MITSUBISHI M52755FP

MITSUBISHI ICs (Monitor)
M52755FP
WIDE BAND ANALOG SWITCH
DESCRIPTION
PIN CONFIGURATION (TOP VIEW)
The M52755FP is a semiconductor integrated circuit for the
RGBHV interface. The device features switching signals input from
two types of image sources and outputting the signals to the CRT
VCC1 (R) 1
display, etc. Synchronous signals, meeting a frequency band of
INPUT1 (R) 2
10kHz to 200kHz, are output at TTL. The frequency band of video
VCC1 (G) 3
signals is 250MHz, acquiring high-resolution images, and are
NC 4
33 NC
optimum as an interface IC with high-resolution CRT display and
INPUT1 (G) 5
32 NC
various new media.
36 Vcc2 (R)
35 OUTPUT (R)
34 GND
VCC1 (B) 6
31 Vcc2 (G)
30 OUTPUT (G)
FEATURES
INPUT1 (H) 8
29 GND
•
INPUT1 (V) 9
•
•
Frequency band: RGB......................................................250MHz
HV.............................................10Hz to 200kHz
Input level:RGB.........................................................0.7V P-P (typ.)
HV TTL input.............................3.5VO-P (both channel)
Only the G channel is provided with sync-on video output.
The TTL format is adopted for HV output.
M52755FP
INPUT1 (B) 7
GND 10
INPUT2 (R) 11
28 Vcc2 (B)
27 OUTPUT (B)
26 GND
GND 12
24 VCC
NC 14
23 NC
APPLICATION
Display monitor
RECOMMENDED OPERATING CONDITION
Supply voltage range........................................................4.5 to 5.5V
25 OUTPUT (for sync on G)
INPUT2 (G) 13
GND 15
22 OUTPUT (H)
INPUT2 (B) 16
21 OUTPUT (V)
INPUT2 (H) 17
20 GND
INPUT2 (V) 18
19 SWITCH
Rated supply voltage..................................................................5.0V
Outline 36P2R-A
NC : NO CONNECTION
BLOCK DIAGRAM
OUTPUT (R)
Vcc2 (R)
GND
NC
OUTPUT
OUTPUT (B) (for sync on G)
Vcc2 (G)
GND
VCC
OUTPUT (G)
Vcc2 (B)
NC
GND
NC
OUTPUT (V)
SWITCH
OUTPUT (H)
GND
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
NC
NC
INPUT1 (H)
GND
INPUT1 (R)
VCC1 (B)
GND
INPUT2 (G)
INPUT1 (V)
INPUT1 (G)
INPUT1 (B)
VCC1 (R)
INPUT2 (R)
VCC1 (G)
1
INPUT2 (B)
INPUT2 (V)
GND
INPUT2 (H)
MITSUBISHI ICs (Monitor)
M52755FP
WIDE BAND ANALOG SWITCH
ABSOLUTE MAXIMUM RATINGS (Ta=25°C)
Symbol
VCC
Pd
Topr
Tstg
Vopr
Vopr’
Surge
Parameter
Supply voltage
Power dissipation
Ambient temperature
Storage temperature
Recommended supply voltage
Recommended supply voltage range
Electrostatic discharge
Ratings
Unit
7.0
1603
-20 to +85
-40 to +150
5.0
4.5 to 5.5
±200
V
mW
°C
°C
V
V
V
ELECTRICAL CHARACTERISTICS (VCC=5V, Ta=25°C, unless otherwise noted)
Test conditions
Symbol
ICC1
ICC2
Parameter
Circuit current1
(no signal)
Circuit current2
(no signal)
VCC
Test
point (V)
(s) VCC
A
5
A
5
Input
Limits
SW
SW2 SW4 SW6 SW7 SW8 SW10 SW12 SW14 SW15 SW16 SW17
Rin1 Gin1 Bin1 Hin1 Vin1 Rin2 Gin2 Bin2 Hin2 Vin2 Switch
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
b
− GND
b
a
− OPEN
Unit
Min.
Typ.
