Freescale MWE6IC9100NR1 Rf ldmos wideband integrated power amplifier Datasheet

Freescale Semiconductor
Technical Data
Document Number: MWE6IC9100N
Rev. 2, 6/2007
RF LDMOS Wideband Integrated
Power Amplifiers
The MWE6IC9100N wideband integrated circuit is designed with on - chip
matching that makes it usable from 869 to 960 MHz. This multi - stage
structure is rated for 26 to 32 Volt operation and covers all typical cellular base
station modulations.
Final Application
• Typical GSM Performance: VDD = 26 Volts, IDQ1 = 120 mA, IDQ2 = 950 mA,
Pout = 100 Watts CW, Full Frequency Band (869 - 960 MHz)
Power Gain — 33.5 dB
Power Added Efficiency — 54%
GSM EDGE Application
• Typical GSM EDGE Performance: VDD = 28 Volts, IDQ1 = 230 mA, IDQ2 =
870 mA, Pout = 50 Watts Avg., Full Frequency Band (869 - 960 MHz)
Power Gain — 35.5 dB
Power Added Efficiency — 39%
Spectral Regrowth @ 400 kHz Offset = - 63 dBc
Spectral Regrowth @ 600 kHz Offset = - 81 dBc
EVM — 2% rms
• Capable of Handling 10:1 VSWR, @ 32 Vdc, 960 MHz, 3 dB Overdrive,
Designed for Enhanced Ruggedness
• Stable into a 5:1 VSWR. All Spurs Below - 60 dBc @ 0 to 50.8 dBm CW (or
1 mW to 120 W CW) Pout.
Features
• Characterized with Series Equivalent Large - Signal Impedance Parameters
and Common Source Scattering Parameters
• On - Chip Matching (50 Ohm Input, DC Blocked)
• Integrated Quiescent Current Temperature Compensation with
Enable/Disable Function (1)
• Integrated ESD Protection
• 200°C Capable Plastic Package
• RoHS Compliant
• In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.
VDS1
RFin
RFout/VDS2
VGS1
Quiescent Current
Temperature Compensation (1)
VGS2
VDS1
MWE6IC9100NR1
MWE6IC9100GNR1
MWE6IC9100NBR1
960 MHz, 100 W, 26 V
GSM/GSM EDGE
RF LDMOS WIDEBAND
INTEGRATED POWER AMPLIFIERS
CASE 1618 - 01
TO - 270 WB - 14
PLASTIC
MWE6IC9100NR1
CASE 1621 - 01
TO - 270 WB - 14 GULL
PLASTIC
MWE6IC9100GNR1
CASE 1617 - 01
TO - 272 WB - 14
PLASTIC
MWE6IC9100NBR1
NC
VDS1
NC
NC
NC
RFin
RFin
NC
VGS1
VGS2
VDS1
NC
1
2
3
4
5
6
7
8
9
10
11
12
14
RFout /VDS2
13
RFout /VDS2
(Top View)
Note: Exposed backside of the package is
the source terminal for the transistors.
Figure 1. Functional Block Diagram
Figure 2. Pin Connections
1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control
for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1977 or AN1987.
© Freescale Semiconductor, Inc., 2007. All rights reserved.
RF Device Data
Freescale Semiconductor
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
1
Table 1. Maximum Ratings
Symbol
Value
Unit
Drain - Source Voltage
Rating
VDSS
- 0.5, +66
Vdc
Gate - Source Voltage
VGS
- 0.5, +6
Vdc
Storage Temperature Range
Tstg
- 65 to +200
°C
Operating Junction Temperature
TJ
200
°C
Symbol
Value (1,2)
Unit
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
RθJC
°C/W
GSM Application
(Pout = 100 W CW)
Stage 1, 26 Vdc, IDQ1 = 120 mA
Stage 2, 26 Vdc, IDQ2 = 950 mA
1.82
0.38
GSM EDGE Application
(Pout = 50 W Avg.)
