MITSUBISHI Pch POWER MOSFET RY A N I FX20ASJ-2 . . nge tion ifica t to cha pec al s subjec in f are ot a is n limits his e: T ametric ic t r No e pa Som IM REL P HIGH-SPEED SWITCHING USE FX20ASJ-2 OUTLINE DRAWING 0.5 ± 0.1 1.5 ± 0.2 6.5 5.0 ± 0.2 Dimensions in mm 1.0 2.3 2.3 10 max 2.3 min 0.9 max 1.0 max 5.5 ± 0.2 4 A 0.5 ± 0.2 2.3 0.8 1 2 3 3 • 4V DRIVE • VDSS ............................................................. –100V • rDS (ON) (MAX) ................................................ 0.26Ω • ID .................................................................... –20A • Integrated Fast Recovery Diode (TYP.) .........100ns 1 2 3 4 1 GATE DRAIN SOURCE DRAIN 2 4 MP-3 APPLICATION Motor control, Lamp control, Solenoid control DC-DC converter, etc. MAXIMUM RATINGS Symbol (Tc = 25°C) Ratings Unit VDSS VGSS Drain-source voltage Gate-source voltage VGS = 0V VDS = 0V –100 ±20 V V ID IDM IDA Drain current Drain current (Pulsed) Avalanche drain current (Pulsed) L = 50µH –20 –80 –20 A A A IS ISM PD Tch Tstg Source current Source current (Pulsed) Maximum power dissipation Channel temperature Storage temperature –20 –80 35 –55 ~ +150 –55 ~ +150 A A W °C °C 0.26 g — Parameter Weight Conditions Typical value Jan.1999 MITSUBISHI Pch POWER MOSFET RY A N I . . nge tion ifica t to cha pec al s subjec in f are ot a is n limits his e: T ametric ic t r No e pa Som IM REL FX20ASJ-2 P HIGH-SPEED SWITCHING USE ELECTRICAL CHARACTERISTICS (Tch = 25°C) Symbol Parameter V (BR) DSS Drain-source breakdown voltage IGSS IDSS VGS (th) rDS (ON) rDS (ON) Gate-source leakage current Drain-source leakage current Gate-source threshold voltage Drain-source on-state resistance Drain-source on-state resistance VDS (ON) yfs Ciss Drain-source on-state voltage Forward transfer admittance Input capacitance Coss Output capacitance Reverse transfer capacitance Turn-on delay time Rise time Crss td (on) tr td (off) tf VSD Rth (ch-c) trr Limits Test conditions Typ. Max. ID = –1mA, VGS = 0V VGS = ±20V, VDS = 0V VDS = –100V, VGS = 0V –100 — — — — — — ±0.1 –0.1 V µA mA ID = –1mA, VDS = –10V ID = –10A, VGS = –10V ID = –10A, VGS = –4V ID = –10A, VGS = –10V ID = –10A, VDS = –10V –1.0 — — — –1.5 0.20 0.25 –2.0 –2.0 0.26 0.32 –2.6 V Ω Ω V — — — — 10.3 2360 198 99 — — — — S pF pF pF — — — — 13 30 139 74 — — — — ns ns ns ns — –1.0 –1.5 V — — — 100 3.57 — °C/W ns VDS = –10V, VGS = 0V, f = 1MHz VDD = –50V, ID = –10A, VGS = –10V, RGEN = RGS = 50Ω Turn-off delay time Fall time Source-drain voltage IS = –10A, VGS = 0V Channel to case Thermal resistance Reverse recovery time Unit Min. IS = –20A, dis/dt = 100A/µs PERFORMANCE CURVES MAXIMUM SAFE OPERATING AREA –2 40 30 20 10 0 0 50 100 150 100µs tw = 10µs –7 –5 –3 –2 –101 –7 –5 1ms –3 –2 TC = 25°C Single Pulse –100 –7 –5 –3 DC –2 –2 –3 –5–7–100 –2 –3 –5–7–101 –2 –3 –5–7–102 –2 200 CASE TEMPERATURE TC (°C) DRAIN-SOURCE VOLTAGE VDS (V) OUTPUT CHARACTERISTICS (TYPICAL) OUTPUT CHARACTERISTICS (TYPICAL) –50 –20 –8V –6V –40 VGS = –10V Tc = 25°C Pulse Test –5V –30 –20 –4V –10 –3V DRAIN CURRENT ID (A) VGS = –10V DRAIN CURRENT ID (A) 10ms –102 DRAIN CURRENT ID (A) POWER DISSIPATION PD (W) POWER DISSIPATION DERATING CURVE 50 –4V –16 Tc = 