Max.
46
66
86
mA
46
66
86
mA
(RGB SW)
VDC1
Output DC voltage1
T.P.31
T.P.28
T.P.25
5
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
b
− GND
1.85
2.05
2.25
V
VDC2
Output DC voltage2
T.P.31
T.P.28
T.P.25
5
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
1.85
2.05
2.25
V
VDC3
Output DC voltage3
T.P.23
5
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
b
− GND
0.75
1.15
1.55
V
VDC4
Output DC voltage4
T.P.23
5
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
0.75
1.15
1.55
V
Vimax1
Maximum allowable
input1
T.P.2
T.P.4
T.P.6
5
b
−
b
−
b
−
b
−
b
−
b
−
b
b
− GND
2.0
2.4
−
VP-P
Vimax2
Maximum allowable
input2
T.P.10
T.P.12
T.P.14
5
b
−
b abb bab bba b
− SG1 SG1 SG1 −
b
−
2.0
2.4
−
VP-P
GV1
Voltage gain1
T.P.31
T.P.28
T.P.25
5
b
−
b
−
b
b
− GND
0.3
0.9
1.5
dB
∆GV1
Relative voltage gain1
-0.4
0
0.4
dB
0.3
0.9
1.5
dB
-0.4
0
0.4
dB
-0.4
0.2
0.8
dB
-0.4
0.2
0.8
dB
-1.0
0
1.0
dB
-1.0
0
1.0
dB
-1.0
0
1.0
dB
-1.0
0
1.0
dB
b
b
− GND
-3.0
-1.5
1.0
dB
b
−
-3.0
-1.5
1.0
dB
GV2
Voltage gain2
∆GV2
Relative voltage gain2
abb bab bba
SG1 SG1 SG1
b
−
b
−
b
−
abb bab bba
SG2 SG2 SG2
b
−
b
−
b
−
b
−
a
OPEN
a
OPEN
a
OPEN
Relative to measured values above
T.P.31
T.P.28
T.P.25
5
GV3
Voltage gain3
T.P.23
5
GV4
Voltage gain4
T.P.23
5
FC1
Freq. characteristic1
(100MHz)
T.P.31
T.P.28
T.P.25
5
∆FC1
Relative Freq.
characteristic1 (100MHz)
FC2
Freq. characteristic2
(100MHz)
∆FC2
Relative Freq.
characteristic2 (100MHz)
FC3
Freq. characteristic3
(250MHz)
T.P.31
T.P.28
T.P.25
5
FC4
Freq. characteristic4
(250MHz)
T.P.31
T.P.28
T.P.25
5
b
−
b
−
b
−
b
−
b abb bab bba b
− SG2 SG2 SG2 −
Relative to measured values above
b
b
b
b
b
b
b
a
−
−
−
−
−
− SG2 −
b
b
b
b
b
b
b
a
−
−
−
−
−
− SG2 −
abb bab bba
SG4 SG4 SG4
b
−
b
−
b
−
b
−
b
−
b
−
a
OPEN
b
−
b
−
b
b
− GND
b
a
− OPEN
b
−
b
b
− GND
Relative to measured values above
T.P.31
T.P.28
T.P.25
5
b
−
b
−
b
−
b
−
b abb bab bba b
− SG4 SG4 SG4 −
b
−
a
OPEN
Relative to measured values above
abb bab bba
SG5 SG5 SG5
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b abb bab bba b
− SG5 SG5 SG5 −
a
OPEN
2
MITSUBISHI ICs (Monitor)
M52755FP
WIDE BAND ANALOG SWITCH
ELECTRICAL CHARACTERISTICS (cont.)