Stage 1, 28 Vdc, IDQ1 = 230 mA
Stage 2, 28 Vdc, IDQ2 = 870 mA
1.77
0.44
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22 - A114)
2 (Minimum)
Machine Model (per EIA/JESD22 - A115)
B (Minimum)
Charge Device Model (per JESD22 - C101)
III (Minimum)
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD 22 - A113, IPC/JEDEC J - STD - 020
Rating
Package Peak Temperature
Unit
3
260
°C
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 66 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 28 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
μAdc
Gate - Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
IGSS
—
—
10
μAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 35 μAdc)
VGS(th)
1.5
2
3.5
Vdc
Gate Quiescent Voltage
(VDS = 26 Vdc, ID = 120 mAdc)
VGS(Q)
—
2.7
—
Vdc
Fixture Gate Quiescent Voltage
(VDD = 26 Vdc, ID = 120 mAdc, Measured in Functional Test)
VGG(Q)
6
9.4
12
Vdc
Stage 1 — Off Characteristics
Stage 1 — On Characteristics
1. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1955.
2. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access the MTTF
calculators by product.
(continued)
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
2
RF Device Data
Freescale Semiconductor
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 66 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 28 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
μAdc
Gate - Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
IGSS
—
—
10
μAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 290 μAdc)
VGS(th)
1.5
2
3.5
Vdc
Gate Quiescent Voltage
(VDS = 26 Vdc, ID = 950 mAdc)
VGS(Q)
—
2.7
—
Vdc
Fixture Gate Quiescent Voltage
(VDD = 26 Vdc, ID = 950 mAdc, Measured in Functional Test)
VGG(Q)
6
8.6
12
Vdc
Drain - Source On - Voltage
(VGS = 10 Vdc, ID = 1 Adc)
VDS(on)
0.05
0.4
0.8
Vdc
Stage 2 — Off Characteristics
Stage 2 — On Characteristics
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 26 Vdc, Pout = 100 W CW, IDQ1 = 120 mA, IDQ2 = 950 mA, f = 960 MHz
Power Gain
Gps
31
33.5
36
dB
Input Return Loss
IRL
—
- 15
- 10
dB
Power Added Efficiency
PAE
52
54
—
%
Pout @ 1 dB Compression Point, CW
P1dB
100
112
—
W
Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 ohm system) VDD = 28 Vdc, Pout = 50 W Avg., IDQ1 = 230 mA,
IDQ2 = 870 mA, 869-894 MHz and 920-960 MHz EDGE Modulation
Gps
—
35.5
—
Power Added Efficiency
PAE
—
39
—
%
Error Vector Magnitude
EVM
—
2
—
% rms
Spectral Regrowth at 400 kHz Offset
SR1
—
- 63
—
dBc
Spectral Regrowth at 600 kHz Offset
SR2
—
- 81
—
dBc
Power Gain
dB
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
RF Device Data
Freescale Semiconductor
3
C8
1 NC
VDD1
C17
RF
INPUT
C22
4 NC
