MITSUBISHI HVIGBT MODULES CM400DY-66H HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules HIGH POWER SWITCHING USE INSULATED TYPE CM400DY-66H ● IC ................................................................... 400A ● VCES ....................................................... 3300V ● Insulated Type ● 2-elements in a pack APPLICATION Inverters, Converters, DC choppers, Induction heating, DC to DC converters. OUTLINE DRAWING & CIRCUIT DIAGRAM Dimensions in mm 130 114 4 - M8 NUTS 57±0.25 20 57±0.25 C2 CM C1 E1 C1 140 124±0.25 G1 G2 E2 E1 E2 CIRCUIT DIAGRAM E1 G2 E2(C1) C2 G1 7.2 5 - M4 NUTS E2 C2 C2 40 E1 6 - φ 7 MOUNTING HOLES 36.3 24.5 48.8 53.6 15 61.5 5.7 18 39.5 LABEL 30 28 5 38 15 HVIGBT MODULES (High Voltage Insulated Gate Bipolar Transistor Modules) Mar. 2003 MITSUBISHI HVIGBT MODULES CM400DY-66H HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules HIGH POWER SWITCHING USE INSULATED TYPE MAXIMUM RATINGS (Tj = 25°C) Symbol VCES VGES IC ICM IE (Note 2) IEM (Note 2) PC (Note 3) Tj Tstg Viso Item Collector-emitter voltage Gate-emitter voltage Collector current Emitter current Maximum collector dissipation Junction temperature Storage temperature Isolation voltage — Mounting torque — Mass Conditions VGE = 0V VCE = 0V DC, TC = 60°C Pulse Ratings 3300 ±20 400 800 400 800 3400 –40 ~ +150 –40 ~ +125 6000 6.67 ~ 13.00 2.84 ~ 6.00 0.88 ~ 2.00 1.5 (Note 1) Pulse TC = 25°C, IGBT part (Note 1) — — Charged part to base plate, rms, sinusoidal, AC 60Hz 1min. Main terminals screw M8 Mounting screw M6 Auxiliary terminals screw M4 Typical value Unit V V A A A A W °C °C V N·m N·m N·m kg ELECTRICAL CHARACTERISTICS (Tj = 25°C) Symbol ICES VGE(th) IGES VCE(sat) Cies Coes Cres QG td (on) tr td (off) tf VEC (Note 2) trr (Note 2) Qrr (Note 2) Rth(j-c)Q Rth(j-c)R Rth(c-f) Note 1. 2. 3. 4. VCE = VCES, VGE = 0V Min — Limits Typ — IC = 40mA, VCE = 10V 4.5 6.0 7.5 V — 4.40 4.80 40 4.0 1.2 1.9 — — — — 3.30 — 100 — — 0.016 0.5 5.72 — — — — — 1.00 2.00 2.00 1.00 4.29 1.20 — 0.036 0.072 — µA Item Collector cutoff current Gate-emitter threshold voltage Gate-leakage current Collector-emitter saturation voltage Input capacitance Output capacitance Reverse transfer capacitance Total gate charge Turn-on delay time Turn-on rise time Turn-off delay time Turn-off fall time Emitter-collector voltage Reverse recovery time Reverse recovery charge Thermal resistance Contact thermal resistance Conditions VGE = VGES, VCE = 0V Tj = 25°C IC = 400A, VGE = 15V Tj = 125°C (Note 4) VCE = 10V VGE = 0V VCC = 1650V, IC = 400A, VGE = 15V VCC = 1650V, IC = 400A VGE1 = VGE2 = 15V RG = 7.5Ω Resistive load switching operation IE = 400A, VGE = 0V IE = 400A die / dt = –800A / µs Junction to case, IGBT part (Per 1/2 module) Junction to case, FWDi part (Per 1/2 module) Case to fin, conductive grease applied (Per 1/2 module) — — — — — — — — — — — — — — — — — Max 5 Unit mA V nF nF nF µC µs µs µs µs V µs µC K/W K/W K/W Pulse width and repetition rate should be such that the device junction temp. (Tj) does not exceed Tjmax rating. IE, VEC, trr, Qrr & die/dt represent