 130 Unit µA 3.3 Definition: Attribute An attribute is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements. 3.3.1 Example This is an example of an attribute: Symbol CIN_D Description Input capacitance: digital pins Min. — Max. 7 Unit pF K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. Freescale Semiconductor, Inc. 5 Terminology and guidelines 3.4 Definition: Rating A rating is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure: • Operating ratings apply during operation of the chip. • Handling ratings apply when the chip is not powered. 3.4.1 Example This is an example of an operating rating: Symbol VDD Description 1.0 V core supply voltage Min. –0.3 Max. Unit 1.2 V 3.5 Result of exceeding a rating Failures in time (ppm) 40 30 The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings. 20 10 0 Operating rating Measured characteristic K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. 6 Freescale Semiconductor, Inc. Terminology and guidelines 3.6 Relationship between ratings and operating requirements e Op ing rat r ( ng ati in. t (m ) n. mi rat e Op ing ) t (m e ir qu re n me ing rat e Op ax .) e ir qu re n me ing rat e Op ng ati ax (m .) r Fatal range Degraded operating range Normal operating range Degraded operating range Fatal range Expected permanent failure - No permanent failure - Possible decreased life - Possible incorrect operation - No permanent failure - Correct operation - No permanent failure - Possible decreased life - Possible incorrect operation Expected permanent failure –∞ ∞ Operating (power on) g lin nd Ha in rat n.) mi g( nd Ha g lin ing rat ax (m .) Fatal range Handling range Fatal range Expected permanent failure No permanent failure Expected permanent failure –∞ Handling (power off) ∞ 3.7 Guidelines for ratings and operating requirements Follow these guidelines for ratings and operating requirements: • Never exceed any of the chip’s ratings. • During normal operation, don’t exceed any of the chip’s operating requirements. • If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible. 3.8 Definition: Typical value A typical value is a specified value for a technical characteristic that: • Lies within the range of values specified by the operating behavior • Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions Typical values are provided as design guidelines and are neither tested nor guaranteed. K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. Freescale Semiconductor, Inc. 7 Terminology and guidelines 3.8.1 Example 1 This is an example of an operating behavior that includes a typical value: Symbol Description IWP Digital I/O weak pullup/pulldown current Min. 10 Typ. 70 Max. 130 Unit µA 3.8.2 Example 2 This is an example of a chart that shows typical values for various voltage and temperature conditions: 5000 4500 4000 TJ IDD_STOP (μA) 3500 150 °C 3000 105 °C 2500 25 °C 2000 –40 °C 1500 1000 500 0 0.90 0.95 1.00 1.05 1.10 VDD (V) 3.9 Typical value conditions Typical values assume you meet the following conditions (or other conditions as specified): Symbol Description Value Unit TA Ambient temperature 25 °C VDD 3.3 V supply voltage 3.3 V K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. 8 Freescale Semiconductor, Inc. Ratings 4 Ratings 4.1 Thermal handling ratings Symbol Description Min. Max. Unit Notes TSTG Storage temperature –55 150 °C 1 TSDR Solder temperature, lead-free — 260 °C 2 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life. 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 4.2 Moisture handling ratings Symbol MSL Description Moisture sensitivity level Min. Max. Unit Notes — 3 — 1 1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 4.3 ESD handling ratings Symbol Description Min. Max. Unit Notes VHBM Electrostatic discharge voltage, human body model -2000 +2000 V 1 VCDM Electrostatic discharge voltage, charged-device model -500 +500 V 2 Latch-up current at ambient temperature of 105°C -100 +100 mA ILAT 1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components. 4.4 Voltage and current operating ratings Symbol VDD Description Min. Max. Unit Digital supply voltage –0.3 3.8 V Table continues on the next page... K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. Freescale Semiconductor, Inc. 9 General Symbol IDD Description Digital supply current Min. Max. Unit — 155 mA VDIO Digital input voltage (except RESET, EXTAL, and XTAL) –0.3 VAIO Analog1, RESET, EXTAL, and XTAL input voltage –0.3 VDD + 0.3 V Maximum current single pin limit (applies to all port pins) –25 25 mA VDD – 0.3 VDD + 0.3 V –0.3 3.8 V ID VDDA Analog supply voltage VBAT RTC battery supply voltage V 1. Analog pins are defined as pins that do not have an associated general purpose I/O port function. 5 General 5.1 AC electrical characteristics Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure. Figure 1. Input signal measurement reference All digital I/O switching characteristics assume: 1. output pins • have CL=30pF loads, • are configured for fast slew rate (PORTx_PCRn[SRE]=0), and • are configured for high drive strength (PORTx_PCRn[DSE]=1) 2. input pins • have their passive filter disabled (PORTx_PCRn[PFE]=0) 5.2 Nonswitching electrical specifications K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. 10 Freescale Semiconductor, Inc. General 5.2.1 Voltage and current operating requirements Table 1. Voltage and current operating requirements Symbol Description Min. Max. Unit VDD Supply voltage 1.71 3.6 V VDDA Analog supply voltage 1.71 3.6 V VDD – VDDA VDD-to-VDDA differential voltage –0.1 0.1 V VSS – VSSA VSS-to-VSSA differential voltage –0.1 0.1 V 1.71 3.6 V • 2.7 V ≤ VDD ≤ 3.6 V 0.7 × VDD — V • 1.7 V ≤ VDD ≤ 2.7 V 0.75 × VDD — V • 2.7 V ≤ VDD ≤ 3.6 V — 0.35 × VDD V • 1.7 V ≤ VDD ≤ 2.7 V — 0.3 × VDD V 0.06 × VDD — V VBAT VIH VIL RTC battery supply voltage Input high voltage Input low voltage VHYS Input hysteresis IICIO I/O pin DC injection current — single pin 1 mA • VIN < VSS-0.3V (Negative current injection) -3 — — +3 -25 — — +25 1.2 — V VPOR_VBAT — V • VIN > VDD+0.3V (Positive current injection) IICcont Contiguous pin DC injection current —regional limit, includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins • Negative current injection • Positive current injection VRAM VRFVBAT Notes VDD voltage required to retain RAM VBAT voltage required to retain the VBAT register file mA 1. All analog pins are internally clamped to VSS and VDD through ESD protection diodes. If VIN is greater than VAIO_MIN (=VSS-0.3V) and VIN is less than VAIO_MAX(=VDD+0.3V) is observed, then there is no need to provide current limiting resistors at the pads. If these limits cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(VAIO_MIN-VIN)/|IIC|. The positive injection current limiting resistor is calcualted as R=(VIN-VAIO_MAX)/|IIC|. Select the larger of these two calculated resistances. 5.2.2 LVD and POR operating requirements Table 2. VDD supply LVD and POR operating requirements Symbol Description Min. Typ. Max. Unit VPOR Falling VDD POR detect voltage 0.8 1.1 1.5 V VLVDH Falling low-voltage detect threshold — high range (LVDV=01) 2.48 2.56 2.64 V Notes Table continues on the next page... K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. Freescale Semiconductor, Inc. 11 General Table 2. VDD supply LVD and POR operating requirements (continued) Symbol Description Min. Typ. Max. Unit Low-voltage warning thresholds — high range 1 VLVW1H • Level 1 falling (LVWV=00) 2.62 2.70 2.78 V VLVW2H • Level 2 falling (LVWV=01) 2.72 2.80 2.88 V VLVW3H • Level 3 falling (LVWV=10) 2.82 2.90 2.98 V VLVW4H • Level 4 falling (LVWV=11) 2.92 3.00 3.08 V — ±80 — mV 1.54 1.60 1.66 V VHYSH Low-voltage inhibit reset/recover hysteresis — high range VLVDL Falling low-voltage detect threshold — low range (LVDV=00) Low-voltage warning thresholds — low range 1 VLVW1L • Level 1 falling (LVWV=00) 1.74 1.80 1.86 V VLVW2L • Level 2 falling (LVWV=01) 1.84 1.90 1.96 V VLVW3L • Level 3 falling (LVWV=10) 1.94 2.00 2.06 V VLVW4L • Level 4 falling (LVWV=11) 2.04 2.10 2.16 V — ±60 — mV VHYSL Low-voltage inhibit reset/recover hysteresis — low range Notes VBG Bandgap voltage reference 0.97 1.00 1.03 V tLPO Internal low power oscillator period — factory trimmed 900 1000 1100 μs 1. Rising thresholds are falling threshold + hysteresis voltage Table 3. VBAT power operating requirements Symbol Description VPOR_VBAT Falling VBAT supply POR detect voltage Min. Typ. Max. Unit 0.8 1.1 1.5 V Notes 5.2.3 Voltage and current operating behaviors Table 4. Voltage and current operating behaviors Symbol VOH Description Min. Max. Unit • 2.7 V ≤ VDD ≤ 3.6 V, IOH = - 9 mA VDD – 0.5 — V • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -3 mA VDD – 0.5 — V • 2.7 V ≤ VDD ≤ 3.6 V, IOH = -2 mA VDD – 0.5 — V • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6 mA VDD – 0.5 — V — 100 mA Notes Output high voltage — high drive strength Output high voltage — low drive strength IOHT Output high current total for all ports Table continues on the next page... K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. 