Test conditions
Symbol
Parameter
VCC
Test
point (V)
(s) VCC
Input
SW2 SW4 SW6 SW7 SW8 SW10 SW12 SW14 SW15 SW16 SW17
Rin1 Gin1 Bin1 Hin1 Vin1 Rin2 Gin2 Bin2 Hin2 Vin2 Switch
Crosstalk between two
inputs1 (10MHz)
T.P.31
T.P.28
T.P.25
5
Crosstalk between two
inputs2 (10MHz)
T.P.31
T.P.28
T.P.25
5
Crosstalk between two
inputs3 (100MHz)
T.P.31
T.P.28
T.P.25
5
Crosstalk between two
inputs4 (100MHz)
T.P.31
T.P.28
T.P.25
5
C.T.C.1
Crosstalk between
channels1 (10MHz)
T.P.31
T.P.28
T.P.25
5
C.T.C.2
Crosstalk between
channels2 (10MHz)
T.P.31
T.P.28
T.P.25
5
C.T.C.3
Crosstalk between
channels3 (100MHz)
T.P.31
T.P.28
T.P.25
5
C.T.C.4
Crosstalk between
channels4 (100MHz)
T.P.31
T.P.28
T.P.25
5
T.P.31
T.P.28
T.P.25
5
Tf1
T.P.31
T.P.28
T.P.25
5
Tr2
T.P.31
T.P.28
T.P.25
5
b
−
b
−
T.P.31
T.P.28
T.P.25
5
b
−
High level
output voltage1
High level
output voltage2
Low level
output voltage1
T.P.19
T.P.20
5
T.P.19
T.P.20
5
T.P.19
T.P.20
5
Low level
output voltage2
Input selectional
voltage1
T.P.19
T.P.20
5
T.P.7
T.P.8
5
Vith2
Input selectional
voltage2
T.P.15
T.P.16
5
Trd1
Rising delay time1
T.P.19
T.P.20
5
Trd2
Rising delay time2
T.P.19
T.P.20
5
Tfd1
Falling delay time1
T.P.19
T.P.20
5
Tfd2
Falling delay time2
T.P.19
T.P.20
5
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
Vsth1
Switching selectional
voltage1
T.P.17
5
Vsth2
Switching selectional
voltage2
T.P.17
5
C.T.I.1
C.T.I.2
C.T.I.3
C.T.I.4
Tr1
Pulse characteristic1
Pulse characteristic2
Tf2
abb bab bba
SG3 SG3 SG3
b
−
b
−
b
−
abb bab bba
SG4 SG4 SG4
b
−
b
−
b
−
abb bab bba
SG3 SG3 SG3
b
−
b
−
b
−
abb bab bba
SG4 SG4 SG4
Limits
SW
Unit
Min.
Typ.
Max.
b
−
b
−
b
−
b GND
↓
−
−
-60
-50
dB
b
−
b abb bab bba b
− SG3 SG3 SG3 −
b GND
↓
−
−
-60
-50
dB
b
−
b
−
b
−
b GND
↓
−
−
-40
-35
dB
b
−
b abb bab bba b
− SG4 SG4 SG4 −
b GND
↓
−
−
-40
-35
dB
b
−
b
−
b
b
− GND
−
-50
-40
dB
b
−
b abb bab bba b
− SG3 SG3 SG3 −
b
−
−
-50
-40
dB
b
−
b
−
b
b
− GND
−
-30
-25
dB
−
-30
-25
dB
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
OPEN
OPEN
OPEN
OPEN
a
OPEN
b
−
b
−
b
−
b
−
b abb bab bba b
− SG4 SG4 SG4 −
b
−
a
a
a
b
−
b
−
b
−
b
−
b
−
b
−
b
b
− GND
−
1.6
2.5
nsec
b
−
b
−
b
−
b
−
b
−
b
−
b
b
− GND
−
1.6
2.5
nsec
b
−
b
−
b
b
a
a
a
− SG6 SG6 SG6 −
b
−
OPEN
−
1.6
2.5
nsec
b
−
b
−
b
−
b
b
a
a
a
− SG6 SG6 SG6 −
b
−
OPEN
−
1.6
2.5
nsec
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
c
c
− 5.0V 5.0V
b
b
b
−
−
−
b
c
c
− 0V 0V
b
b
b
−
−
−
b
c
c
− Variable Variable
b
b
b
−
−
−
b
a
a
− SG7 SG7
b
b
b
−
−
−
b
a
a
− SG7 SG7
b
b
b
−
−
−
4.5
5.0
−
V
4.5
5.0
−
V
−
0.2
0.5
V
−
0.2
0.5
V
2.0
2.5
3.0
V
2.0
2.5
3.0
V
−
