MITSUBISHI ICs (Monitor) M52755FP WIDE BAND ANALOG SWITCH DESCRIPTION PIN CONFIGURATION (TOP VIEW) The M52755FP is a semiconductor integrated circuit for the RGBHV interface. The device features switching signals input from two types of image sources and outputting the signals to the CRT VCC1 (R) 1 display, etc. Synchronous signals, meeting a frequency band of INPUT1 (R) 2 10kHz to 200kHz, are output at TTL. The frequency band of video VCC1 (G) 3 signals is 250MHz, acquiring high-resolution images, and are NC 4 33 NC optimum as an interface IC with high-resolution CRT display and INPUT1 (G) 5 32 NC various new media. 36 Vcc2 (R) 35 OUTPUT (R) 34 GND VCC1 (B) 6 31 Vcc2 (G) 30 OUTPUT (G) FEATURES INPUT1 (H) 8 29 GND • INPUT1 (V) 9 • • Frequency band: RGB......................................................250MHz HV.............................................10Hz to 200kHz Input level:RGB.........................................................0.7V P-P (typ.) HV TTL input.............................3.5VO-P (both channel) Only the G channel is provided with sync-on video output. The TTL format is adopted for HV output. M52755FP INPUT1 (B) 7 GND 10 INPUT2 (R) 11 28 Vcc2 (B) 27 OUTPUT (B) 26 GND GND 12 24 VCC NC 14 23 NC APPLICATION Display monitor RECOMMENDED OPERATING CONDITION Supply voltage range........................................................4.5 to 5.5V 25 OUTPUT (for sync on G) INPUT2 (G) 13 GND 15 22 OUTPUT (H) INPUT2 (B) 16 21 OUTPUT (V) INPUT2 (H) 17 20 GND INPUT2 (V) 18 19 SWITCH Rated supply voltage..................................................................5.0V Outline 36P2R-A NC : NO CONNECTION BLOCK DIAGRAM OUTPUT (R) Vcc2 (R) GND NC OUTPUT OUTPUT (B) (for sync on G) Vcc2 (G) GND VCC OUTPUT (G) Vcc2 (B) NC GND NC OUTPUT (V) SWITCH OUTPUT (H) GND 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 NC NC INPUT1 (H) GND INPUT1 (R) VCC1 (B) GND INPUT2 (G) INPUT1 (V) INPUT1 (G) INPUT1 (B) VCC1 (R) INPUT2 (R) VCC1 (G) 1 INPUT2 (B) INPUT2 (V) GND INPUT2 (H) MITSUBISHI ICs (Monitor) M52755FP WIDE BAND ANALOG SWITCH ABSOLUTE MAXIMUM RATINGS (Ta=25°C) Symbol VCC Pd Topr Tstg Vopr Vopr’ Surge Parameter Supply voltage Power dissipation Ambient temperature Storage temperature Recommended supply voltage Recommended supply voltage range Electrostatic discharge Ratings Unit 7.0 1603 -20 to +85 -40 to +150 5.0 4.5 to 5.5 ±200 V mW °C °C V V V ELECTRICAL CHARACTERISTICS (VCC=5V, Ta=25°C, unless otherwise noted) Test conditions Symbol ICC1 ICC2 Parameter Circuit current1 (no signal) Circuit current2 (no signal) VCC Test point (V) (s) VCC A 5 A 5 Input Limits SW SW2 SW4 SW6 SW7 SW8 SW10 SW12 SW14 SW15 SW16 SW17 Rin1 Gin1 Bin1 Hin1 Vin1 Rin2 Gin2 Bin2 Hin2 Vin2 Switch b − b − b − b − b − b − b − b − b − b − b − b − b − b − b − b − b − b − b b − GND b a − OPEN Unit Min. Typ. Max. 46 66 86 mA 46 66 86 mA (RGB SW) VDC1 Output DC voltage1 T.P.31 T.P.28 T.P.25 5 b − b − b − b − b − b − b − b − b − b b − GND 1.85 2.05 2.25 V VDC2 Output DC voltage2 T.P.31 T.P.28 T.P.25 5 b − b − b − b − b − b − b − b − b − b − 1.85 2.05 2.25 V VDC3 Output DC voltage3 T.P.23 5 b − b − b − b − b − b − b − b − b − b b − GND 0.75 1.15 