VGG1
VGG2
Z4
Z5
6
C1
Z6
Z7
C2
Z17
9
10
C13
11
Quiescent Current
Temperature
Compensation
14
Z8
Z10
Z14
C4
Z15
RF
OUTPUT
C6
Z11
C9
12 NC
C19
C23
C5
8 NC
R2
C16
C3
Z9
7
R1
C15
C20
Z16
13
5 NC
Z3
C7
3 NC
C11
Z2
Z1
+
DUT
2
+
VDD2
Z13
Z12
C14
C10
C12
C24
C21
C18
VDD1
Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
0.089″
0.157″
0.157″
0.139″
0.024″
0.352″
0.039″
0.555″
0.343″
x 0.083″ Microstrip
x 0.315″ Microstrip
x 0.397″ Microstrip
x 0.060″ Microstrip
x 0.386″ Microstrip
x 0.902″ Microstrip
x 0.607″ Microstrip
x 1.102″ Microstrip
x 0.083″ Microstrip
Z10
Z11
Z12
Z13
Z14
Z15
Z16, Z17
PCB
1.117″ x 0.083″ Microstrip
0.067″ x 0.431″ Microstrip
0.067″ x 0.084″ Microstrip
0.381″ x 0.067″ Microstrip
0.418″ x 0.084″ Microstrip
0.421″ x 0.084″ Microstrip
2.550″ x 0.157″ Microstrip
Taconic TLX8 - 0300, 0.030″, εr = 2.55
Figure 3. MWE6IC9100NR1(GNR1)(NBR1) Test Circuit Schematic
Table 6. MWE6IC9100NR1(GNR1)(NBR1) Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
C1, C2
10 pF Chip Capacitors
ATC100B100GT500XT
ATC
C3, C4, C5
3.9 pF Chip Capacitors
ATC100B3R9BT500XT
ATC
C6
0.5 pF Chip Capacitor
ATC100B0R5BT500XT
ATC
C7, C8, C9, C10, C11, C12,
C13, C14
33 pF Chip Capacitors
ATC100B330JT500XT
ATC
C15, C16, C17, C18, C19,
C20, C21
6.8 μF Chip Capacitors
C4532X5R1H685MT
TDK
C22, C23
470 μF, 63 V Electrolytic Capacitors, Radial
222212018470
Vishay
C24
330 pF Chip Capacitor
ATC100B331JT200XT
ATC
R1, R2
4.7 kΩ, 1/8 W Chip Resistors
WCR08054K7G
Welwyn
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
4
RF Device Data
Freescale Semiconductor
MWE6IC9100N
Rev. 4
VDD1
C17
C7
C8
C22
VDD2
C20
C11
C1
C23
C3
C13
VGG1
C14
R1
C15
C12
C19
R2
C16
CUT OUT AREA
C5
C6
C4
C2
C21
C24
VGG2
C10
C9
C18
Figure 4. MWE6IC9100NR1(GNR1)(NBR1) Test Circuit Component Layout
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
RF Device Data
Freescale Semiconductor
5
TYPICAL CHARACTERISTICS
70
Gps, POWER GAIN (dB)
34
64
58
30
PAE
26
52
22
VDD = 26 Vdc, Pout = 100 W CW
IDQ1 = 120 mA, IDQ2 = 950 mA
IRL
46
18
40
14
34
10
840
0
28
860
880
900
920
940
960
−4
−8
−12
−16
−20
−24
IRL, INPUT RETURN LOSS (dB)
Gps
PAE, POWER ADDED EFFICIENCY (%)
38
−28
980
f, FREQUENCY (MHz)
Figure 5. Power Gain, Input Return Loss and Power Added
Efficiency versus Frequency @ Pout = 100 Watts CW
46
30
40
PAE
26
34
VDD = 28 Vdc, Pout = 50 W Avg.
IDQ1 = 230 mA, IDQ2 = 870 mA
22
28
IRL
18
22
14
16
10
10
860
880
900
920
940
960
−8
−12
−16
−20
−24
−28
IRL, INPUT RETURN LOSS (dB)
Gps, POWER GAIN (dB)
34
840
−4
52
Gps
PAE, POWER ADDED EFFICIENCY (%)
38
−30
980
f, FREQUENCY (MHz)
Figure 6. Power Gain, Input Return Loss and Power Added
Efficiency versus Frequency @ Pout = 50 Watts Avg.