100
150
nsec
−
100
150
nsec
−
50
100
nsec
−
50
100
nsec
0.5
1.5
2.0
V
0.5
1.5
2.0
V
SG6 SG6 SG6
a
a
a
SG6 SG6 SG6
a
OPEN
a
a
(HV SW)
VoH1
VoH2
VoL1
VoL2
Vith1
3
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
−
b
a
a
a
a
a
SG1 SG1 SG1 SG7 SG7 −
b
−
b
−
b
c
− 5.0V 5.0V OPEN
b
b
b
b
−
−
− GND
b
c
c
a
− 0V 0V OPEN
b
b
b
b
−
−
− GND
a
b
c
c
− Variable Variable OPEN
b
b
b
b
−
−
− GND
a
b
a
a
− SG7 SG7 OPEN
b
b
b
b
−
−
− GND
a
b
a
a
− SG7 SG7 OPEN
b
b
b
c
−
−
−
b
−
b
−
b
−
b
−
b
−
b
b
− GND
a
c
b
a
a
a
a
a
− SG1 SG1 SG1 SG7 SG7
c
MITSUBISHI ICs (Monitor)
M52755FP
WIDE BAND ANALOG SWITCH
ELECTRICAL CHARACTERISTICS TEST METHOD
3. The frequency characteristic FC1 is
It omits the SW.No accorded with signal input pin because it is
FC1= 20 LOG
already written in Table.
VOR2 [VP-P]
VOR1 [VP-P]
[dB]
SW A, SW1, SW3, SW5 is in side a if there is not defined specially.
4. The method as same as 2 and 3, measure the frequency F C1
ICC1, ICC2 Circuit current (no signal)
The condition is shown as Table 1. Set SW19 to GND (or OPEN)
and SW A to side b, measure the current by current meter A. The
when input signal to Pin 5, 7.
5. The difference between of each channel frequency characteristic
is as ∆FC1.
current is as ICC1 (ICC2).
6. Set SW19 to OPEN, measure FC2, ∆FC2.
VDC1, VDC2 Output DC voltage
Set SW19 to GND (or OPEN), measure the DC voltage of T.P.31
FC3, FC4 Freq. characteristic
By the same way as Note7 measure the F C3, FC4 when SG5 of
(T.P.28, T.P.25) when there is no signal input. The DC voltage is as
input signal.
VDC1 (or VDC2).
C.T.I.1, C.T.I.2 Crosstalk between two input
VDC3, VDC4 Output DC voltage
1. The condition is shown as Table. This test is by active prove.
Measure the DC voltage of T.P.23 same as note2, the DC voltage is
2. Set SW19 to GND, SG3 as the input signal of Pin 2. Measure the
amplitude output from T.P.31. The amplitude is as VOR3.
as VDC3 (or VDC4).
3. Set SW19 to OPEN, measure the amplitude output from T.P.31.
The amplitude is as VOR3'.
Vimax1, Vimax2 Maximum allowable input
Set SW19 to GND, SG1 as the input signal of Pin 2. Rising up the
4. The crosstalk between two inputs C.T.I.1 is
amplitude of SG1 slowly, read the amplitude of input signal when
C.T.I.1= 20 LOG
the output waveform is distorted. The amplitude is as Vi max1. And
measure Vimax1 when SG2 as the input signal of Pin 5, Pin 7 in
same way. Next, set SW to OPEN, measure Vi max2 when SG2 as
the input signal of Pin11, 13, 16.
VOR3 [VP-P]
[dB]
5. By the same way, measure the crosstalk between two inputs
when SG3 as the input signal of Pin 5, Pin 7.