1.55 V VDC4 Output DC voltage4 T.P.23 5 b − b − b − b − b − b − b − b − b − b − 0.75 1.15 1.55 V Vimax1 Maximum allowable input1 T.P.2 T.P.4 T.P.6 5 b − b − b − b − b − b − b b − GND 2.0 2.4 − VP-P Vimax2 Maximum allowable input2 T.P.10 T.P.12 T.P.14 5 b − b abb bab bba b − SG1 SG1 SG1 − b − 2.0 2.4 − VP-P GV1 Voltage gain1 T.P.31 T.P.28 T.P.25 5 b − b − b b − GND 0.3 0.9 1.5 dB ∆GV1 Relative voltage gain1 -0.4 0 0.4 dB 0.3 0.9 1.5 dB -0.4 0 0.4 dB -0.4 0.2 0.8 dB -0.4 0.2 0.8 dB -1.0 0 1.0 dB -1.0 0 1.0 dB -1.0 0 1.0 dB -1.0 0 1.0 dB b b − GND -3.0 -1.5 1.0 dB b − -3.0 -1.5 1.0 dB GV2 Voltage gain2 ∆GV2 Relative voltage gain2 abb bab bba SG1 SG1 SG1 b − b − b − abb bab bba SG2 SG2 SG2 b − b − b − b − a OPEN a OPEN a OPEN Relative to measured values above T.P.31 T.P.28 T.P.25 5 GV3 Voltage gain3 T.P.23 5 GV4 Voltage gain4 T.P.23 5 FC1 Freq. characteristic1 (100MHz) T.P.31 T.P.28 T.P.25 5 ∆FC1 Relative Freq. characteristic1 (100MHz) FC2 Freq. characteristic2 (100MHz) ∆FC2 Relative Freq. characteristic2 (100MHz) FC3 Freq. characteristic3 (250MHz) T.P.31 T.P.28 T.P.25 5 FC4 Freq. characteristic4 (250MHz) T.P.31 T.P.28 T.P.25 5 b − b − b − b − b abb bab bba b − SG2 SG2 SG2 − Relative to measured values above b b b b b b b a − − − − − − SG2 − b b b b b b b a − − − − − − SG2 − abb bab bba SG4 SG4 SG4 b − b − b − b − b − b − a OPEN b − b − b b − GND b a − OPEN b − b b − GND Relative to measured values above T.P.31 T.P.28 T.P.25 5 b − b − b − b − b abb bab bba b − SG4 SG4 SG4 − b − a OPEN Relative to measured values above abb bab bba SG5 SG5 SG5 b − b − b − b − b − b − b − b − b − b − b abb bab bba b − SG5 SG5 SG5 − a OPEN 2 MITSUBISHI ICs (Monitor) M52755FP WIDE BAND ANALOG SWITCH ELECTRICAL CHARACTERISTICS (cont.) Test conditions Symbol Parameter VCC Test point (V) (s) VCC Input SW2 SW4 SW6 SW7 SW8 SW10 SW12 SW14 SW15 SW16 SW17 Rin1 Gin1 Bin1 Hin1 Vin1 Rin2 Gin2 Bin2 Hin2 Vin2 Switch Crosstalk between two inputs1 (10MHz) T.P.31 T.P.28 T.P.25 5 Crosstalk between two inputs2 (10MHz) T.P.31 T.P.28 T.P.25 5 Crosstalk between two inputs3 (100MHz) T.P.31 T.P.28 T.P.25 5 Crosstalk between two inputs4 (100MHz) T.P.31 T.P.28 T.P.25 5 C.T.C.1 Crosstalk between channels1 (10MHz) T.P.31 T.P.28 T.P.25 5 C.T.C.2 Crosstalk between channels2 (10MHz) T.P.31 T.P.28 T.P.25 5 C.T.C.3 Crosstalk between channels3 (100MHz) T.P.31 T.P.28 T.P.25 5 C.T.C.4 Crosstalk between channels4 (100MHz) T.P.31 T.P.28 T.P.25 5 T.P.31 T.P.28 T.P.25 5 Tf1 T.P.31 T.P.28 T.P.25 5 Tr2 T.P.31 T.P.28 T.P.25 5 b − b − T.P.31 T.P.28 T.P.25 5 b − High level output voltage1 High level output voltage2 Low level output voltage1 T.P.19 T.P.20 5 T.P.19 T.P.20 5 T.P.19 T.P.20 5 Low level output voltage2 Input selectional voltage1 T.P.19 T.P.20 5 T.P.7 T.P.8 5 Vith2 Input selectional voltage2 T.P.15 T.P.16 5 Trd1 Rising delay time1 T.P.19 T.P.20 5 Trd2 Rising delay time2 T.P.19 T.P.20 5 Tfd1 Falling delay time1 T.P.19 T.P.20 5 Tfd2 Falling delay time2 T.P.19 T.P.20 5 b − b − b − b − b − b − b − b − b − b − Vsth1 Switching selectional voltage1 T.P.17 5 Vsth2 Switching selectional voltage2 T.P.17 5 C.T.I.1 C.T.I.2 C.T.I.3 C.T.I.4 Tr1 Pulse characteristic1 Pulse characteristic2 Tf2 