12 Freescale Semiconductor, Inc. General Table 4. Voltage and current operating behaviors (continued) Symbol VOL Description Min. Max. Unit • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 9 mA — 0.5 V • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 3 mA — 0.5 V • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 2 mA — 0.5 V • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 0.6 mA — 0.5 V — 100 mA • @ full temperature range — 1.0 μA • @ 25 °C — 0.1 μA Notes Output low voltage — high drive strength Output low voltage — low drive strength IOLT IIN Output low current total for all ports Input leakage current (per pin) 1 IOZ Hi-Z (off-state) leakage current (per pin) — 1 μA IOZ Total Hi-Z (off-state) leakage current (all input pins) — 4 μA RPU Internal pullup resistors 22 50 kΩ 2 RPD Internal pulldown resistors 22 50 kΩ 3 1. Tested by ganged leakage method 2. Measured at Vinput = VSS 3. Measured at Vinput = VDD 5.2.4 Power mode transition operating behaviors All specifications except tPOR, and VLLSx→RUN recovery times in the following table assume this clock configuration: • CPU and system clocks = 50 MHz • Bus clock = 50 MHz • Flash clock = 25 MHz Table 5. Power mode transition operating behaviors Symbol tPOR Description After a POR event, amount of time from the point VDD reaches 1.71 V to execution of the first instruction across the operating temperature range of the chip. • VLLS0 → RUN • VLLS1 → RUN • VLLS2 → RUN Min. Max. Unit — 300 μs — 130 μs — 130 μs — 70 μs Notes Table continues on the next page... K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. Freescale Semiconductor, Inc. 13 General Table 5. Power mode transition operating behaviors (continued) Symbol Description • VLLS3 → RUN • LLS → RUN • VLPS → RUN • STOP → RUN Min. Max. Unit — 70 μs — 6 μs — 5.2 μs — 5.2 μs Notes 5.2.5 Power consumption operating behaviors Table 6. Power consumption operating behaviors Symbol IDDA IDD_RUN Description Analog supply current Typ. Max. Unit Notes — — See note mA 1 Run mode current — all peripheral clocks disabled, code executing from flash • @ 1.8V • @ 3.0V IDD_RUN Min. 2 — 12.98 14 mA — 12.93 13.8 mA Run mode current — all peripheral clocks enabled, code executing from flash • @ 1.8V 3, 4 — 17.04 19.3 mA — 17.01 18.9 mA — 18.21 — mA • @ 3.0V • @ 25°C • @ 125°C IDD_WAIT Wait mode high frequency current at 3.0 V — all peripheral clocks disabled — 7.95 9.5 mA 2 IDD_WAIT Wait mode reduced frequency current at 3.0 V — all peripheral clocks disabled — 5.88 7.4 mA 5 IDD_STOP Stop mode current at 3.0 V — 320 436 μA IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks disabled — 867 — μA 6 IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks enabled — 1.1 — mA 7 IDD_VLPW Very-low-power wait mode current at 3.0 V — 509 — μA 8 IDD_VLPS Very-low-power stop mode current at 3.0 V — 7.33 24.2 μA IDD_LLS Low leakage stop mode current at 3.0 V • @ –40 to 25°C • @ 50°C • @ 70°C • @ 105°C — 3.14 4.8 6.48 — 13.85 — 55.53 — μA Table continues on the next page... K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. 14 Freescale Semiconductor, Inc. General Table 6. Power consumption operating behaviors (continued) Symbol IDD_VLLS3 Description Very low-leakage stop mode 3 current at 3.0 V • • • • IDD_VLLS2 IDD_VLLS1 IDD_VLLS0 IDD_VLLS0 IDD_VBAT Min. Typ. Max. — 2.19 3.4 4.35 — 8.92 — 35.33 — 1.77 3.1 2.81 — 5.20 — 19.88 — 1.03 1.8 1.92 — 4.03 — 17.43 — 543 nA 1.1 1.36 — 3.39 — 16.52 — 359 nA 950nA 1.03 — 2.87 — 15.20 — 0.91 1.1 1.1 1.35 1.5 1.85 4.3 5.7 @ –40 to 25°C @ 50°C @ 70°C @ 105°C Very low-leakage stop mode 2 current at 3.0 V • @ –40 to 25°C • @ 50°C • @ 70°C • @ 105°C Very low-leakage stop mode 1 current at 3.0 V • @ –40 to 25°C • @ 50°C • @ 70°C • @ 105°C — — Very low-leakage stop mode 0 current at 3.0 V with POR detect circuit enabled • @ –40 to 25°C • @ 50°C • @ 70°C • @ 105°C — Very low-leakage stop mode 0 current at 3.0 V with POR detect circuit disabled • @ –40 to 25°C • @ 50°C • @ 70°C • @ 105°C — Average current when CPU is not accessing RTC registers at 3.0 V • @ –40 to 25°C • @ 50°C • @ 70°C • @ 105°C — Unit Notes μA μA μA μA μA μA 9 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current. 2. 50MHz core and system clock, 25MHz bus clock, and 25MHz flash clock . MCG configured for FEI mode. All peripheral clocks disabled. 3. 50MHz core and system clock, 25MHz bus clock, and 25MHz flash clock. MCG configured for FEI mode. All peripheral clocks enabled, and peripherals are in active operation. 4. Max values are measured with CPU executing DSP instructions 5. 25MHz core and system clock, 25MHz bus clock, and 12.5MHz flash clock. MCG configured for FEI mode. 6. 2 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. Code executing from flash. 7. 2 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled but peripherals are not in active operation. Code executing from flash. 8. 2 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. 9. Includes 32kHz oscillator current and RTC operation. K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. Freescale Semiconductor, Inc. 15 General 5.2.5.1 Diagram: Typical IDD_RUN operating behavior The following data was measured under these conditions: • • • • MCG in FBE mode No GPIOs toggled Code execution from flash with cache enabled For the ALLOFF curve, all peripheral clocks are disabled except FTFL Figure 2. Run mode supply current vs. core frequency K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. 16 Freescale Semiconductor, Inc. General Figure 3. VLPR mode supply current vs. core frequency 5.2.6 EMC radiated emissions operating behaviors Table 7. EMC radiated emissions operating behaviors 1 Symbol Description Frequency band (MHz) Typ. Unit Notes 2,3 VRE1 Radiated emissions voltage, band 1 0.15–50 19 dBμV VRE2 Radiated emissions voltage, band 2 50–150 21 dBμV VRE3 Radiated emissions voltage, band 3 150–500 19 dBμV VRE4 Radiated emissions voltage, band 4 500–1000 11 dBμV IEC level 0.15–1000 L — VRE_IEC 3, 4 1. This data was collected on a MK20DN128VLH5 64pin LQFP device. 2. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range. K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. Freescale Semiconductor, Inc. 17 General 3. VDD = 3.3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = 48 MHz, fBUS = 48MHz 4. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method 5.2.7 Designing with radiated emissions in mind To find application notes that provide guidance on designing your system to minimize interference from radiated emissions: 1. Go to www.freescale.com. 2. Perform a keyword search for “EMC design.” 5.2.8 Capacitance attributes Table 8. Capacitance attributes Symbol Description Min. Max. Unit CIN_A Input capacitance: analog pins — 7 pF CIN_D Input capacitance: digital pins — 7 pF 5.3 Switching specifications 5.3.1 Device clock specifications Table 9. Device clock specifications Symbol Description Min. Max. Unit Notes Normal run mode fSYS System and core clock — 50 MHz fBUS Bus clock — 50 MHz fFLASH Flash clock — 25 MHz fLPTMR LPTMR clock — 25 MHz VLPR mode1 fSYS System and core clock — 4 MHz fBUS Bus clock — 4 MHz fFLASH Flash clock — 1 MHz fERCLK External reference clock — 16 MHz LPTMR clock — 25 MHz LPTMR external reference clock — 16 MHz fI2S_MCLK I2S master clock — 12.5 MHz fI2S_BCLK I2S bit clock — 4 MHz fLPTMR_pin fLPTMR_ERCLK K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. 