6. Next, set SW19 to OPEN, SG3 as the input signal of Pin 11,
measure the amplitude output from T.P.31. Theamplitude is as
GV1, ∆GV1, GV2, ∆GV2
VOR4.
1. The condition is shown as Table.
7. Set SW19 to GND, measure the amplitude output from T.P.31.
2. Set SW19 to GND, SG2 as the input signal of Pin 2. At this time,
read the amplitude output from T.P 31. The amplitude is as VOR1.
The amplitude is as VOR4'.
8. The crosstalk between two inputs C.T.I.2 is
3. Voltage gain GV1 is
GV1= 20 LOG
VOR3' [VP-P]
VOR1 [VP-P]
0.7 [VP-P]
C.T.I.2= 20 LOG
[dB]
VOR4' [VP-P]
VOR4 [VP-P]
[dB]
9. By the same way, measure the crosstalk between channels
4. The method as same as 2 and 3, measure the voltage gain G V1
when SG3 as the input signal of Pin 13,16.
when SG2 as the input signal of Pin 5, 7.
5. The difference of each channel relative voltage gain is as ∆GV1.
C.T.I.3, C.T.I.4 Crosstalk between two input
6. Set SW19 to OPEN, measure GV2, ∆GV12 in the same way.
Set SG4 as the input signal, and then the same method as table,
measure C.T.I.3, C.T.I.4.
GV3, GV4, Voltage gain
1. The condition is shown as table. This test is by active probe.
C.T.C.1, C.T.C.2 Crosstalk between channel
2. Measure the amplitude output from T.P.23.
1. The condition is as Table. This test is by active prove.
3. Measure the GV3, GV4 by the same way as GV1, ∆GV1, GV2,
2. Set SW19 to GND, SG3 as the input signal of Pin 2. Measure the
∆GV2.
amplitude output from T.P.31. The amplitude is as VOR5.
3. Next, measure T.P.28, T.P.25 in the same state, and the
FC1, ∆FC1, FC2, ∆FC2
1. The condition is shown as table. This test is by active probe.
amplitude is as VOG5, VOB5.
4. The crosstalk between channels C.T.C.1 is
2. Set SW19 to GND, SG2 as the input signal of Pin 2. Measure the
amplitude output from T.P.31. The amplitude is as VOR1. By the
C.T.C.1= 20 LOG
VOG5 or VOB5
VOR5
[dB]
same way, measure the output when SG4 is as input signal of
Pin 2, the output is as VOR2.
4
MITSUBISHI ICs (Monitor)
M52755FP
WIDE BAND ANALOG SWITCH
5. Measure the crosstalk between channels when SG3 is as the
input signal of Pin 5, Pin 7.
VoL1, VoL2 Low level output voltage
The condition is as Table. Set SW19 to GND (OPEN), input 0V at
6. Next, set SW19 to OPEN, SG3 as the input signal of Pin11,
measure the amplitude output from T.P.31. The amplitude is as
input terminal. Measure the output voltage, the voltage is as VoL1
(VoL2).
VOR6.
7. Next, measure the amplitude output from T.P.28, T.P.25 in the
same state. The amplitude is as VOG6, VOB6.
The condition is as table. Set SW19 to GND (OPEN), increasing
8. The crosstalk between channels C.T.C.2 is
VOG6 or VOB6
C.T.C.2= 20 LOG
VOR6
Vith1, Vith2 Input selectional voltage
gradually the voltage of input terminal from 0V, measure the voltage
[dB]
9. By the same way, measure the crosstalk between channels
when input signal to Pin13, 16.
of input terminal when output terminal is 4.5V. The input voltage is
as Vith1 (Vith 2).
Trd1, Trd2 Rising delay time
Tfd1, Tfd2 Falling delay time
The condition is as table. Set SW19 to GND (OPEN), SG7 is as the
C.T.C.3, C.T.C.4 Crosstalk between channel
Set SG4 as the input signal, and the same method as table,
measure C.T.C.3, C.T.C.4.
input signal of input terminal, measure the waveform of output. Rising delay time is as Trd1 (Trd2). Falling delay time is as Tfd1 (Tfd2).