abb bab bba SG3 SG3 SG3 b − b − b − abb bab bba SG4 SG4 SG4 b − b − b − abb bab bba SG3 SG3 SG3 b − b − b − abb bab bba SG4 SG4 SG4 Limits SW Unit Min. Typ. Max. b − b − b − b GND ↓ − − -60 -50 dB b − b abb bab bba b − SG3 SG3 SG3 − b GND ↓ − − -60 -50 dB b − b − b − b GND ↓ − − -40 -35 dB b − b abb bab bba b − SG4 SG4 SG4 − b GND ↓ − − -40 -35 dB b − b − b b − GND − -50 -40 dB b − b abb bab bba b − SG3 SG3 SG3 − b − − -50 -40 dB b − b − b b − GND − -30 -25 dB − -30 -25 dB b − b − b − b − b − b − b − b − b − b − b − b − b − b − OPEN OPEN OPEN OPEN a OPEN b − b − b − b − b abb bab bba b − SG4 SG4 SG4 − b − a a a b − b − b − b − b − b − b b − GND − 1.6 2.5 nsec b − b − b − b − b − b − b b − GND − 1.6 2.5 nsec b − b − b b a a a − SG6 SG6 SG6 − b − OPEN − 1.6 2.5 nsec b − b − b − b b a a a − SG6 SG6 SG6 − b − OPEN − 1.6 2.5 nsec b − b − b − b − b − b − b − b − b − b − b c c − 5.0V 5.0V b b b − − − b c c − 0V 0V b b b − − − b c c − Variable Variable b b b − − − b a a − SG7 SG7 b b b − − − b a a − SG7 SG7 b b b − − − 4.5 5.0 − V 4.5 5.0 − V − 0.2 0.5 V − 0.2 0.5 V 2.0 2.5 3.0 V 2.0 2.5 3.0 V − 100 150 nsec − 100 150 nsec − 50 100 nsec − 50 100 nsec 0.5 1.5 2.0 V 0.5 1.5 2.0 V SG6 SG6 SG6 a a a SG6 SG6 SG6 a OPEN a a (HV SW) VoH1 VoH2 VoL1 VoL2 Vith1 3 b − b − b − b − b − b − b − b − b − b − b − b − b − b − b − b − b − b − b − b − b a a a a a SG1 SG1 SG1 SG7 SG7 − b − b − b c − 5.0V 5.0V OPEN b b b b − − − GND b c c a − 0V 0V OPEN b b b b − − − GND a b c c − Variable Variable OPEN b b b b − − − GND a b a a − SG7 SG7 OPEN b b b b − − − GND a b a a − SG7 SG7 OPEN b b b c − − − b − b − b − b − b − b b − GND a c b a a a a a − SG1 SG1 SG1 SG7 SG7 c MITSUBISHI ICs (Monitor) M52755FP WIDE BAND ANALOG SWITCH ELECTRICAL CHARACTERISTICS TEST METHOD 3. The frequency characteristic FC1 is It omits the SW.No accorded with signal input pin because it is FC1= 20 LOG already written in Table. VOR2 [VP-P] VOR1 [VP-P] [dB] SW A, SW1, SW3, SW5 is in side a if there is not defined specially. 4. The method as same as 2 and 3, measure the frequency F C1 ICC1, ICC2 Circuit current (no signal) The condition is shown as Table 1. Set SW19 to GND (or OPEN) and SW A to side b, measure the current by current meter A. The when input signal to Pin 5, 7. 5. The difference between of each channel frequency characteristic is as ∆FC1. current is as ICC1 (ICC2). 6. Set SW19 to OPEN, measure FC2, ∆FC2. VDC1, VDC2 Output DC voltage Set SW19 to GND (or OPEN), measure the DC voltage of T.P.31 FC3, FC4 Freq. characteristic By the same way as Note7 measure the F C3, FC4 when SG5 of (T.P.28, T.P.25) when there is no signal input. The DC voltage is as input signal. VDC1 (or VDC2). C.T.I.1, C.T.I.2 Crosstalk between two input VDC3, VDC4 Output DC voltage 1. The condition is shown as Table. This test is by active prove. Measure the DC voltage of T.P.23 same as note2, the DC voltage is 2. Set SW19 to GND, SG3 as the input signal of Pin 2. Measure the amplitude output from T.P.31. The amplitude is as VOR3. as VDC3 (or VDC4). 