18 Freescale Semiconductor, Inc. General 1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module. 5.3.2 General switching specifications These general purpose specifications apply to all signals configured for GPIO, UART, CMT, and I2C signals. Table 10. General switching specifications Symbol Description Min. Max. Unit Notes GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path 1.5 — Bus clock cycles 1, 2 GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path 100 — ns 3 GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path 50 — ns 3 External reset pulse width (digital glitch filter disabled) 100 — ns 3 2 — Bus clock cycles Mode select (EZP_CS) hold time after reset deassertion Port rise and fall time (high drive strength) 4 • Slew disabled • 1.71 ≤ VDD ≤ 2.7V — • 2.7 ≤ VDD ≤ 3.6V — • Slew enabled 13 ns ns 7 • 1.71 ≤ VDD ≤ 2.7V — • 2.7 ≤ VDD ≤ 3.6V — ns 36 ns 24 Port rise and fall time (low drive strength) 5 • Slew disabled • 1.71 ≤ VDD ≤ 2.7V — 12 ns • 2.7 ≤ VDD ≤ 3.6V — 6 ns • 1.71 ≤ VDD ≤ 2.7V — 36 ns • 2.7 ≤ VDD ≤ 3.6V — 24 ns • Slew enabled 1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be recognized in that case. 2. The greater synchronous and asynchronous timing must be met. 3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and VLLSx modes. 4. 75pF load 5. 15pF load K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. Freescale Semiconductor, Inc. 19 General 5.4 Thermal specifications 5.4.1 Thermal operating requirements Table 11. Thermal operating requirements Symbol Description Min. Max. Unit TJ Die junction temperature –40 125 °C TA Ambient temperature –40 105 °C 5.4.2 Thermal attributes Board type Symbol Description Unit Notes Single-layer (1s) RθJA Thermal resistance, junction to ambient (natural convection) °C/W 1, 2 Four-layer (2s2p) RθJA Thermal resistance, junction to ambient (natural convection) °C/W 1, 3 Single-layer (1s) RθJMA Thermal resistance, junction to ambient (200 ft./min. air speed) °C/W 1,3 Four-layer (2s2p) RθJMA Thermal resistance, junction to ambient (200 ft./min. air speed) °C/W 1,3 — RθJB Thermal resistance, junction to board °C/W 4 — RθJC Thermal resistance, junction to case °C/W 5 — ΨJT Thermal characterization parameter, junction to package top outside center (natural convection) °C/W 6 1. 2. 3. 4. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air) with the single layer board horizontal. For the LQFP, the board meets the JESD51-3 specification. For the MAPBGA, the board meets the JESD51-9 specification. Determined according to JEDEC Standard JESD51-6, Integrated Circuits Thermal Test Method Environmental Conditions—Forced Convection (Moving Air) with the board horizontal. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board. Board temperature is measured on the top surface of the board near the package. K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. 20 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 5. 6. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air). 6 Peripheral operating requirements and behaviors 6.1 Core modules 6.1.1 JTAG electricals Table 12. JTAG limited voltage range electricals Symbol J1 Description Min. Max. Unit Operating voltage 2.7 3.6 V TCLK frequency of operation MHz • Boundary Scan 0 10 • JTAG and CJTAG 0 25 • Serial Wire Debug 0 50 1/J1 — ns • Boundary Scan 50 — ns • JTAG and CJTAG 20 — ns • Serial Wire Debug 10 — ns J4 TCLK rise and fall times — 3 ns J5 Boundary scan input data setup time to TCLK rise 20 — ns J6 Boundary scan input data hold time after TCLK rise 0 — ns J7 TCLK low to boundary scan output data valid — 25 ns J8 TCLK low to boundary scan output high-Z — 25 ns J9 TMS, TDI input data setup time to TCLK rise 8 — ns J10 TMS, TDI input data hold time after TCLK rise 1 — ns J11 TCLK low to TDO data valid — 17 ns J12 TCLK low to TDO high-Z — 17 ns J13 TRST assert time 100 — ns J14 TRST setup time (negation) to TCLK high 8 — ns J2 TCLK cycle period J3 TCLK clock pulse width K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. Freescale Semiconductor, Inc. 21 Peripheral operating requirements and behaviors Table 13. JTAG full voltage range electricals Symbol J1 Description Min. Max. Unit Operating voltage 1.71 3.6 V TCLK frequency of operation MHz • Boundary Scan 0 10 • JTAG and CJTAG 0 20 • Serial Wire Debug 0 40 1/J1 — ns • Boundary Scan 50 — ns • JTAG and CJTAG 25 — ns • Serial Wire Debug 12.5 — ns J2 TCLK cycle period J3 TCLK clock pulse width J4 TCLK rise and fall times — 3 ns J5 Boundary scan input data setup time to TCLK rise 20 — ns J6 Boundary scan input data hold time after TCLK rise 0 — ns J7 TCLK low to boundary scan output data valid — 25 ns J8 TCLK low to boundary scan output high-Z — 25 ns J9 TMS, TDI input data setup time to TCLK rise 8 — ns J10 TMS, TDI input data hold time after TCLK rise 1.4 — ns J11 TCLK low to TDO data valid — 22.1 ns J12 TCLK low to TDO high-Z — 22.1 ns J13 TRST assert time 100 — ns J14 TRST setup time (negation) to TCLK high 8 — ns J2 J3 J3 TCLK (input) J4 J4 Figure 4. Test clock input timing K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. 22 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors TCLK J5 Data inputs J6 Input data valid J7 Data outputs Output data valid J8 Data outputs J7 Data outputs Output data valid Figure 5. Boundary scan (JTAG) timing TCLK J9 TDI/TMS J10 Input data valid J11 TDO Output data valid J12 TDO J11 TDO Output data valid Figure 6. Test Access Port timing K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. Freescale Semiconductor, Inc. 23 Peripheral operating requirements and behaviors TCLK J14 J13 TRST Figure 7. TRST timing 6.2 System modules There are no specifications necessary for the device's system modules. 6.3 Clock modules 6.3.1 MCG specifications Table 14. MCG specifications Symbol Description Min. Typ. Max. Unit — 32.768 — kHz 31.25 — 39.0625 kHz Δfdco_res_t Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM — ± 0.3 ± 0.6 %fdco 1 Δfdco_res_t Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM only — ± 0.2 ± 0.5 %fdco 1 fints_ft Internal reference frequency (slow clock) — factory trimmed at nominal VDD and 25 °C fints_t Internal reference frequency (slow clock) — user trimmed Notes Δfdco_t Total deviation of trimmed average DCO output frequency over voltage and temperature — +0.5/-0.7 ±3 %fdco 1 Δfdco_t Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70°C — ± 0.3 ± 0.3 %fdco 1 fintf_ft Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25°C — 4 — MHz fintf_t Internal reference frequency (fast clock) — user trimmed at nominal VDD and 25 °C 3 — 5 MHz floc_low Loss of external clock minimum frequency — RANGE = 00 (3/5) x fints_t — — kHz floc_high Loss of external clock minimum frequency — RANGE = 01, 10, or 11 (16/5) x fints_t — — kHz Table continues on the next page... K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. 24 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 14. MCG specifications (continued) Symbol Description Min. Typ. Max. Unit 31.25 — 39.0625 kHz 20 20.97 25 MHz 40 41.94 50 MHz 60 62.91 75 MHz 80 83.89 100 MHz — 23.99 — MHz — 47.97 — MHz — 71.99 — MHz — 95.98 — MHz — 180 — — 150 — — — 1 ms 48.0 — 100 MHz — 1060 — µA — 600 — µA 2.0 — 4.0 MHz Notes FLL ffll_ref fdco FLL reference frequency range DCO output frequency range Low range (DRS=00) 2, 3 640 × ffll_ref Mid range (DRS=01) 1280 × ffll_ref Mid-high range (DRS=10) 1920 × ffll_ref High range (DRS=11) 2560 × ffll_ref fdco_t_DMX32 DCO output frequency Low range (DRS=00) 4, 5 732 × ffll_ref Mid range (DRS=01) 1464 × ffll_ref Mid-high range (DRS=10) 2197 × ffll_ref High range (DRS=11) 2929 × ffll_ref Jcyc_fll FLL period jitter • fVCO = 48 MHz • fVCO = 98 MHz tfll_acquire FLL target frequency acquisition time ps 6 PLL fvco VCO operating frequency Ipll PLL operating current • PLL @ 96 MHz (fosc_hi_1 = 8 MHz, fpll_ref = 2 MHz, VDIV multiplier = 48) Ipll PLL operating current • PLL @ 48 MHz (fosc_hi_1 = 8 MHz, fpll_ref = 2 MHz, VDIV multiplier = 24) fpll_ref PLL reference frequency range Jcyc_pll PLL period jitter (RMS) Jacc_pll 7 7 8 • fvco = 48 MHz — 120 — ps • fvco = 100 MHz — 50 — ps PLL accumulated jitter over 1µs (RMS) 8 • fvco = 48 MHz — 1350 — ps • fvco = 100 MHz — 600 — ps Dlock Lock entry frequency tolerance ± 1.49 — ± 2.98 % Dunl Lock exit frequency tolerance ± 4.47 — ± 5.97 % Table continues on the next page... K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. Freescale Semiconductor, Inc. 25 Peripheral operating requirements and behaviors Table 14. MCG specifications (continued) Symbol tpll_lock Description Lock detector detection time Min. Typ. Max. Unit Notes — — 150 × 10-6 + 1075(1/ fpll_ref) s 9 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode). 