Reference to the Fig. as shown below.
Tr1, Tf1, Tr2, Tf2 Pulse characteristic
50%
1. The condition is as Table. Set SW19 to GND (or OPEN).
2. The rising of 10% to 90% for input pulse is Tri, the falling of
SG7
Trd
Tfd
10% to 90% for input pulse is Tfi.
3. Next, the rising of 10% to 90% for output pulse is Tro, the falling
of 10% to 90% for output pulse is Tfo.
50%
Output waveform
4. The pulse characteristic Tr1, Tf1 ( Tr2, Tf2 ) is
100%
90%
Vsth1, Vsth2 Switching selectional voltage
1. The condition is as table. SG1 is as the input signal of Pin 2,
10%
0%
Tf
Tr
Pin5, Pin7, and SG7 is as the input signal of Pin8, Pin9. There is
no input at another pins.
2. Input 0V at Pin19, confirm that there are signals output from
Tr1 (Tr2)=√(Tro)2 - (Tri)2
2
Tf1 (Tf2)=√(Tfo) -
(Tfi)2
(nsec)
(nsec)
T.P.19, T.P.20, T.P.23, T.P.25, T.P.28, T.P.31.
3. Increase gradually the voltage of terminal Pin19. Read the
voltage when there is no signal output from the terminals listed
as above. The voltage is as Vsth1.
VoH1, VoH2 High level output voltage
4. SG1 as the input signal of Pin11, Pin13, Pin16, and SG7 as the
The condition is as Table. Set SW19 to GND (OPEN), input 5V at
input signal of Pin17, Pin18. There is no input at another pins.
input terminal. Measure the output voltage, the voltage is as VOH1
5. Inputs 5V at Pin19, confirm that there is no signal output from
(VOH2).
T.P.19, T.P.20, T.P.23, T.P.25, T.P.28, T.P.31.
6. Decreasing gradually the voltage of terminal Pin 19. Read the
voltage when there are signals output from the terminals listed
as above. The voltage is as Vsth2.
5
MITSUBISHI ICs (Monitor)
M52755FP
WIDE BAND ANALOG SWITCH
INPUT SIGNAL
SG No.
Signals
Sine wave (f=60kHz, 0.7VP-P, amplitude variable)
SG1
SG2
SG3
SG4
SG5
0.7VP-P(amplitude variable)
Sine wave (f=1MHz, amplitude 0.7V P-P)
Sine wave (f=10MHz, amplitude 0.7V P-P)
Sine wave (f=100MHz, amplitude 0.7V P-P)
Sine wave (f=250MHz, amplitude 0.7V P-P)
Pulse with amplitude 0.7VP-P (f=60kHz, duty80%)
SG6
0.7VP-P
Square wave (Amplitude 5.0VO-P TTL, f=60kHz, duty50%)
5V
SG7
0V
NOTE HOW TO USE THIS IC
6. Switch (Pin 17) can be changed when this terminal is GND or
1. R, G, B input signal is 0.7VP-P of standard video signal.
OPEN
When GND : Signal output from input 1
2. H, V input is 5.0V TTL type.
When OPEN : Signal output from input 2
When the switch is being used as Fig.3
3. Input signal with sufficient low inpedance to input terminal.
0 to 0.5V : Signal output from input 1
2 to 5V
4. The terminal of H, V output pin are shown as Fig.1. It is possible
: Signal output from input 2
It is not allowable to set voltage higher than V CC.
to reduce rise time by insert the resister between Vcc line and H, V
17
output Pin, but set the value of resister in order that the current is
under 7.5mA. Setting the value of R is more than 2kΩ as shown in
Fig.1.
Fig.3
5V
5V
R
1kΩ
NOTICE OF MAKING PRINTED CIRCUIT BOARD.
Please notice following as shown below. It will maybe cause
1<7.5mA
something oscillation because of the P.C.B. layout of the wide band
analog switch.
⋅ The distance between resister and output pin is as short as
Fig.1
possible when insert a output pull-down resister.
