ETC IS452 High density mounting high voltage darlington optically coupled isolator Datasheet

IS452
HIGH DENSITY MOUNTING
HIGH VOLTAGE DARLINGTON
OPTICALLY COUPLED ISOLATORS
DESCRIPTION
The IS452 is an optically coupled isolator
consisting of an infrared light emitting diode
and a high voltage NPN silicon photo
darlington which has an integral base-emitter
resistor to optimise switching speed and
elevated temperature characteristics in a space
efficient dual in line plastic package.
Dimensions in mm
FEATURES
l
Marked as FPH1.
l
Current Transfer Ratio MIN. 1000%
l
High collector-emitter voltage, Vceo=300V
l
Isolation Voltage (3.75kVRMS ,5.3kVPK )
All electrical parameters 100% tested
Drop in replacement for Sharp PC452
l
l
APPLICATIONS
l
Computer terminals
l
Industrial systems controllers
l
Measuring instruments
l
Signal transmission between systems of
different potentials and impedances
ISOCOM COMPONENTS LTD
Unit 25B, Park View Road West,
Park View Industrial Estate, Brenda Road
Hartlepool, Cleveland, TS25 1YD
Tel: (01429) 863609 Fax :(01429) 863581
22/4/02
ISOCOM INC
1024 S. Greenville Ave, Suite 240,
Allen, TX 75002 USA
Tel: (214) 495-0755 Fax: (214) 495-0901
e-mail [email protected]
http://www.isocom.com
DB92862l-AAS/A3
ABSOLUTE MAXIMUM RATINGS
(25°C unless otherwise specified)
Storage Temperature
-55°C to + 150°C
Operating Temperature
-55°C to + 100°C
Lead Soldering Temperature
(1/16 inch (1.6mm) from case for 10 secs) 260°C
INPUT DIODE
Forward Current
Reverse Voltage
Power Dissipation
50mA
6V
70mW
OUTPUT TRANSISTOR
Collector-emitter Voltage BVCEO
Emitter-collector Voltage BVECO
Power Dissipation
300V
0.1V
150mW
POWER DISSIPATION
Total Power Dissipation
170mW
(derate linearly 2.26mW/°C above 25°C)
ELECTRICAL CHARACTERISTICS ( TA = 25°C Unless otherwise noted )
PARAMETER
Input
Output
Coupled
MIN TYP MAX UNITS
Forward Voltage (VF)
Reverse Voltage (VR)
Reverse Current (IR)
5
1.2
Collector-emitter Breakdown (BVCEO)
300
Emitter-collector Breakdown (BVECO)
Collector-emitter Dark Current (ICEO)
0.1
Current Transfer Ratio (CTR)
1000
10
200
Collector-emitter Saturation VoltageVCE (SAT)
Input to Output Isolation Voltage VISO
1.2
3750
5300
Input-output Isolation Resistance RISO 5x1010
Output Rise Time tr
Output Fall Time
tf
Note 1
22/4/02
1.4
4
3
18
18
TEST CONDITION
V
V
µA
IF = 10mA
IR = 10µA
VR = 4V
V
IC = 0.1mA
V
nA
IE = 10uA
VCE = 200V
%
1mA IF , 2V VCE
V
20mA IF , 100mA IC
VRMS
VPK
See note 1
See note 1
Ω
µs
µs
VIO = 500V (note 1)
VCE = 2V ,
IC = 2mA, RL = 100Ω
Measured with input leads shorted together and output leads shorted together.
DB92862l-AAS/A3
TAPING DIMENSIONS
Description
Tape wide
Pitch of sprocket holes
Distance of compartment
Distance of compartment to compartment
12/07/01
Symbol
W
P0
F
P2
P1
Dimensions in mm ( inches )
12 ± 0.3 ( .47 )
4 ± 0.1 ( .15 )
5.5 ± 0.1 ( .217 )
2 ± 0.1 ( .079 )
8 ± 0.1 ( .315 )
Appendix to Mini Flat Pack FPH-AAS/A1
CHARACTERISTIC CURVES
Fig.1 Forward Current vs.