2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0. 3. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δfdco_t) over voltage and temperature should be considered. 4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1. 5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device. 6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 7. Excludes any oscillator currents that are also consuming power while PLL is in operation. 8. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary. 9. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 6.3.2 Oscillator electrical specifications This section provides the electrical characteristics of the module. 6.3.2.1 Oscillator DC electrical specifications Table 15. Oscillator DC electrical specifications Symbol Description Min. Typ. Max. Unit VDD Supply voltage 1.71 — 3.6 V IDDOSC Supply current — low-power mode (HGO=0) Notes 1 • 32 kHz — 500 — nA • 4 MHz — 200 — μA • 8 MHz (RANGE=01) — 300 — μA • 16 MHz — 950 — μA • 24 MHz — 1.2 — mA • 32 MHz — 1.5 — mA Table continues on the next page... K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. 26 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 15. Oscillator DC electrical specifications (continued) Symbol Description Min. IDDOSC Supply current — high gain mode (HGO=1) Typ. Max. Unit Notes 1 • 32 kHz — 25 — μA • 4 MHz — 400 — μA • 8 MHz (RANGE=01) — 500 — μA • 16 MHz — 2.5 — mA • 24 MHz — 3 — mA • 32 MHz — 4 — mA Cx EXTAL load capacitance — — — 2, 3 Cy XTAL load capacitance — — — 2, 3 RF Feedback resistor — low-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — low-frequency, high-gain mode (HGO=1) — 10 — MΩ Feedback resistor — high-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — high-frequency, high-gain mode (HGO=1) — 1 — MΩ Series resistor — low-frequency, low-power mode (HGO=0) — — — kΩ Series resistor — low-frequency, high-gain mode (HGO=1) — 200 — kΩ Series resistor — high-frequency, low-power mode (HGO=0) — — — kΩ RS 2, 4 Series resistor — high-frequency, high-gain mode (HGO=1) Vpp5 1. 2. 3. 4. 5. — 0 — kΩ Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1) — VDD — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1) — VDD — V VDD=3.3 V, Temperature =25 °C See crystal or resonator manufacturer's recommendation Cx,Cy can be provided by using either the integrated capacitors or by using external components. When low power mode is selected, RF is integrated and must not be attached externally. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices. K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. Freescale Semiconductor, Inc. 27 Peripheral operating requirements and behaviors 6.3.2.2 Symbol Oscillator frequency specifications Table 16. Oscillator frequency specifications Description Min. Typ. Max. Unit fosc_lo Oscillator crystal or resonator frequency — low frequency mode (MCG_C2[RANGE]=00) 32 — 40 kHz fosc_hi_1 Oscillator crystal or resonator frequency — high frequency mode (low range) (MCG_C2[RANGE]=01) 3 — 8 MHz fosc_hi_2 Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x) 8 — 32 MHz fec_extal Input clock frequency (external clock mode) — — 50 MHz tdc_extal Input clock duty cycle (external clock mode) 40 50 60 % Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0) — 750 — ms Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1) — 250 — ms Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0) — 0.6 — ms Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1) — 1 — ms tcst Notes 1, 2 3, 4 1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL. 2. When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency. 3. Proper PC board layout procedures must be followed to achieve specifications. 4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set. 6.3.3 32 kHz Oscillator Electrical Characteristics This section describes the module electrical characteristics. 6.3.3.1 32 kHz oscillator DC electrical specifications Table 17. 32kHz oscillator DC electrical specifications Symbol Description Min. Typ. Max. Unit VBAT Supply voltage 1.71 — 3.6 V Internal feedback resistor — 100 — MΩ Cpara Parasitical capacitance of EXTAL32 and XTAL32 — 5 7 pF Vpp1 Peak-to-peak amplitude of oscillation — 0.6 — V RF 1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices. K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. 28 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 6.3.3.2 Symbol fosc_lo tstart fec_extal32 32kHz oscillator frequency specifications Table 18. 32kHz oscillator frequency specifications Description Min. Typ. Max. Unit Oscillator crystal — 32.768 — kHz Crystal start-up time — 1000 — ms 1 Externally provided input clock frequency — 32.768 — kHz 2 700 — VBAT mV 2, 3 vec_extal32 Externally provided input clock amplitude Notes 1. Proper PC board layout procedures must be followed to achieve specifications. 2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The oscillator remains enabled and XTAL32 must be left unconnected. 3. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the applied clock must be within the range of VSS to VBAT. 6.4 Memories and memory interfaces 6.4.1 Flash electrical specifications This section describes the electrical characteristics of the flash memory module. 6.4.1.1 Flash timing specifications — program and erase The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead. Table 19. NVM program/erase timing specifications Symbol Description Min. Typ. thvpgm4 thversscr Longword Program high-voltage time — 7.5 18 μs Sector Erase high-voltage time — 13 113 ms 1 — 104 904 ms 1 thversblk256k Erase Block high-voltage time for 256 KB Max. Unit Notes 1. Maximum time based on expectations at cycling end-of-life. K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. Freescale Semiconductor, Inc. 29 Peripheral operating requirements and behaviors 6.4.1.2 Symbol Flash timing specifications — commands Table 20. Flash command timing specifications Description Min. Typ. Max. Unit Notes Read 1s Block execution time trd1blk64k • 64 KB program flash — — 0.9 ms trd1blk256k • 256 KB program flash — — 1.7 ms tpgmchk Program Check execution time — — 45 μs 1 trdrsrc Read Resource execution time — — 30 μs 1 tpgm4 Program Longword execution time — 65 145 μs Erase Flash Block execution time tersblk64k • 64 KB program flash tersblk256k • 256 KB program flash tersscr 2 — Erase Flash Sector execution time 58 580 ms 122 985 ms — 14 114 ms 2 Program Section execution time tpgmsec512 • 512 B flash — 2.4 — ms tpgmsec1k • 1 KB flash — 4.7 — ms tpgmsec2k • 2 KB flash — 9.3 — ms trd1all Read 1s All Blocks execution time — — 1.8 ms trdonce Read Once execution time — — 25 μs Program Once execution time — 65 — μs tersall Erase All Blocks execution time — 250 2000 ms 2 tvfykey Verify Backdoor Access Key execution time — — 30 μs 1 tpgmonce 1 Swap Control execution time tswapx01 • control code 0x01 — 200 — μs tswapx02 • control code 0x02 — 70 150 μs tswapx04 • control code 0x04 — 70 150 μs tswapx08 • control code 0x08 — — 30 μs — 138 — ms • Control Code 0xFF — 70 — μs tsetram32k • 32 KB EEPROM backup — 0.8 tsetram64k • 64 KB EEPROM backup — Program Partition for EEPROM execution time tpgmpart64k • 64 KB FlexNVM Set FlexRAM Function execution time: tsetramff ms Byte-write to FlexRAM for EEPROM operation teewr8bers Byte-write to erased FlexRAM location execution time — 175 260 μs 3 Table continues on the next page... K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. 