5. The terminal of R,G,B output pin (Pin 25, 28, 31). It is possible to
⋅ The capitance of output terminal as small as possible.
add a pull-up resister according as drive ability. but set the value of
⋅ Set the capitance between Vcc and GND near the pins if possible.
resister in order that the current is under 10mA. Setting the value of
⋅ Using stable power-source (if possible the separated power-
R is more than 500Ω as shown in Fig.2.
source will be better).
5V
⋅ It will reduce the oscillation when add a resister that is tens of
1<10mA
ohms between output pin and next stage.
⋅ Assign an area as large as possible for grounding.
50Ω
430Ω
R
Fig.2
6
MITSUBISHI ICs (Monitor)
M52755FP
WIDE BAND ANALOG SWITCH
TEST CIRCUIT
A 0.01µ
a
47µ
b
SWA
VCC5V
OPEN
TP35
R
0.01µ
TP30
G
TP25
GOUT
(for sync on G)
TP27
B
34
33
32
SW19
47µ
0.01µ
35
TP21
V
0.01µ
0.01µ
36
TP22
H
31
30
29
28
27
26
25
24
23
22
21
20
19
11
12
13
14
15
16
17
18
a
b
c
M52755FP
1
2
3
4
TP2
5
6
TP7
TP5
TP8
9
10
TP11
TP9
47µ
a
SW2
100µ
b
TP17
TP18
47µ
0.01µ
0.01µ
TP16
TP13
0.01µ
0.01µ
47µ
8
7
0.01µ
SW5
a
100µ 0.01µ
b
SW7
a
100µ
SW9 SW11
SW8
c a
ba
b
100µ
0.01µ
0.01µ
c
a
100µ
SW13
b
b
a
0.01µ
100µ
SW16
b
a
SW17 SW18
c a
b a
b
SG1
SG2
SG3
SG4
SG5
SG6
c
b
SG7
Units Resistance : Ω
Capacitance : F
7
MITSUBISHI ICs (Monitor)
M52755FP
WIDE BAND ANALOG SWITCH
TYPICAL CHARACTERISTICS
THERMAL DERATING (MAXIMUM RATING)
POWER DISSIPATION Pd (mW)
1250
1068
1000
750
500
250
-20
0
25
50
75 85 100
125
150
AMBIENT TEMPERATURE Ta (°C)
DESCRIPTION OF PIN
Pin No.
1
3
6
Name
VCC1 (R)
VCC1 (G)
VCC1 (B)
DC voltage (V )
Peripheral circuit of pins
5.0
−
Remarks
800
2
5
7
Input1 (R)
Input1 (G)
Input1 (B)
Input signal with low
impedance.
1.5
620
2.2V
2.59mA
Input pulse between 3V
and 5V.
8
9
Input1 (H)
Input1 (V)
3 to 5V
−
0V
0.2mA
10, 12, 15, 20,
GND
26, 29, 34
GND
−
8
MITSUBISHI ICs (Monitor)
M52755FP
WIDE BAND ANALOG SWITCH
DESCRIPTION OF PIN (cont.)
Pin No.
Name
DC voltage (V )
Peripheral circuit of pins
Remarks
800
11
13
16
Input2 (R)
Input2 (G)
Input2 (B)
Input signal with low
impedance.
1.5
2.2V
620
2.59mA
Input pulse between 3V
and 5V.
17
18
Input2 (H)
Input2 (V)
3 to 5V
−
0V
0.2mA
10k
12k
19
Switch
13k
Output (V)
Output (H)
−
24
VCC
(H, V, Switch)
5
−
NC
−
−
25
27
30
35
Output
(Sync onG)
Output (B)
Output (G)
Output (R)
9
VCC2 (B)
VCC2 (G)
VCC2 (R)
Output impedance is
built-in.
1.15
2.05
5
Output impedance is
built-in.
50
50
23
430
28
31
36
2.3V
1k
21
22
4, 14, 23,
32, 33
Switch by OPEN and
GND.
7.3k
2.6
25, 28, 31
−
500