Ambient Temperature
Fig.2 Collector Power Dissipation vs.
Ambient Temperature
200
Collector power dissipation Pc (mW)
60
F (mA)
50
Forward current I
40
30
20
10
0
-55
0
25
50
75
100
125
150
100
50
0
-55
o
3.5
3
125
o
2.5
2
1.5
o
o
80 C
40 C
o
20 C
o
60 C
10
1
0.5
1
0
1
2
3
4
0.5
5
0.7
0.9
Forward current I F (mA)
1.1
1.3
1.5
1.7
1.9
Forward voltage (V)
Fig.5 Current Transfer Ratio vs. Forward
Current
Fig.6 Collector Current vs.
Collector-emitter Voltage
7000
100
VCE = 2V
6000
Collector current Ic (mA)
Current transfer ratio CTR (%)
100
100 C
0
5000
4000
3000
2000
2mA
10mA
5mA
80
3mA
2.5mA
1.5mA
1.5mA
60
P C (MAX.)
1mA
40
20
1000
I F = 0.5mA
0
0.1
0
1
Forward current (mA)
12/07/01
75
100
Ic= 5mA
10mA
30mA
50mA
70mA
100mA
4
50
Fig.4 Forward Current vs. Forward
Voltage
Forward current (mA)
Collector-emitter saturation voltage
VCE (sat) (V)
5
25
Ambient temperature Ta ( C)
Fig.3 Collector-emitter saturation
Voltage vs. Forward current
4.5
0
o
Ambient temperature Ta ( C)
10
0
1
2
3
4
5
Collector-emitter voltage V CE(V)
Appendix to Mini Flat Pack FPH-AAS/A1
CHARACTERISTIC CURVES
Relative current transfer ratio (%)
1.2
Fig.8 Collector-emitter Saturation Voltage
vs. Ambient Temperature
I F = 1mA
VCE = 2V
1.0
0.8
0.6
0.4
0.2
1.2
Collector-emitter saturation voltage
VCE (sat) (V)
Fig.7 Relative Current Transfer Ratio
vs. Ambient Temperature
0
I F = 20mA
I C = 100mA
1.0
0.8
0.6
0.4
0.2
20
40
60
100
80
20
40
60
80
O
Ambient temperature Ta ( C)
Fig.9 Collector Dark Current vs.
Temperature
Fig.10 Response Time vs. Load
Resistance
1000
1000
(nA)
VCE = 200V
500
s)
CEO
100
Response time (
Collector dark current I
VCE = 2V
I C = 20mA
Ta= 25 C
tr
O
10
200
100
tf
50
td
ts
20
10
5
2
1
20
40
60
80
1
100
O
VCE = 2V
I C = 20mA
Ta= 25 C
O
-5
1
10
Test Circuit for Response Time
Fig.11 Frequency Response
0
0.1
Load resistance R L (k )
Ambient temperature Ta ( C)
Voltage gain Av (dB)
100
O
Ambient temperature Ta ( C)
Input
Vcc
Output
Input
RD
RL
10%
Output
90%
td
ts
-10
tr
-15
R L = 1k
100
tf
Test Circuit for Frequency Response
10
Vcc
-20
RD
-25
0.1
1
10
100
RL
Output
500
Frequency f (kHz)
12/07/01
Appendix to Mini Flat Pack FPH-AAS/A1
TEMPERATURE PROFILE OF SOLDERING REFLOW
(1) One time soldering reflow is recommended within the condition of temperature and time profile
shown below.
30 seconds
230 C
200 C
180 C
1 minute
25 C
2 minutes
1.5 minutes
1 minute
(2) When using another soldering method such as infrated ray lamp, the temperature may rise
partially in the mold of the device.
Keep the temperature on the package of the device within the condition of above (1).
12/07/01
Appendix to Mini Flat Pack FPH-AAS/A1
Similar pages