30 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 20. Flash command timing specifications (continued) Symbol Description Min. Typ. Max. Unit Notes Byte-write to FlexRAM execution time: teewr8b32k • 32 KB EEPROM backup — 385 1800 μs teewr8b64k • 64 KB EEPROM backup — 475 2000 μs teewr8b128k • 128 KB EEPROM backup 650 2400 μs Word-write to FlexRAM for EEPROM operation teewr16bers Word-write to erased FlexRAM location execution time — 175 260 μs Word-write to FlexRAM execution time: teewr16b32k • 32 KB EEPROM backup — 385 1800 μs teewr16b64k • 64 KB EEPROM backup — 475 2000 μs teewr16b128k • 128 KB EEPROM backup — 650 2400 μs Longword-write to FlexRAM for EEPROM operation teewr32bers Longword-write to erased FlexRAM location execution time — 360 540 μs Longword-write to FlexRAM execution time: teewr32b32k • 32 KB EEPROM backup — 630 2050 μs teewr32b64k • 64 KB EEPROM backup — 810 2250 μs teewr32b128k • 128 KB EEPROM backup — 1200 2675 μs 1. Assumes 25MHz flash clock frequency. 2. Maximum times for erase parameters based on expectations at cycling end-of-life. 3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased. 6.4.1.3 Flash high voltage current behaviors Table 21. Flash high voltage current behaviors Symbol Description IDD_PGM IDD_ERS 6.4.1.4 Symbol Min. Typ. Max. Unit Average current adder during high voltage flash programming operation — 2.5 6.0 mA Average current adder during high voltage flash erase operation — 1.5 4.0 mA Reliability specifications Table 22. NVM reliability specifications Description Min. Typ.1 Max. Unit Notes Program Flash tnvmretp10k Data retention after up to 10 K cycles 5 50 — years tnvmretp1k 20 100 — years Data retention after up to 1 K cycles Table continues on the next page... K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. Freescale Semiconductor, Inc. 31 Peripheral operating requirements and behaviors Table 22. NVM reliability specifications (continued) Symbol Description Min. Typ.1 Max. Unit Notes nnvmcycp Cycling endurance 10 K 50 K — cycles 2 Data Flash tnvmretd10k Data retention after up to 10 K cycles 5 50 — years tnvmretd1k Data retention after up to 1 K cycles 20 100 — years nnvmcycd Cycling endurance 10 K 50 K — cycles 2 FlexRAM as EEPROM tnvmretee100 Data retention up to 100% of write endurance 5 50 — years tnvmretee10 Data retention up to 10% of write endurance 20 100 — years Write endurance 3 nnvmwree16 • EEPROM backup to FlexRAM ratio = 16 35 K 175 K — writes nnvmwree128 • EEPROM backup to FlexRAM ratio = 128 315 K 1.6 M — writes nnvmwree512 • EEPROM backup to FlexRAM ratio = 512 1.27 M 6.4 M — writes nnvmwree4k • EEPROM backup to FlexRAM ratio = 4096 10 M 50 M — writes 1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619. 2. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ °C. 3. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ °C influenced by the cycling endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum and typical values assume all byte-writes to FlexRAM. 6.4.2 EzPort Switching Specifications Table 23. EzPort switching specifications Num Description Min. Operating voltage Max. Unit 1.71 3.6 V EP1 EZP_CK frequency of operation (all commands except READ) — fSYS/2 MHz EP1a EZP_CK frequency of operation (READ command) — fSYS/8 MHz EP2 EZP_CS negation to next EZP_CS assertion 2 x tEZP_CK — ns EP3 EZP_CS input valid to EZP_CK high (setup) 5 — ns EP4 EZP_CK high to EZP_CS input invalid (hold) 5 — ns EP5 EZP_D input valid to EZP_CK high (setup) 2 — ns EP6 EZP_CK high to EZP_D input invalid (hold) 5 — ns EP7 EZP_CK low to EZP_Q output valid — EP8 EZP_CK low to EZP_Q output invalid (hold) 0 — ns EP9 EZP_CS negation to EZP_Q tri-state — 12 ns ns K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. 32 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors EZP_CK EP3 EP2 EP4 EZP_CS EP9 EP7 EP8 EZP_Q (output) EP5 EP6 EZP_D (input) Figure 8. EzPort Timing Diagram 6.5 Security and integrity modules 6.6 Analog 6.6.1 ADC electrical specifications The 16-bit accuracy specifications listed in Table 24 and Table 25 are achievable on the differential pins ADCx_DP0, ADCx_DM0. All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications. 6.6.1.1 16-bit ADC operating conditions Table 24. 16-bit ADC operating conditions Symbol Description Conditions Min. Typ.1 Max. Unit VDDA Supply voltage Absolute 1.71 — 3.6 V ΔVDDA Supply voltage Delta to VDD (VDD-VDDA) -100 0 +100 mV 2 ΔVSSA Ground voltage Delta to VSS (VSS - VSSA) -100 0 +100 mV 2 VREFH ADC reference voltage high 1.13 VDDA VDDA V Notes Table continues on the next page... K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. Freescale Semiconductor, Inc. 33 Peripheral operating requirements and behaviors Table 24. 16-bit ADC operating conditions (continued) Symbol Description Conditions Min. Typ.1 Max. Unit VREFL ADC reference voltage low VSSA VSSA VSSA V VADIN Input voltage VREFL — VREFH V CADIN Input capacitance • 16-bit mode — 8 10 pF • 8-/10-/12-bit modes — 4 5 — 2 5 RADIN RAS Input resistance Notes kΩ Analog source resistance 13-/12-bit modes fADCK < 4 MHz — — 5 kΩ fADCK ADC conversion clock frequency ≤ 13-bit mode 1.0 — 18.0 MHz 4 fADCK ADC conversion clock frequency 16-bit mode 2.0 — 12.0 MHz 4 Crate ADC conversion rate ≤ 13 bit modes No ADC hardware averaging 3 5 20.000 — 818.330 Ksps Continuous conversions enabled, subsequent conversion time Crate ADC conversion rate 16-bit mode No ADC hardware averaging 5 37.037 — 461.467 Ksps Continuous conversions enabled, subsequent conversion time 1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2. DC potential difference. 3. This resistance is external to MCU. The analog source resistance must be kept as low as possible to achieve the best results. The results in this data sheet were derived from a system which has < 8 Ω analog source resistance. The RAS/CAS time constant should be kept to < 1ns. 4. To use the maximum ADC conversion clock frequency, the ADHSC bit must be set and the ADLPC bit must be clear. 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool: http://cache.freescale.com/ files/soft_dev_tools/software/app_software/converters/ADC_CALCULATOR_CNV.zip?fpsp=1 K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. 34 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors SIMPLIFIED INPUT PIN EQUIVALENT CIRCUIT Z ADIN SIMPLIFIED CHANNEL SELECT CIRCUIT Pad leakage due to input protection Z AS R AS ADC SAR ENGINE R ADIN V ADIN C AS V AS R ADIN INPUT PIN R ADIN INPUT PIN R ADIN INPUT PIN C ADIN Figure 9. ADC input impedance equivalency diagram 6.6.1.2 16-bit ADC electrical characteristics Table 25. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) Symbol Description IDDA_ADC Supply current fADACK Conditions1 ADC asynchronous clock source Sample Time TUE DNL INL EFS Min. Typ.2 Max. Unit Notes 0.215 — 1.7 mA 3 • ADLPC = 1, ADHSC = 0 1.2 2.4 3.9 MHz • ADLPC = 1, ADHSC = 1 2.4 4.0 6.1 MHz tADACK = 1/ fADACK • ADLPC = 0, ADHSC = 0 3.0 5.2 7.3 MHz • ADLPC = 0, ADHSC = 1 4.4 6.2 9.5 MHz LSB4 5 LSB4 5 LSB4 5 LSB4 VADIN = VDDA See Reference Manual chapter for sample times Total unadjusted error • 12-bit modes — ±4 ±6.8 • <12-bit modes — ±1.4 ±2.1 Differential nonlinearity • 12-bit modes — ±0.7 -1.1 to +1.9 -0.3 to 0.5 Integral nonlinearity • <12-bit modes — ±0.2 • 12-bit modes — ±1.0 -2.7 to +1.9 -0.7 to +0.5 Full-scale error • <12-bit modes — ±0.5 • 12-bit modes — -4 -5.4 • <12-bit modes — -1.4 -1.8 5 Table continues on the next page... K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. Freescale Semiconductor, Inc. 35 Peripheral operating requirements and behaviors Table 25. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued) Symbol Description EQ Quantization error ENOB Conditions1 Min. Typ.2 Max. Unit • 16-bit modes — -1 to 0 — LSB4 • ≤13-bit modes — — ±0.5 Effective number 16-bit differential mode of bits • Avg = 32 • Avg = 4 Notes 6 12.8 14.5 — bits 11.9 13.8 — bits 12.2 13.9 — bits 11.4 13.1 — bits 16-bit single-ended mode • Avg = 32 • Avg = 4 SINAD THD Signal-to-noise plus distortion See ENOB Total harmonic distortion 16-bit differential mode • Avg = 32 16-bit single-ended mode • Avg = 32 SFDR Spurious free dynamic range dB 7 — –94 — dB — -85 — dB 16-bit differential mode • Avg = 32 16-bit single-ended mode • Avg = 32 EIL 6.02 × ENOB + 1.76 7 82 95 — dB 78 90 — dB Input leakage error IIn × RAS mV IIn = leakage current (refer to the MCU's voltage and current operating ratings) VTEMP25 Temp sensor slope Across the full temperature range of the device — 1.715 — mV/°C Temp sensor voltage 25 °C — 719 — mV 1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA 2. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power). For lowest power operation the ADLPC bit must be set, the HSC bit must be clear with 1 MHz ADC conversion clock speed. 4. 1 LSB = (VREFH - VREFL)/2N 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11) 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz. 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz. K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. 36 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Figure 10. Typical ENOB vs. ADC_CLK for 16-bit differential mode Figure 11. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. Freescale Semiconductor, Inc. 37 Peripheral operating requirements and behaviors 6.6.2 CMP and 6-bit DAC electrical specifications Table 26. Comparator and 6-bit DAC electrical specifications Symbol Description Min. Typ. Max. Unit VDD Supply voltage 1.71 — 3.6 V IDDHS Supply current, High-speed mode (EN=1, PMODE=1) — — 200 μA IDDLS Supply current, low-speed mode (EN=1, PMODE=0) — — 20 μA VAIN Analog input voltage VSS – 0.3 — VDD V VAIO Analog input offset voltage — — 20 mV • CR0[HYSTCTR] = 00 — 5 — mV • CR0[HYSTCTR] = 01 — 10 — mV • CR0[HYSTCTR] = 10 — 20 — mV • CR0[HYSTCTR] = 11 — 30 — mV VH Analog comparator hysteresis1 VCMPOh Output high VDD – 0.5 — — V VCMPOl Output low — — 0.5 V tDHS Propagation delay, high-speed mode (EN=1, PMODE=1) 20 50 200 ns tDLS Propagation delay, low-speed mode (EN=1, PMODE=0) 80 250 600 ns Analog comparator initialization delay2 — — 40 μs 6-bit DAC current adder (enabled) — 7 — μA IDAC6b INL 6-bit DAC integral non-linearity –0.5 — 0.5 LSB3 DNL 6-bit DAC differential non-linearity –0.3 — 0.3 LSB 1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD-0.6V. 2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level. 3. 1 LSB = Vreference/64 K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. 38 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 0.08 0.07 0.06 HYSTCTR Setting CM P Hystereris (V) 0.05 00 0.04 01 10 11 0.03 0.02 0.01 0 0.1 0.4 0.7 1 1.3 1.6 1.9 Vin level (V) 2.2 2.5 2.8 3.1 Figure 12. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=0) K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. Freescale Semiconductor, Inc. 39 Peripheral operating requirements and behaviors 0.18 0.16 0.14 CMP P Hystereris (V) 0.12 HYSTCTR Setting 0.1 00 01 0 08 0.08 10 11 0.06 0.04 0.02 0 0.1 0.4 0.7 1 1.3 1.6 Vin level (V) 1.9 2.2 2.5 2.8 3.1 Figure 13. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=1) 6.6.3 12-bit DAC electrical characteristics 6.6.3.1 Symbol 12-bit DAC operating requirements Table 27. 12-bit DAC operating requirements Desciption Min. Max. Unit VDDA Supply voltage 1.71 3.6 V VDACR Reference voltage 1.13 3.6 V TA Temperature Operating temperature range of the device CL Output load capacitance — 100 pF IL Output load current — 1 mA Notes 1 °C 2 1. The DAC reference can be selected to be VDDA or the voltage output of the VREF module (VREF_OUT) 2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. 40 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 6.6.3.2 Symbol 12-bit DAC operating behaviors Table 28. 12-bit DAC operating behaviors Description IDDA_DACL Supply current — low-power mode Min. Typ. Max. Unit — — 150 μA — — 700 μA Notes P IDDA_DACH Supply current — high-speed mode P tDACLP Full-scale settling time (0x080 to 0xF7F) — low-power mode — 100 200 μs 1 tDACHP Full-scale settling time (0x080 to 0xF7F) — high-power mode — 15 30 μs 1 — 0.7 1 μs 1 — — 100 mV tCCDACLP Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and high-speed mode Vdacoutl DAC output voltage range low — high-speed mode, no load, DAC set to 0x000 Vdacouth DAC output voltage range high — highspeed mode, no load, DAC set to 0xFFF VDACR −100 — VDACR mV INL Integral non-linearity error — high speed mode — — ±8 LSB 2 DNL Differential non-linearity error — VDACR > 2 V — — ±1 LSB 3 DNL Differential non-linearity error — VDACR = VREF_OUT — — ±1 LSB 4 — ±0.4 ±0.8 %FSR 5 Gain error — ±0.1 ±0.6 %FSR 5 Power supply rejection ratio, VDDA ≥ 2.4 V 60 — 90 dB TCO Temperature coefficient offset voltage — 3.7 — μV/C TGE Temperature coefficient gain error — 0.000421 — %FSR/C Rop Output resistance load = 3 kΩ — — 250 Ω SR Slew rate -80h→ F7Fh→ 80h VOFFSET Offset error EG PSRR 1. 2. 3. 4. 5. 6. V/μs • High power (SPHP) 1.2 1.7 — • Low power (SPLP) 0.05 0.12 — — — -80 CT Channel to channel cross talk BW 3dB bandwidth 6 dB kHz • High power (SPHP) 550 — — • Low power (SPLP) 40 — — Settling within ±1 LSB The INL is measured for 0 + 100 mV to VDACR −100 mV The DNL is measured for 0 + 100 mV to VDACR −100 mV The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. Freescale Semiconductor, Inc. 41 Peripheral operating requirements and behaviors Figure 14. Typical INL error vs. digital code K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. 42 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Figure 15. Offset at half scale vs. temperature 6.6.4 Voltage reference electrical specifications Table 29. VREF full-range operating requirements Symbol Description Min. Max. Unit VDDA Supply voltage 1.71 3.6 V TA Temperature CL Output load capacitance Operating temperature range of the device °C 100 nF Notes 1, 2 1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference. 2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature range of the device. K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. Freescale Semiconductor, Inc. 43 Peripheral operating requirements and behaviors Table 30. VREF full-range operating behaviors Symbol Description Min. Typ. Max. Unit Notes Vout Voltage reference output with factory trim at nominal VDDA and temperature=25C 1.1915 1.195 1.1977 V Vout Voltage reference output — factory trim 1.1584 — 1.2376 V Vout Voltage reference output — user trim 1.193 — 1.197 V Vstep Voltage reference trim step — 0.5 — mV Vtdrift Temperature drift (Vmax -Vmin across the full temperature range) — — 80 mV Bandgap only current — — 80 µA 1 µV 1, 2 Ibg ΔVLOAD Load regulation • current = ± 1.0 mA — 200 — Tstup Buffer startup time — — 100 µs Vvdrift Voltage drift (Vmax -Vmin across the full voltage range) — 2 — mV 1 1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register. 2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load Table 31. VREF limited-range operating requirements Symbol Description Min. Max. Unit TA Temperature 0 50 °C Notes Table 32. VREF limited-range operating behaviors Symbol Vout Description Voltage reference output with factory trim Min. Max. Unit 1.173 1.225 V Notes 6.7 Timers See General switching specifications. 6.8 Communication interfaces K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. 44 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 6.8.1 DSPI switching specifications (limited voltage range) The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices. Table 33. Master mode DSPI timing (limited voltage range) Num Description Operating voltage Frequency of operation Min. Max. Unit 2.7 3.6 V Notes — 25 MHz 2 x tBUS — ns DSPI_SCK output high/low time (tSCK/2) − 2 (tSCK/2) + 2 ns DS3 DSPI_PCSn valid to DSPI_SCK delay (tBUS x 2) − 2 — ns 1 DS4 DSPI_SCK to DSPI_PCSn invalid delay (tBUS x 2) − 2 — ns 2 DS5 DSPI_SCK to DSPI_SOUT valid — 8.5 ns DS6 DSPI_SCK to DSPI_SOUT invalid −2 — ns DS7 DSPI_SIN to DSPI_SCK input setup 15 — ns DS8 DSPI_SCK to DSPI_SIN input hold 0 — ns DS1 DSPI_SCK output cycle time DS2 1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK]. 