3. Set SW19 to OPEN, measure the amplitude output from T.P.31. The amplitude is as VOR3'. Vimax1, Vimax2 Maximum allowable input Set SW19 to GND, SG1 as the input signal of Pin 2. Rising up the 4. The crosstalk between two inputs C.T.I.1 is amplitude of SG1 slowly, read the amplitude of input signal when C.T.I.1= 20 LOG the output waveform is distorted. The amplitude is as Vi max1. And measure Vimax1 when SG2 as the input signal of Pin 5, Pin 7 in same way. Next, set SW to OPEN, measure Vi max2 when SG2 as the input signal of Pin11, 13, 16. VOR3 [VP-P] [dB] 5. By the same way, measure the crosstalk between two inputs when SG3 as the input signal of Pin 5, Pin 7. 6. Next, set SW19 to OPEN, SG3 as the input signal of Pin 11, measure the amplitude output from T.P.31. Theamplitude is as GV1, ∆GV1, GV2, ∆GV2 VOR4. 1. The condition is shown as Table. 7. Set SW19 to GND, measure the amplitude output from T.P.31. 2. Set SW19 to GND, SG2 as the input signal of Pin 2. At this time, read the amplitude output from T.P 31. The amplitude is as VOR1. The amplitude is as VOR4'. 8. The crosstalk between two inputs C.T.I.2 is 3. Voltage gain GV1 is GV1= 20 LOG VOR3' [VP-P] VOR1 [VP-P] 0.7 [VP-P] C.T.I.2= 20 LOG [dB] VOR4' [VP-P] VOR4 [VP-P] [dB] 9. By the same way, measure the crosstalk between channels 4. The method as same as 2 and 3, measure the voltage gain G V1 when SG3 as the input signal of Pin 13,16. when SG2 as the input signal of Pin 5, 7. 5. The difference of each channel relative voltage gain is as ∆GV1. C.T.I.3, C.T.I.4 Crosstalk between two input 6. Set SW19 to OPEN, measure GV2, ∆GV12 in the same way. Set SG4 as the input signal, and then the same method as table, measure C.T.I.3, C.T.I.4. GV3, GV4, Voltage gain 1. The condition is shown as table. This test is by active probe. C.T.C.1, C.T.C.2 Crosstalk between channel 2. Measure the amplitude output from T.P.23. 1. The condition is as Table. This test is by active prove. 3. Measure the GV3, GV4 by the same way as GV1, ∆GV1, GV2, 2. Set SW19 to GND, SG3 as the input signal of Pin 2. Measure the ∆GV2. amplitude output from T.P.31. The amplitude is as VOR5. 3. Next, measure T.P.28, T.P.25 in the same state, and the FC1, ∆FC1, FC2, ∆FC2 1. The condition is shown as table. This test is by active probe. amplitude is as VOG5, VOB5. 4. The crosstalk between channels C.T.C.1 is 2. Set SW19 to GND, SG2 as the input signal of Pin 2. Measure the amplitude output from T.P.31. The amplitude is as VOR1. By the C.T.C.1= 20 LOG VOG5 or VOB5 VOR5 [dB] same way, measure the output when SG4 is as input signal of Pin 2, the output is as VOR2. 4 MITSUBISHI ICs (Monitor) M52755FP WIDE BAND ANALOG SWITCH 5. Measure the crosstalk between channels when SG3 is as the input signal of Pin 5, Pin 7. VoL1, VoL2 Low level output voltage The condition is as Table. Set SW19 to GND (OPEN), input 0V at 6. Next, set SW19 to OPEN, SG3 as the input signal of Pin11, measure the amplitude output from T.P.31. The amplitude is as input terminal. Measure the output voltage, the voltage is as VoL1 (VoL2). VOR6. 