36
36
Gps, POWER GAIN (dB)
35
IDQ1 = 180 mA
IDQ1 = 150 mA
IDQ2 = 1190 mA
35
IDQ2 = 950 mA
Gps, POWER GAIN (dB)
IDQ2 = 1420 mA
34
33
IDQ2 = 590 mA
32
IDQ2 = 470 mA
VDD = 26 Vdc
f = 945 MHz
34
IDQ1 = 120 mA
33
IDQ1 = 90 mA
32
31
IDQ1 = 60 mA
31
VDD = 26 Vdc
f = 945 MHz
30
1
10
100
200
1
100
10
Pout, OUTPUT POWER (WATTS) CW
Pout, OUTPUT POWER (WATTS) CW
Figure 7. Power Gain versus Output Power
@ IDQ1 = 120 mA
Figure 8. Power Gain versus Output Power
@ IDQ2 = 950 mA
200
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
6
RF Device Data
Freescale Semiconductor
VDD = 26 Vdc
IDQ1 = 120 mA, IDQ2 = 950 mA
f1 = 945 MHz, f2 = 945.1 MHz
100 kHz Tone Spacing
−20
−30
3rd Order
−40
5th Order
−50
7th Order
−60
−70
−80
1
10
100
VDD = 26 Vdc, Pout = 100 W (PEP), IDQ1 = 150 mA
IDQ2 = 1 A, Two −Tone Measurements
(f1 + f2)/2 = Center Frequency of 945 MHz
3rd Order
−20
−30
−40
5th Order
−50
−60
−70
7th Order
−80
200
100
10
TWO −TONE SPACING (MHz)
Figure 9. Intermodulation Distortion Products
versus Output Power
Figure 10. Intermodulation Distortion
Products versus Tone Spacing
38
P6dB = 51.95 dBm (156 W)
57
−30_C
25_C
TC = −30_C
Ideal
36
56
Gps, POWER GAIN (dB)
P3dB = 51.5 dBm (140 W)
55
54
P1dB = 50.9 dBm (123 W)
53
52
Actual
51
50
VDD = 26 Vdc, IDQ1 = 120 mA, IDQ2 = 950 mA
Pulsed CW, 12 μsec(on), 1% Duty Cycle
f = 945 MHz
49
48
14
15
16
17
18
19
20
21
22
23
24
30
30
20
26
1
10
85_C
40
25_C
32
30
85_C
30
20
PAE
10
26
10
0
300
100
Pout, OUTPUT POWER (WATTS) CW
Figure 13. Power Gain and Power Added
Efficiency versus Output Power @ 880 MHz
0
300
33
Gps, POWER GAIN (dB)
60
50
TC = −30_C
1
100
34
PAE, POWER ADDED EFFICIENCY (%)
−30_C
34
28
10
Figure 12. Power Gain and Power Added
Efficiency versus Output Power @ 945 MHz
25_C
Gps
VDD = 26 Vdc
IDQ1 = 120 mA
IDQ2 = 950 mA
f = 945 MHz
PAE
70
36
40
Pout, OUTPUT POWER (WATTS) CW
40
38
50
85_C
Figure 11. Pulsed CW Output Power versus
Input Power
VDD = 26 Vdc, IDQ1 = 120 mA
IDQ2 = 950 mA, f = 880 MHz
25_C
32
28
25
60
85_C
Gps
34
Pin, INPUT POWER (dBm)
Gps, POWER GAIN (dB)
1
0.1
Pout, OUTPUT POWER (WATTS) PEP
58
Pout, OUTPUT POWER (dBc)
−10
PAE, POWER ADDED EFFICIENCY (%)
−10
IMD, INTERMODULATION DISTORTION (dBc)
IMD, INTERMODULATION DISTORTION (dBc)
TYPICAL CHARACTERISTICS
32
31
32 V
30
24 V
29
VDD = 20 V
IDQ1 = 120 mA
IDQ2 = 950 mA
f = 945 MHz
28
0
50
100
150
200
Pout, OUTPUT POWER (WATTS) CW
Figure 14. Power Gain versus Output Power
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
RF Device Data
Freescale Semiconductor
7
EVM, ERROR VECTOR MAGNITUDE (% ms)
6
VDD = 28 Vdc
IDQ1 = 230 mA, IDQ2 = 870 mA
5
Pout = 63 W Avg.