25°C Pulse Test –6V –5V –12 –8 –3V –4 PD = 35W PD = 35W 0 0 –10 –20 –30 –40 –50 DRAIN-SOURCE VOLTAGE VDS (V) 0 0 –4 –8 –12 –16 –20 DRAIN-SOURCE VOLTAGE VDS (V) Jan.1999 MITSUBISHI Pch POWER MOSFET RY A N I . . nge tion ifica t to cha pec al s subjec in f are ot a is n limits his e: T ametric ic t r No e pa Som IM REL FX20ASJ-2 P HIGH-SPEED SWITCHING USE ON-STATE VOLTAGE VS. GATE-SOURCE VOLTAGE (TYPICAL) Tc = 25°C Pulse Test –40 –30 –20 ID = –40A –10 –20A –10A 0 0 –2 –4 –6 2 101 FORWARD TRANSFER ADMITTANCE yfs (S) –10 –2 –4 –6 –8 2 TC = 25°C 75°C 125°C 100 VDS = –10V Pulse Test 7 5 4 3 –2 –3 –4–5 –7 –101 –2 –3 –4–5 –7 GATE-SOURCE VOLTAGE VGS (V) DRAIN CURRENT ID (A) CAPACITANCE VS. DRAIN-SOURCE VOLTAGE (TYPICAL) SWITCHING CHARACTERISTICS (TYPICAL) 3 103 Tch = 25°C f = 1MHZ VGS = 0V Coss 102 7 5 Crss 4 3 –3 –5–7–100 –2 –3 –5–7–101 –2 –3 –5–7–102 –2 –3 DRAIN-SOURCE VOLTAGE VDS (V) td(off) 2 Ciss SWITCHING TIME (ns) CAPACITANCE Ciss, Coss, Crss (pF) 7 5 4 3 2 –7 –100 –10 3 2 Tc = 25°C Pulse Test 0.1 FORWARD TRANSFER ADMITTANCE VS.DRAIN CURRENT (TYPICAL) –20 7 5 4 3 –10V 0.2 TRANSFER CHARACTERISTICS (TYPICAL) –30 2 0.3 0 –10–1 –2 –3 –5–7–100 –2 –3 –5–7–101 –2 –3 –5–7–102 –10 Tc = 25°C VDS = –10V Pulse Test 0 –4V DRAIN CURRENT ID (A) –40 0 VGS = 0.4 GATE-SOURCE VOLTAGE VGS (V) –50 DRAIN CURRENT ID (A) –8 0.5 DRAIN-SOURCE ON-STATE RESISTANCE rDS (ON) (Ω) DRAIN-SOURCE ON-STATE VOLTAGE VDS (ON) (V) –50 ON-STATE RESISTANCE VS. DRAIN CURRENT (TYPICAL) 102 tf 7 5 4 3 tr 2 td(on) 101 7 5 4 3 Tch = 25°C VGS = –10V VDD = –50V RGEN = RGS = 50Ω –5 –7 –100 –2 –3 –4 –5 –7 –101 –2 –3 –4 –5 DRAIN CURRENT ID (A) Jan.1999 MITSUBISHI Pch POWER MOSFET RY A N I . . nge tion ifica t to cha pec al s subjec in f are ot a is n limits his e: T ametric ic t r No e pa Som IM REL FX20ASJ-2 P HIGH-SPEED SWITCHING USE –10 SOURCE CURRENT IS (A) VDS = –20V –50V –6 –80V –4 –2 0 10 20 30 40 –30 –20 75°C 125°C –10 0 –0.4 –0.8 –1.2 –1.6 –2.0 SOURCE-DRAIN VOLTAGE VSD (V) ON-STATE RESISTANCE VS. CHANNEL TEMPERATURE (TYPICAL) THRESHOLD VOLTAGE VS. CHANNEL TEMPERATURE (TYPICAL) –4.0 VGS = –10V ID = 1/2ID Pulse Test 100 7 5 4 3 2 –50 0 50 100 VDS = –10V ID = –1mA –3.2 –2.4 –1.6 –0.8 0 150 CHANNEL TEMPERATURE Tch (°C) BREAKDOWN VOLTAGE VS. CHANNEL TEMPERATURE (TYPICAL) 1.4 VGS = 0V ID = –1mA 1.2 1.0 0.8 0.6 0.4 TC = 25°C GATE CHARGE Qg (nC) 2 10–1 –40 0 101 7 5 4 3 VGS = 0V Pulse Test 50 GATE-SOURCE THRESHOLD VOLTAGE VGS (th) (V) DRAIN-SOURCE ON-STATE RESISTANCE rDS (ON) (25°C) DRAIN-SOURCE ON-STATE RESISTANCE rDS (ON) (t°C) DRAIN-SOURCE BREAKDOWN VOLTAGE V (BR) DSS (t°C) –50 Tch = 25°C ID = –20A –8 0 DRAIN-SOURCE BREAKDOWN VOLTAGE V (BR) DSS (25°C) SOURCE-DRAIN DIODE FORWARD CHARACTERISTICS (TYPICAL) –50 0 50 100 150 CHANNEL TEMPERATURE Tch (°C) –50 0 50 100 150 CHANNEL TEMPERATURE Tch (°C) TRANSIENT THERMAL IMPEDANCE Zth (ch–c) (°C/W) GATE-SOURCE VOLTAGE VGS (V) GATE-SOURCE VOLTAGE VS.GATE CHARGE (TYPICAL) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS 101 7 5 D = 1.0 3 0.5 2 0.2 100 7 5 3 2 10–1 0.1 0.05 0.02 0.01 Single Pulse PDM tw 7 5 T D= tw T 3 2 10–2 –4 10 2 3 5 710–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102 PULSE WIDTH tw (s) Jan.1999