7. Next, measure the amplitude output from T.P.28, T.P.25 in the same state. The amplitude is as VOG6, VOB6. The condition is as table. Set SW19 to GND (OPEN), increasing 8. The crosstalk between channels C.T.C.2 is VOG6 or VOB6 C.T.C.2= 20 LOG VOR6 Vith1, Vith2 Input selectional voltage gradually the voltage of input terminal from 0V, measure the voltage [dB] 9. By the same way, measure the crosstalk between channels when input signal to Pin13, 16. of input terminal when output terminal is 4.5V. The input voltage is as Vith1 (Vith 2). Trd1, Trd2 Rising delay time Tfd1, Tfd2 Falling delay time The condition is as table. Set SW19 to GND (OPEN), SG7 is as the C.T.C.3, C.T.C.4 Crosstalk between channel Set SG4 as the input signal, and the same method as table, measure C.T.C.3, C.T.C.4. input signal of input terminal, measure the waveform of output. Rising delay time is as Trd1 (Trd2). Falling delay time is as Tfd1 (Tfd2). Reference to the Fig. as shown below. Tr1, Tf1, Tr2, Tf2 Pulse characteristic 50% 1. The condition is as Table. Set SW19 to GND (or OPEN). 2. The rising of 10% to 90% for input pulse is Tri, the falling of SG7 Trd Tfd 10% to 90% for input pulse is Tfi. 3. Next, the rising of 10% to 90% for output pulse is Tro, the falling of 10% to 90% for output pulse is Tfo. 50% Output waveform 4. The pulse characteristic Tr1, Tf1 ( Tr2, Tf2 ) is 100% 90% Vsth1, Vsth2 Switching selectional voltage 1. The condition is as table. SG1 is as the input signal of Pin 2, 10% 0% Tf Tr Pin5, Pin7, and SG7 is as the input signal of Pin8, Pin9. There is no input at another pins. 2. Input 0V at Pin19, confirm that there are signals output from Tr1 (Tr2)=√(Tro)2 - (Tri)2 2 Tf1 (Tf2)=√(Tfo) - (Tfi)2 (nsec) (nsec) T.P.19, T.P.20, T.P.23, T.P.25, T.P.28, T.P.31. 3. Increase gradually the voltage of terminal Pin19. Read the voltage when there is no signal output from the terminals listed as above. The voltage is as Vsth1. VoH1, VoH2 High level output voltage 4. SG1 as the input signal of Pin11, Pin13, Pin16, and SG7 as the The condition is as Table. Set SW19 to GND (OPEN), input 5V at input signal of Pin17, Pin18. There is no input at another pins. input terminal. Measure the output voltage, the voltage is as VOH1 5. Inputs 5V at Pin19, confirm that there is no signal output from (VOH2). T.P.19, T.P.20, T.P.23, T.P.25, T.P.28, T.P.31. 6. Decreasing gradually the voltage of terminal Pin 19. Read the voltage when there are signals output from the terminals listed as above. The voltage is as Vsth2. 5 MITSUBISHI ICs (Monitor) M52755FP WIDE BAND ANALOG SWITCH INPUT SIGNAL SG No. Signals Sine wave (f=60kHz, 0.7VP-P, amplitude variable) SG1 SG2 SG3 SG4 SG5 0.7VP-P(amplitude variable) Sine wave (f=1MHz, amplitude 0.7V P-P) Sine wave (f=10MHz, amplitude 0.7V P-P) Sine wave (f=100MHz, amplitude 0.7V P-P) Sine wave (f=250MHz, amplitude 0.7V P-P) Pulse with amplitude 0.7VP-P (f=60kHz, duty80%) SG6 0.7VP-P Square wave (Amplitude 5.0VO-P TTL, f=60kHz, duty50%) 5V SG7 0V NOTE HOW TO USE THIS IC 6. Switch (Pin 17) can be changed when this terminal is GND or 1. R, G, B input signal is 0.7VP-P of standard video signal. OPEN When GND : Signal output from input 1 2. H, V input is 5.0V TTL type. When OPEN : Signal output from input 2 When the switch is being used as Fig.3 3. Input signal with sufficient low inpedance to input terminal. 