4
3
55 W Avg.
2
25 W Avg.
1
0
880
900
920
940
960
980
f, FREQUENCY (MHz)
SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc)
TYPICAL CHARACTERISTICS
−50
SR @ 400 kHz
−55
−60
55 W Avg.
−65
25 W Avg.
−70
−75 SR @ 600 kHz
55 W Avg.
−85
860
880
63 W Avg.
900
920
940
f, FREQUENCY (MHz)
960
980
Figure 16. Spectral Regrowth at 400 kHz and
600 kHz versus Frequency
−40
−50
−55
85_C
−60
TC = −30_C
25_C
−65
−70
VDD = 28 Vdc
IDQ1 = 230 mA, IDQ2 = 870 mA
f = 945 MHz, EDGE Modulation
−75
SPECTRAL REGROWTH @ 400 kHz (dBc)
−45
SPECTRAL REGROWTH @ 400 kHz (dBc)
25 W Avg.
VDD = 28 Vdc
IDQ1 = 230 mA, IDQ2 = 870 mA
f = 920 MHz, EDGE Modulation
−80
Figure 15. EVM versus Frequency
−80
−45
25_C
−50
−55
−60
TC = −30_C
−65
−70
VDD = 28 Vdc
IDQ1 = 230 mA, IDQ2 = 870 mA
f = 880 MHz, EDGE Modulation
85_C
−75
−80
0
20
40
60
80
100
0
120
20
40
60
80
100
120
Pout, OUTPUT POWER (WATTS)
Pout, OUTPUT POWER (WATTS)
Figure 17. Spectral Regrowth at 400 kHz
versus Output Power @ 945 MHz
Figure 18. Spectral Regrowth at 400 kHz
versus Output Power @ 880 MHz
−50
SPECTRAL REGROWTH @ 600 kHz (dBc)
−60
SPECTRAL REGROWTH @ 600 kHz (dBc)
Pout = 63 W Avg.
VDD = 28 Vdc
IDQ1 = 230 mA, IDQ2 = 870 mA
f = 945 MHz, EDGE Modulation
−65
−70
−75
TC = −30_C
−80
85_C
−85
25_C
−90
VDD = 28 Vdc
IDQ1 = 230 mA, IDQ2 = 870 mA
f = 880 MHz, EDGE Modulation
−55
−60
25_C
−65
85_C
−70
−75
TC = −30_C
−80
−85
0
20
40
60
80
100
120
Pout, OUTPUT POWER (WATTS)
Figure 19. Spectral Regrowth at 600 kHz
versus Output Power @ 945 MHz
0
20
40
60
80
100
120
Pout, OUTPUT POWER (WATTS)
Figure 20. Spectral Regrowth at 600 kHz
versus Output Power @ 880 MHz
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
8
RF Device Data
Freescale Semiconductor
10
50
VDD = 28 Vdc
IDQ1 = 230 mA
IDQ2 = 870 mA
f = 945 MHz
8
40
6
30
85_C
PAE
4
20
2
−30_C 10
TC = 25_C
EVM
0
1
PAE, POWER ADDED EFFICIENCY (%)
EVM, ERROR VECTOR MAGNITUDE (% ms)
TYPICAL CHARACTERISTICS
0
100
10
Pout, OUTPUT POWER (WATTS) AVG.
10
50
VDD = 28 Vdc
IDQ1 = 230 mA
IDQ2 = 870 mA
f = 880 MHz
8
40
6
30
85_C
PAE
4
20
2
10
25_C
EVM
TC = −30_C
0
1
PAE, POWER ADDED EFFICIENCY (%)
EVM, ERROR VECTOR MAGNITUDE (% ms)
Figure 21. EVM and Power Added Efficiency
versus Output Power @ 945 MHz
0
100
10
Pout, OUTPUT POWER (WATTS) AVG.