2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC]. DSPI_PCSn DS3 DS1 DS2 DS4 DSPI_SCK DS8 DS7 (CPOL=0) DSPI_SIN Data First data Last data DS5 DSPI_SOUT First data DS6 Data Last data Figure 16. DSPI classic SPI timing — master mode Table 34. Slave mode DSPI timing (limited voltage range) Num Description Operating voltage Min. Max. Unit 2.7 3.6 V 12.5 MHz — ns Frequency of operation DS9 DSPI_SCK input cycle time 4 x tBUS Table continues on the next page... K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. Freescale Semiconductor, Inc. 45 Peripheral operating requirements and behaviors Table 34. Slave mode DSPI timing (limited voltage range) (continued) Num Description Min. Max. Unit (tSCK/2) − 2 (tSCK/2) + 2 ns DS10 DSPI_SCK input high/low time DS11 DSPI_SCK to DSPI_SOUT valid — 10 ns DS12 DSPI_SCK to DSPI_SOUT invalid 0 — ns DS13 DSPI_SIN to DSPI_SCK input setup 2 — ns DS14 DSPI_SCK to DSPI_SIN input hold 7 — ns DS15 DSPI_SS active to DSPI_SOUT driven — 14 ns DS16 DSPI_SS inactive to DSPI_SOUT not driven — 14 ns DSPI_SS DS10 DS9 DSPI_SCK DS15 (CPOL=0) DS12 DSPI_SOUT First data DS13 DS16 DS11 Last data Data DS14 DSPI_SIN First data Data Last data Figure 17. DSPI classic SPI timing — slave mode 6.8.2 DSPI switching specifications (full voltage range) The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices. Table 35. Master mode DSPI timing (full voltage range) Num Description Operating voltage Frequency of operation Min. Max. Unit Notes 1.71 3.6 V 1 — 12.5 MHz 4 x tBUS — ns DS1 DSPI_SCK output cycle time DS2 DSPI_SCK output high/low time (tSCK/2) - 4 (tSCK/2) + 4 ns DS3 DSPI_PCSn valid to DSPI_SCK delay (tBUS x 2) − 4 — ns 2 Table continues on the next page... K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. 46 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 35. Master mode DSPI timing (full voltage range) (continued) Num Description Min. Max. Unit Notes (tBUS x 2) − 4 — ns 3 — 10 ns DS4 DSPI_SCK to DSPI_PCSn invalid delay DS5 DSPI_SCK to DSPI_SOUT valid DS6 DSPI_SCK to DSPI_SOUT invalid -4.5 — ns DS7 DSPI_SIN to DSPI_SCK input setup 20.5 — ns DS8 DSPI_SCK to DSPI_SIN input hold 0 — ns 1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced. 2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK]. 3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC]. DSPI_PCSn DS3 DS1 DS2 DS4 DSPI_SCK DS8 DS7 (CPOL=0) DSPI_SIN Data First data Last data DS5 DSPI_SOUT First data DS6 Data Last data Figure 18. DSPI classic SPI timing — master mode Table 36. Slave mode DSPI timing (full voltage range) Num Description Operating voltage Frequency of operation Min. Max. Unit 1.71 3.6 V — 6.25 MHz 8 x tBUS — ns (tSCK/2) - 4 (tSCK/2) + 4 ns DS9 DSPI_SCK input cycle time DS10 DSPI_SCK input high/low time DS11 DSPI_SCK to DSPI_SOUT valid — 20 ns DS12 DSPI_SCK to DSPI_SOUT invalid 0 — ns DS13 DSPI_SIN to DSPI_SCK input setup 2 — ns DS14 DSPI_SCK to DSPI_SIN input hold 7 — ns DS15 DSPI_SS active to DSPI_SOUT driven — 19 ns DS16 DSPI_SS inactive to DSPI_SOUT not driven — 19 ns K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. Freescale Semiconductor, Inc. 47 Peripheral operating requirements and behaviors DSPI_SS DS10 DS9 DSPI_SCK DS15 (CPOL=0) DS12 DSPI_SOUT First data DS13 DS16 DS11 Last data Data DS14 DSPI_SIN First data Data Last data Figure 19. DSPI classic SPI timing — slave mode 6.8.3 I2C switching specifications See General switching specifications. 6.8.4 UART switching specifications See General switching specifications. 6.8.5 Normal Run, Wait and Stop mode performance over the full operating voltage range This section provides the operating performance over the full operating voltage for the device in Normal Run, Wait and Stop modes. Table 37. I2S/SAI master mode timing Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S1 I2S_MCLK cycle time 40 — ns S2 I2S_MCLK pulse width high/low 45% 55% MCLK period S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 80 — ns S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid — 15 ns S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid 0 — ns S7 I2S_TX_BCLK to I2S_TXD valid — 15 ns Table continues on the next page... K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. 48 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 37. I2S/SAI master mode timing (continued) Num. Characteristic Min. Max. Unit S8 I2S_TX_BCLK to I2S_TXD invalid 0 — ns S9 I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK 25 — ns S10 I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK 0 — ns S1 S2 S2 I2S_MCLK (output) S3 I2S_TX_BCLK/ I2S_RX_BCLK (output) S4 S4 S6 S5 I2S_TX_FS/ I2S_RX_FS (output) S10 S9 I2S_TX_FS/ I2S_RX_FS (input) S7 S8 S7 S8 I2S_TXD S9 S10 I2S_RXD Figure 20. I2S/SAI timing — master modes Table 38. I2S/SAI slave mode timing Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 80 — ns S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input) 45% 55% MCLK period S13 I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK 10 — ns S14 I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK 2 — ns S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid — 29 ns S16 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 — ns S17 I2S_RXD setup before I2S_RX_BCLK 10 — ns S18 I2S_RXD hold after I2S_RX_BCLK 2 — ns S19 I2S_TX_FS input assertion to I2S_TXD output valid1 — 21 ns 1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. Freescale Semiconductor, Inc. 49 Peripheral operating requirements and behaviors S11 S12 I2S_TX_BCLK/ I2S_RX_BCLK (input) S12 S15 S16 I2S_TX_FS/ I2S_RX_FS (output) S13 I2S_TX_FS/ I2S_RX_FS (input) S19 S14 S15 S16 S15 S16 I2S_TXD S17 S18 I2S_RXD Figure 21. I2S/SAI timing — slave modes 6.8.6 VLPR, VLPW, and VLPS mode performance over the full operating voltage range This section provides the operating performance over the full operating voltage for the device in VLPR, VLPW, and VLPS modes. Table 39. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range) Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S1 I2S_MCLK cycle time 62.5 — ns S2 I2S_MCLK pulse width high/low 45% 55% MCLK period S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 250 — ns S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid — 45 ns S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid 0 — ns S7 I2S_TX_BCLK to I2S_TXD valid — 45 ns S8 I2S_TX_BCLK to I2S_TXD invalid 0 — ns S9 I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK 75 — ns S10 I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK 0 — ns K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. 50 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors S1 S2 S2 I2S_MCLK (output) S3 I2S_TX_BCLK/ I2S_RX_BCLK (output) S4 S4 S6 S5 I2S_TX_FS/ I2S_RX_FS (output) S10 S9 I2S_TX_FS/ I2S_RX_FS (input) S7 S8 S7 S8 I2S_TXD S9 S10 I2S_RXD Figure 22. I2S/SAI timing — master modes Table 40. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range) Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 250 — ns S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input) 45% 55% MCLK period S13 I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK 30 — ns S14 I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK 2 — ns S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid — 87 ns S16 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 — ns S17 I2S_RXD setup before I2S_RX_BCLK 30 — ns S18 I2S_RXD hold after I2S_RX_BCLK 2 — ns — 72 ns S19 I2S_TX_FS input assertion to I2S_TXD output valid1 1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. Freescale Semiconductor, Inc. 51 Dimensions S11 S12 I2S_TX_BCLK/ I2S_RX_BCLK (input) S12 S15 S16 I2S_TX_FS/ I2S_RX_FS (output) S13 I2S_TX_FS/ I2S_RX_FS (input) S19 S14 S15 S16 S15 S16 I2S_TXD S17 S18 I2S_RXD Figure 23. I2S/SAI timing — slave modes 7 Dimensions 7.1 Obtaining package dimensions Package dimensions are provided in package drawings. To find a package drawing, go to www.freescale.com and perform a keyword search for the drawing’s document number: If you want the drawing for this package 121-pin MAPBGA Then use this document number 98ASA00344D 8 Pinout 8.1 K11 Signal Multiplexing and Pin Assignments The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin. NOTE • The analog input signals ADC0_SE10, ADC0_SE11, ADC0_DP1, and ADC0_DM1 are available only for K11, K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. 