0 to 0.5V : Signal output from input 1 2 to 5V 4. The terminal of H, V output pin are shown as Fig.1. It is possible : Signal output from input 2 It is not allowable to set voltage higher than V CC. to reduce rise time by insert the resister between Vcc line and H, V 17 output Pin, but set the value of resister in order that the current is under 7.5mA. Setting the value of R is more than 2kΩ as shown in Fig.1. Fig.3 5V 5V R 1kΩ NOTICE OF MAKING PRINTED CIRCUIT BOARD. Please notice following as shown below. It will maybe cause 1<7.5mA something oscillation because of the P.C.B. layout of the wide band analog switch. ⋅ The distance between resister and output pin is as short as Fig.1 possible when insert a output pull-down resister. 5. The terminal of R,G,B output pin (Pin 25, 28, 31). It is possible to ⋅ The capitance of output terminal as small as possible. add a pull-up resister according as drive ability. but set the value of ⋅ Set the capitance between Vcc and GND near the pins if possible. resister in order that the current is under 10mA. Setting the value of ⋅ Using stable power-source (if possible the separated power- R is more than 500Ω as shown in Fig.2. source will be better). 5V ⋅ It will reduce the oscillation when add a resister that is tens of 1<10mA ohms between output pin and next stage. ⋅ Assign an area as large as possible for grounding. 50Ω 430Ω R Fig.2 6 MITSUBISHI ICs (Monitor) M52755FP WIDE BAND ANALOG SWITCH TEST CIRCUIT A 0.01µ a 47µ b SWA VCC5V OPEN TP35 R 0.01µ TP30 G TP25 GOUT (for sync on G) TP27 B 34 33 32 SW19 47µ 0.01µ 35 TP21 V 0.01µ 0.01µ 36 TP22 H 31 30 29 28 27 26 25 24 23 22 21 20 19 11 12 13 14 15 16 17 18 a b c M52755FP 1 2 3 4 TP2 5 6 TP7 TP5 TP8 9 10 TP11 TP9 47µ a SW2 100µ b TP17 TP18 47µ 0.01µ 0.01µ TP16 TP13 0.01µ 0.01µ 47µ 8 7 0.01µ SW5 a 100µ 0.01µ b SW7 a 100µ SW9 SW11 SW8 c a ba b 100µ 0.01µ 0.01µ c a 100µ SW13 b b a 0.01µ 100µ SW16 b a SW17 SW18 c a b a b SG1 SG2 SG3 SG4 SG5 SG6 c b SG7 Units Resistance : Ω Capacitance : F 7 MITSUBISHI ICs (Monitor) M52755FP WIDE BAND ANALOG SWITCH TYPICAL CHARACTERISTICS THERMAL DERATING (MAXIMUM RATING) POWER DISSIPATION Pd (mW) 1250 1068 1000 750 500 250 -20 0 25 50 75 85 100 125 150 AMBIENT TEMPERATURE Ta (°C) DESCRIPTION OF PIN Pin No. 1 3 6 Name VCC1 (R) VCC1 (G) VCC1 (B) DC voltage (V ) Peripheral circuit of pins 5.0 − Remarks 800 2 5 7 Input1 (R) Input1 (G) Input1 (B) Input signal with low impedance. 1.5 620 2.2V 2.59mA Input pulse between 3V and 5V. 8 9 Input1 (H) Input1 (V) 3 to 5V − 0V 0.2mA 10, 12, 15, 20, GND 26, 29, 34 GND − 8 MITSUBISHI ICs (Monitor) M52755FP WIDE BAND ANALOG SWITCH DESCRIPTION OF PIN (cont.) Pin No. Name DC voltage (V ) Peripheral circuit of pins Remarks 800 11 13 16 Input2 (R) Input2 (G) Input2 (B) Input signal with low impedance. 1.5 2.2V 620 2.59mA Input pulse between 3V and 5V. 17 18 Input2 (H) Input2 (V) 3 to 5V − 0V 0.2mA 10k 12k 19 Switch 13k Output (V) Output (H) − 24 VCC (H, V, Switch) 5 − NC − − 25 27 30 35 Output (Sync onG) Output (B) Output (G) Output (R) 9 VCC2 (B) VCC2 (G) VCC2 (R) Output impedance is built-in. 1.15 2.05 5 Output impedance is built-in. 50 50 23 430 28 31 36 2.3V 1k 21 22 4, 14, 23, 32, 33 Switch by OPEN and GND. 7.3k 2.6 25, 28, 31 − 500