characteristics of the anti-parallel, emitter to collector free-wheel diode. Junction temperature (T j) should not increase beyond 150°C. Pulse width and repetition rate should be such as to cause negligible temperature rise. HVIGBT MODULES (High Voltage Insulated Gate Bipolar Transistor Modules) Mar. 2003 MITSUBISHI HVIGBT MODULES CM400DY-66H HIGH POWER SWITCHING USE INSULATED TYPE HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules PERFORMANCE CURVES TRANSFER CHARACTERISTICS (TYPICAL) OUTPUT CHARACTERISTICS (TYPICAL) 800 800 VGE=15V VGE=10V 400 VGE=20V VGE=9V 200 0 2 4 6 VGE=8V VGE=7V 8 10 COLLECTOR CURRENT IC (A) VGE=14V VCE=10V 600 400 200 Tj = 25°C Tj = 125°C 0 0 4 8 12 16 20 COLLECTOR-EMITTER VOLTAGE VCE (V) GATE-EMITTER VOLTAGE VGE (V) COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) 8 VGE=15V 6 4 2 Tj = 25°C Tj = 125°C 0 0 200 400 600 COLLECTOR-EMITTER SATURATION VOLTAGE VCE(sat) (V) COLLECTOR-EMITTER SATURATION VOLTAGE VCE(sat) (V) VGE=11V VGE=13V 600 0 EMITTER-COLLECTOR VOLTAGE VEC (V) VGE=12V 8 IC = 800A IC = 400A 6 4 IC = 160A 2 0 4 8 12 16 20 GATE-EMITTER VOLTAGE VGE (V) FREE-WHEEL DIODE FORWARD CHARACTERISTICS (TYPICAL) CAPACITANCE CHARACTERISTICS (TYPICAL) 6 4 2 Tj = 25°C Tj = 125°C 0 Tj = 25°C COLLECTOR CURRENT IC (A) 8 0 10 0 800 200 400 600 EMITTER CURRENT IE (A) 800 CAPACITANCE Cies, Coes, Cres (nF) COLLECTOR CURRENT IC (A) Tj=25°C 102 7 5 3 2 101 7 5 3 2 Cies Coes 100 Cres 7 5 3 VGE = 0V, Tj = 25°C 2 Cies, Coes : f = 100kHz : f = 1MHz Cres –1 10 10–1 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102 COLLECTOR-EMITTER VOLTAGE VCE (V) Mar. 2003 MITSUBISHI HVIGBT MODULES CM400DY-66H td(on) tr 3 2 10–1 7 5 SWITCHING ENERGY (J/P) td(off) tf 5 7 102 2 3 5 7 103 2 3 REVERSE RECOVERY TIME trr (µs) 100 7 5 REVERSE RECOVERY CHARACTERISTICS OF FREE-WHEEL DIODE (TYPICAL) 101 103 7 7 5 5 Irr 3 3 2 2 100 7 5 102 7 5 trr 3 2 3 VCC = 1650V, Tj = 125°C 2 Inductive load VGE = ±15V, RG = 7.5Ω 10–1 5 5 7 102 2 3 5 7 103 2 3 101 EMITTER CURRENT IE (A) HALF-BRIDGE SWITCHING ENERGY CHARACTERISTICS (TYPICAL) 2.0 VCC = 1650V, VGE = ±15V, RG = 7.5Ω, Tj = 125°C, Inductive load 1.5 HALF-BRIDGE SWITCHING ENERGY CHARACTERISTICS (TYPICAL) 5.0 VCC = 1650V, IC = 400A, VGE = ±15V, Tj = 125°C, 4.0 Inductive load Eon 1.0 Eoff 0.5 Eon 3.0 2.0 1.0 Eoff Erec 0 0 200 400 600 0 800 20 40 60 GATE RESISTANCE (Ω) GATE CHARGE CHARACTERISTICS (TYPICAL) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth(j – c) VCC = 1650V IC = 400A 16 12 8 4 0 0 CURRENT (A) 20 GATE-EMITTER VOLTAGE VGE (V) 5 COLLECTOR CURRENT IC (A) SWITCHING ENERGY (J/P) SWITCHING TIMES (µs) HALF-BRIDGE SWITCHING TIME CHARACTERISTICS (TYPICAL) 5 VCC = 1650V, VGE = ±15V 3 RG = 7.5Ω, Tj = 125°C 2 Inductive load 0 1000 2000 3000 GATE CHARGE QG (nC) 4000 REVERSE RECOVERY CURRENT Irr (A) HIGH POWER SWITCHING USE INSULATED TYPE HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules 101 7 5 3 2 100 7 5 3 2 80 Single Pulse TC = 25°C Rth(j – c)Q = 0.036K/ W Rth(j – c)R = 0.072K/ W (Per 1/2 module) 10–1 7 5 3 2 10–2 10–3 2 3 5 7 10–2 2 3 5 7 10–1 2 3 5 7 100 TIME (s) Mar. 2003