Figure 22. EVM and Power Added Efficiency
versus Output Power @ 880 MHz
40
0
38
S21
TC = −30_C
10
−15
S11
−20
0
VDD = 26 Vdc
IDQ1 = 120 mA, IDQ2 = 950 mA
600
800
1000
1200
1400
f, FREQUENCY (MHz)
Figure 23. Broadband Frequency Response
−25
1600
S11 (dB)
S21 (dB)
−10
20
Gps, POWER GAIN (dB)
−5
30
−10
400
36
25_C
34
85_C
32
30
VDD = 26 Vdc, Pout = 60 W CW
IDQ1 = 120 mA, IDQ2 = 950 mA
28
26
820
840
860
880
900
920
940
960
980
f, FREQUENCY (MHz)
Figure 24. Power Gain versus Frequency
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
RF Device Data
Freescale Semiconductor
9
TYPICAL CHARACTERISTICS
108
MTTF (HOURS)
107
106
2nd Stage
1st Stage
105
104
90
110
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (°C)
This above graph displays calculated MTTF in hours when the device
is operated at VDD = 26 Vdc, Pout = 100 W CW, and PAE = 54%.
MTTF calculator available at http:/www.freescale.com/rf. Select Tools/
Software/Application Software/Calculators to access the MTTF calcu−
lators by product.
Figure 25. MTTF versus Junction Temperature
GSM TEST SIGNAL
−10
−20
Reference Power
VWB = 30 kHz
Sweep Time = 70 ms
RBW = 30 kHz
−30
−40
(dB)
−50
−60
−70
−80
400 kHz
400 kHz
600 kHz
600 kHz
−90
−100
−110
Center 1.96 GHz
200 kHz
Span 2 MHz
Figure 26. EDGE Spectrum
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
10
RF Device Data
Freescale Semiconductor
Zo = 50 Ω
f = 820 MHz
Zsource
f = 980 MHz
f = 980 MHz
f = 820 MHz
Zload
VDD = 26 Vdc, IDQ1 = 120 mA, IDQ2 = 950 mA, Pout = 100 W CW
f
MHz
Zsource
W
Zload
W
820
35.40 + j21.50
0.516 - j0.365
840
35.00 + j18.00
0.638 - j0.172
860
35.00 + j15.50
0.768 - j0.010
880
34.50 + j12.20
0.874 + j0.071
900
34.00 + j9.00
1.030 + j0.133
920
34.30 + j7.20
1.101 + j0.082
940
38.50 + j6.00
1.088 + j0.037
960
42.00 + j7.40
1.011 + j0.018
980
45.55 + j12.75
0.872 + j0.051
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
= Test circuit impedance as measured
from drain to ground.
Output
Matching
Network
Device
Under
Test
Input
Matching
Network
Z
source
Z
load
Figure 27. Series Equivalent Source and Load Impedance
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
RF Device Data
Freescale Semiconductor
11
Table 7. Common Source Scattering Parameters (VDD = 26 V, 50 ohm system, IDQ1 = 120 mA, IDQ2 = 950 mA)
S11
S21
S12
S22
f
MHz
|S11|
∠φ
|S21|
∠φ
|S12|
∠φ
|S22|
∠φ
750
0.230
95
5.81
- 87
0.0007
- 119
0.989
- 180
760
0.188
93
6.48
- 97
0.0007
- 116
0.987
180
770
0.149
92
7.18
- 107
0.0007
- 111
0.985
180
780
0.114
92
7.88
- 117
0.0007
- 110
0.983
180
790
0.085
96
8.56
- 128
0.0008
- 109
0.981
180
800
0.063
104
9.22
- 139
0.0008
- 108
0.979
180
810
0.047
117
9.82
- 150
0.0009
- 109
0.978
180
820
0.037
134
10.37
- 161
0.0009
- 110
0.978
- 180
830
0.031
156
10.85
- 172
0.0009
- 111
0.977
- 180
840
0.029
- 177
11.27
178
0.0010
- 113
0.977
- 180
850
0.033
- 152
11.60
167
0.0010
- 114
0.978
- 180
860
0.041
- 134
11.87
156
0.0010
- 117
0.978
- 180
870
0.052
- 123
12.07
146
0.0010
- 119
0.979
- 180
880
0.063
- 116
12.20
135
0.0010
- 122
0.979
- 180
890
0.074
- 112
12.25
125
0.0010
- 123
0.979
180
900
0.084
- 109
12.23
115
0.0010
- 126
0.980
180
910
0.094
- 106
12.15
106
0.0010
- 129
0.979
180
920
0.104
- 103
12.01
96
0.0010
- 131
0.978
180
930
0.113
- 99
11.82
86
0.0009
- 133
0.978
180
940
0.125
- 95
11.57
77
0.0009
- 135
0.977
180
950
0.141
- 91
11.28
68
0.0008
- 138
0.976
180
960
0.160
- 88
10.97
59
0.0008
- 136
0.976
180
970
0.183
- 86
10.62
50
0.0007
- 135
0.976
180
980
0.209
- 85
10.23
42
0.0006
- 133
0.976
180
990
0.238
- 85
9.83
34
0.0006
- 130
0.975
180
1000
0.268
- 86
9.41
26
0.0006
- 125
0.975
180