52 Freescale Semiconductor, Inc. Pinout • • • • K12, K21, and K22 devices and are not present on K10 and K20 devices. The TRACE signals on PTE0, PTE1, PTE2, PTE3, and PTE4 are available only for K11, K12, K21, and K22 devices and are not present on K10 and K20 devices. If the VBAT pin is not used, the VBAT pin should be left floating. Do not connect VBAT pin to VSS. The FTM_CLKIN signals on PTB16 and PTB17 are available only for K11, K12, K21, and K22 devices and are not present on K10 and K20 devices. For K11D devices this signal is on ALT7, and for K11F devices, this signal is on ALT4. Ball A10, which is PTE19 on K11D and K21D devices, is not available on K11F and K21F devices. 121 MAP BGA Default ALT0 E4 ADC0_SE10 ADC0_SE10 E3 ADC0_SE11 E2 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 PTE0 SPI1_PCS1 UART1_TX TRACE_CLKOUT I2C1_SDA RTC_CLKOUT ADC0_SE11 PTE1/ LLWU_P0 SPI1_SOUT UART1_RX TRACE_D3 SPI1_SIN ADC0_DP1 ADC0_DP1 PTE2/ LLWU_P1 SPI1_SCK UART1_CTS_b TRACE_D2 ADC0_DM1 I2C1_SCL F4 ADC0_DM1 PTE3 SPI1_SIN UART1_RTS_b TRACE_D1 H7 DISABLED PTE4/ LLWU_P2 SPI1_PCS0 UART3_TX TRACE_D0 G4 DISABLED PTE5 SPI1_PCS2 UART3_RX E6 VDD VDD G7 VSS VSS K3 ADC0_SE4a ADC0_SE4a PTE16 SPI0_PCS0 UART2_TX FTM_CLKIN0 FTM0_FLT3 LPTMR0_ALT3 H4 ADC0_SE5a ADC0_SE5a PTE17 SPI0_SCK UART2_RX FTM_CLKIN1 A11 ADC0_SE6a ADC0_SE6a PTE18 SPI0_SOUT UART2_CTS_b I2C0_SDA A10 ADC0_SE7a ADC0_SE7a PTE19 SPI0_SIN UART2_RTS_b I2C0_SCL L6 VSS VSS K1 ADC0_DP0 ADC0_DP0 K2 ADC0_DM0 ADC0_DM0 L1 ADC0_DP3 ADC0_DP3 L2 ADC0_DM3 ADC0_DM3 F5 VDDA VDDA G5 VREFH VREFH G6 VREFL VREFL F6 VSSA VSSA L3 VREF_OUT/ CMP1_IN5/ CMP0_IN5 VREF_OUT/ CMP1_IN5/ CMP0_IN5 ALT7 EzPort SPI1_SOUT K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. Freescale Semiconductor, Inc. 53 Pinout 121 MAP BGA Default ALT0 K5 DAC0_OUT/ CMP1_IN3/ ADC0_SE23 DAC0_OUT/ CMP1_IN3/ ADC0_SE23 L7 TAMPER0/ RTC_WAKEUP_ B TAMPER0/ RTC_WAKEUP_ B H5 TAMPER1 TAMPER1 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort J5 TAMPER2 TAMPER2 L4 XTAL32 XTAL32 L5 EXTAL32 EXTAL32 K6 VBAT VBAT J6 JTAG_TCLK/ SWD_CLK/ EZP_CLK PTA0 UART0_CTS_b/ UART0_COL_b FTM0_CH5 JTAG_TCLK/ SWD_CLK EZP_CLK H8 JTAG_TDI/ EZP_DI PTA1 UART0_RX FTM0_CH6 JTAG_TDI EZP_DI J7 JTAG_TDO/ TRACE_SWO/ EZP_DO PTA2 UART0_TX FTM0_CH7 JTAG_TDO/ TRACE_SWO EZP_DO H9 JTAG_TMS/ SWD_DIO PTA3 UART0_RTS_b FTM0_CH0 JTAG_TMS/ SWD_DIO J8 NMI_b/ EZP_CS_b PTA4/ LLWU_P3 FTM0_CH1 NMI_b K7 DISABLED PTA5 FTM0_CH2 I2S0_TX_BCLK JTAG_TRST_b K8 DISABLED PTA12 FTM1_CH0 I2S0_TXD0 FTM1_QD_PHA L8 DISABLED PTA13/ LLWU_P4 FTM1_CH1 I2S0_TX_FS FTM1_QD_PHB K9 DISABLED PTA14 SPI0_PCS0 UART0_TX I2S0_RX_BCLK I2S0_TXD1 L9 DISABLED PTA15 SPI0_SCK UART0_RX I2S0_RXD0 J10 DISABLED PTA16 SPI0_SOUT UART0_CTS_b/ UART0_COL_b I2S0_RX_FS H10 DISABLED PTA17 SPI0_SIN UART0_RTS_b I2S0_MCLK L10 VDD VDD K10 VSS VSS L11 EXTAL0 EXTAL0 PTA18 FTM0_FLT2 FTM_CLKIN0 K11 XTAL0 XTAL0 PTA19 FTM1_FLT0 FTM_CLKIN1 J11 RESET_b RESET_b G11 ADC0_SE8 ADC0_SE8 PTB0/ LLWU_P5 I2C0_SCL FTM1_CH0 FTM1_QD_PHA G10 ADC0_SE9 ADC0_SE9 PTB1 I2C0_SDA FTM1_CH1 FTM1_QD_PHB G9 ADC0_SE12 ADC0_SE12 PTB2 I2C0_SCL UART0_RTS_b FTM0_FLT3 G8 ADC0_SE13 ADC0_SE13 PTB3 I2C0_SDA UART0_CTS_b/ UART0_COL_b FTM0_FLT0 D10 DISABLED PTB10 SPI1_PCS0 UART3_RX FTM0_FLT1 C10 DISABLED PTB11 SPI1_SCK UART3_TX FTM0_FLT2 EZP_CS_b I2S0_RXD1 LPTMR0_ALT1 K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. 54 Freescale Semiconductor, Inc. Pinout 121 MAP BGA Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 B11 DISABLED PTB12 UART3_RTS_b FTM1_CH0 FTM0_CH4 FTM1_QD_PHA C11 DISABLED PTB13 UART3_CTS_b FTM1_CH1 FTM0_CH5 FTM1_QD_PHB B10 DISABLED PTB16 SPI1_SOUT UART0_RX SPI1_SIN UART0_TX EWM_IN FTM_CLKIN0 EWM_OUT_b FTM_CLKIN1 E9 DISABLED PTB17 D9 DISABLED PTB18 FTM2_CH0 I2S0_TX_BCLK FTM2_QD_PHA C9 DISABLED PTB19 FTM2_CH1 I2S0_TX_FS FTM2_QD_PHB B9 ADC0_SE14 ADC0_SE14 PTC0 SPI0_PCS4 PDB0_EXTRG D8 ADC0_SE15 ADC0_SE15 PTC1/ LLWU_P6 SPI0_PCS3 UART1_RTS_b FTM0_CH0 I2S0_TXD0 C8 ADC0_SE4b/ CMP1_IN0 ADC0_SE4b/ CMP1_IN0 PTC2 SPI0_PCS2 UART1_CTS_b FTM0_CH1 I2S0_TX_FS B8 CMP1_IN1 CMP1_IN1 PTC3/ LLWU_P7 SPI0_PCS1 UART1_RX FTM0_CH2 I2S0_TX_BCLK G3 VSS VSS E5 VDD VDD A8 DISABLED PTC4/ LLWU_P8 SPI0_PCS0 UART1_TX FTM0_CH3 CMP1_OUT D7 DISABLED PTC5/ LLWU_P9 SPI0_SCK LPTMR0_ALT2 I2S0_RXD0 CMP0_OUT C7 CMP0_IN0 CMP0_IN0 PTC6/ LLWU_P10 SPI0_SOUT PDB0_EXTRG I2S0_RX_BCLK I2S0_MCLK B7 CMP0_IN1 CMP0_IN1 PTC7 SPI0_SIN A7 CMP0_IN2 CMP0_IN2 PTC8 I2S0_MCLK D6 CMP0_IN3 CMP0_IN3 PTC9 I2S0_RX_BCLK C6 DISABLED PTC10 I2C1_SCL I2S0_RX_FS C5 DISABLED PTC11/ LLWU_P11 I2C1_SDA I2S0_RXD1 B6 DISABLED PTC12 EzPort I2S0_TXD1 FTM0_CH2 I2S0_RX_FS FTM2_FLT0 A6 DISABLED PTC13 D5 DISABLED PTC16 UART3_RX C4 DISABLED PTC17 UART3_TX D4 DISABLED PTD0/ LLWU_P12 SPI0_PCS0 UART2_RTS_b D3 ADC0_SE5b PTD1 SPI0_SCK UART2_CTS_b C3 DISABLED PTD2/ LLWU_P13 SPI0_SOUT UART2_RX I2C0_SCL B3 DISABLED PTD3 SPI0_SIN UART2_TX I2C0_SDA A3 ADC0_SE21 ADC0_SE21 PTD4/ LLWU_P14 SPI0_PCS1 UART0_RTS_b FTM0_CH4 EWM_IN A2 ADC0_SE6b ADC0_SE6b PTD5 SPI0_PCS2 UART0_CTS_b/ UART0_COL_b FTM0_CH5 EWM_OUT_b B2 ADC0_SE7b ADC0_SE7b PTD6/ LLWU_P15 SPI0_PCS3 UART0_RX FTM0_CH6 FTM0_FLT0 A1 ADC0_SE22 ADC0_SE22 PTD7 CMT_IRO UART0_TX FTM0_CH7 FTM0_FLT1 ADC0_SE5b ALT7 K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. Freescale Semiconductor, Inc. 55 Pinout 121 MAP BGA Default ALT0 F3 NC NC H1 NC NC H2 NC NC J1 NC NC J2 NC NC J3 NC NC H3 NC NC K4 NC NC H6 NC NC J9 NC NC J4 NC NC H11 NC NC F11 NC NC E11 NC NC D11 NC NC E10 NC NC F10 NC NC F9 NC NC F8 NC NC E8 NC NC E7 NC NC F7 NC NC A5 NC NC B5 NC NC B4 NC NC A4 NC NC A9 NC NC B1 NC NC C2 NC NC C1 NC NC D2 NC NC D1 NC NC E1 NC NC ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort 8.2 K11 Pinouts The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section. K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. 56 Freescale Semiconductor, Inc. Revision History 1 2 3 4 5 6 7 8 9 10 11 A PTD7 PTD5 PTD4/ LLWU_P14 NC NC PTC13 PTC8 PTC4/ LLWU_P8 NC PTE19 PTE18 A B NC PTD6/ LLWU_P15 PTD3 NC NC PTC12 PTC7 PTC3/ LLWU_P7 PTC0 PTB16 PTB12 B C NC NC PTD2/ LLWU_P13 PTC17 PTC11/ LLWU_P11 PTC10 PTC6/ LLWU_P10 PTC2 PTB19 PTB11 PTB13 C D NC NC PTD1 PTD0/ LLWU_P12 PTC16 PTC9 PTC5/ LLWU_P9 PTC1/ LLWU_P6 PTB18 PTB10 NC D E NC PTE2/ LLWU_P1 PTE1/ LLWU_P0 PTE0 VDD VDD NC NC PTB17 NC NC E F NC PTE3 VDDA VSSA NC NC NC NC NC F G VSS PTE5 VREFH VREFL VSS PTB3 PTB2 PTB1 PTB0/ LLWU_P5 G H NC NC NC PTE17 TAMPER1 NC PTE4/ LLWU_P2 PTA1 PTA3 PTA17 NC H J NC NC NC NC TAMPER2 PTA0 PTA2 PTA4/ LLWU_P3 NC PTA16 RESET_b J PTE16 NC DAC0_OUT/ CMP1_IN3/ ADC0_SE23 VBAT PTA5 PTA12 PTA14 VSS PTA19 K XTAL32 EXTAL32 VSS PTA15 VDD PTA18 L 4 5 6 9 10 11 K ADC0_DP0 ADC0_DM0 L VREF_OUT/ ADC0_DP3 ADC0_DM3 CMP1_IN5/ CMP0_IN5 1 2 3 TAMPER0/ PTA13/ RTC_ LLWU_P4 WAKEUP_B 7 8 Figure 24. K11 121 MAPBGA Pinout Diagram 9 Revision History The following table provides a revision history for this document. Table 41. Revision History Rev. No. Date Substantial Changes 1 6/2012 Alpha customer release. 1.1 6/2012 In Table 6, "Power consumption operating behaviors", changed the units of IDD_VLLS2, IDD_VLLS1, IDD_VLLS0, and IDD_VBAT from nA to μA. Table continues on the next page... K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. Freescale Semiconductor, Inc. 57 Revision History Table 41. Revision History (continued) Rev. No. Date Substantial Changes 2 7/2012 • • • • • • Updated section "Power consumption operating behaviors". Updated section "Flash timing specifications — program and erase". Updated section "Flash timing specifications — commands". Removed the 32K ratio from "Write endurance" in section "Reliability specifications". Updated IDDstby maximum value in section "VREG electrical specifications". Added the charts in section "Diagram: Typical IDD_RUN operating behavior". 3 8/2012 • • • • Updated section "Power consumption operating behaviors". Updated section "EMC radiated emissions operating behaviors". Updated section "MCG specifications". Added applicable notes in section "Signal Multiplexing and Pin Assignments". K11 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2012. 58 Freescale Semiconductor, Inc. How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] Document Number: K11P121M50SF4 Rev. 3, 08/2012 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductors products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2012–2013 Freescale Semiconductor, Inc.