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
12
RF Device Data
Freescale Semiconductor
PACKAGE DIMENSIONS
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
RF Device Data
Freescale Semiconductor
13
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
14
RF Device Data
Freescale Semiconductor
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
RF Device Data
Freescale Semiconductor
15
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
16
RF Device Data
Freescale Semiconductor
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
RF Device Data
Freescale Semiconductor
17
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
18
RF Device Data
Freescale Semiconductor
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
RF Device Data
Freescale Semiconductor
19
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
20
RF Device Data
Freescale Semiconductor
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
RF Device Data
Freescale Semiconductor
21
PRODUCT DOCUMENTATION
Refer to the following documents to aid your design process.
Application Notes
• AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
• AN1949: Mounting Method for the MHVIC910HR2 (PFP - 16) and Similar Surface Mount Packages
• AN1955: Thermal Measurement Methodology of RF Power Amplifiers
• AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over - Molded Plastic Packages
Engineering Bulletins
• EB212: Using Data Sheet Impedances for RF LDMOS Devices
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
Description
0
Feb. 2007
• Initial Release of Data Sheet
1
May 2007
• Changed Device box to 960 MHz to reflect functional test frequency, p. 1
• Added Power Added Efficiency to GSM EDGE Application Typical Performances, p. 1
• Changed “5:1 VSWR, @ 28 Vdc” to “10:1 VSWR, @ 32 Vdc” in the Capable of Handling bullet, p. 1
• Added Footnote (1) to Quiescent Current Thermal Tracking bullet under Features section and to
Quiescent Current Temperature Compensation in Fig. 1, Functional Block Diagram, p. 1
• Added top - level, 2 - stage block diagram depiction to Fig. 2, Pin Connections; updated Note, p. 1
• Added Case Operating Temperature limit to the Maximum Ratings table and set limit to 150°C, p. 2
• Added Stage 1 and Stage 2 DC Electrical Characteristics tables, p. 2, 3
• In Table 6, Component Designations and Values, corrected Part Number ATC100B331JT500XT to
ATC100B331JT200XT for C24 capacitor, p. 4
• Updated Figs. 7 and 8, Power Gain versus Output Power, to remove non - variable IDQ value, p. 6
• Updated Fig. 9, Intermodulation Distortion Products versus Output Power, to show PEP and not CW;
corrected frequency value to show 100 kHz Tone Spacing, p. 7
• Updated graphical representation of Ideal/Actual in Fig. 11, Pulsed CW Output Power versus Input Power,
to show correct 3 and 6 dB compression points, p. 7
2
June 2007
• Removed Case Operating Temperature from Maximum Ratings table, p. 2. Case Operating Temperature
rating will be added to the Maximum Ratings table when parts’ Operating Junction Temperature is
increased to 225°C.
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
22
RF Device Data
Freescale Semiconductor
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1 - 8 - 1, Shimo - Meguro, Meguro - ku,
Tokyo 153 - 0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1 - 800 - 441 - 2447 or 303 - 675 - 2140
Fax: 303 - 675 - 2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2007. All rights reserved.
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
Document
Number:
RF
Device
Data MWE6IC9100N
Rev. 2, 6/2007
Freescale
Semiconductor
23
Similar pages