M24C32S-FCU 32-Kbit serial I²C bus EEPROM 4 balls CSP Datasheet - production data Features • Compatible with the 400 kHz I²C protocol • High speed 1MHz transfer rate • Memory array: – 32 Kbit (4 Kbyte) of EEPROM – Page size: 32 byte WLCSP (CU) • Supply voltage range: – 1.7 V to 5.5 V • Operating temperature range – -40°C / +85°C • Write – Byte Write within 5 ms – Page Write within 5 ms • Random and sequential Read modes • Software Write protect – Upper quarter memory array – Upper half memory array – Upper 3/4 memory array – Whole memory array • ESD protection – Human Body Model: 4 kV • More than 4 million Write cycles • More than 200-years data retention • Package – WLCSP, RoHS and Halogen free compliant (ECOPACK2®) October 2015 This is information on a product in full production. DocID026427 Rev 5 1/35 www.st.com Contents M24C32S-FCU Contents 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 Serial Clock (SCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Serial Data (SDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 VSS (ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4.1 Operating supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4.2 Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4.3 Device reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4.4 Power-down conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4 Device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5 4.1 Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 4.2 Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 4.3 Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 4.4 Acknowledge bit (ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 4.5 Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.1 5.2 6 2/35 Write operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.1.1 Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.1.2 Page Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.1.3 Write protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.1.4 Minimizing Write delays by polling on ACK . . . . . . . . . . . . . . . . . . . . . . 17 Read operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.2.1 Random Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.2.2 Current Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.2.3 Sequential Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.2.4 Read the Write Protect register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Initial delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 DocID026427 Rev 5 M24C32S-FCU Contents 7 Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 8 DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 9 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 9.1 Ultra Thin WLCSP package information . . . . . . . . . . . . . . . . . . . . . . . . . . 28 10 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 DocID026427 Rev 5 3/35 3 List of tables M24C32S-FCU List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. 4/35 Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Device select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Most significant address byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Least significant address byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Write Protect register (Address = 1xxx.xxxx.xxxx.xxxxb) . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 400 kHz AC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 High frequency clock AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Ultra Thin WLCSP- 4-bump, 0.833 x 0.833 mm, wafer level chip scale package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Ultra Thin WLCSP- 4-bump, 0.833 x 0.833 mm, wafer level chip scale package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 DocID026427 Rev 5 M24C32S-FCU List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4-bump WLCSP connections (top view, marking side, with balls on the underside) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 I2C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Write mode sequence (data write enabled) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Write mode sequence (data write inhibited) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Write cycle polling flowchart using ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Read mode sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Maximum Rbus value versus bus parasitic capacitance (Cbus) for an I2C bus at maximum frequency fC = 400 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Maximum Rbus value versus bus parasitic capacitance (Cbus) for an I2C bus at high clock frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Ultra Thin WLCSP- 4-bump, 0.833 x 0.833 mm, wafer level chip scale package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Ultra Thin WLCSP- 4-bump, 0.833 x 0.833 mm, wafer level chip scale package outline with BSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Thin WLCSP- 4-bump, 0.833 x 0.833 mm, wafer level chip scale package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 DocID026427 Rev 5 5/35 5 Description 1 M24C32S-FCU Description The M24C32S-FCU is a 32-Kbit I2C-compatible EEPROM (Electrically Erasable PROgrammable Memory) organized as 4 K × 8 bits The M24C32S-FCU can operate with a supply voltage from 1.7 V to 5.5 V, over an ambient temperature range of -40 °C/+85 °C. The M24C32S-FCU is delivered in a 4-ball WLCSP package. Figure 1. Logic diagram 9&& 6'$ 0&6)&8 6&/ 966 069 Table 1. Signal names Signal name Function Direction SDA Serial Data I/O SCL Serial Clock Input VCC Supply voltage - VSS Ground - Figure 2. 4-bump WLCSP connections (top view, marking side, with balls on the underside) $ 9&& 6&/ 6&/ 9&& $ % 6'$ 966 966 6'$ % 0DUNLQJVLGH WRSYLHZ 6/35 DocID026427 Rev 5 %XPSVLGH ERWWRPYLHZ 06Y9 M24C32S-FCU Signal description 2 Signal description 2.1 Serial Clock (SCL) SCL is an input. The signal applied on the SCL input is used to strobe the data available on SDA(in) and to output the data on SDA(out). 2.2 Serial Data (SDA) SDA is an input/output used to transfer data in or data out of the device. SDA(out) is an open drain output that may be wire-OR’ed with other open drain or open collector signals on the bus. A pull-up resistor must be connected from Serial Data (SDA) to VCC (Figure 9 indicates how to calculate the value of the pull-up resistor). 2.3 VSS (ground) VSS is the reference for the VCC supply voltage. 2.4 Supply voltage (VCC) 2.4.1 Operating supply voltage (VCC) Prior to selecting the memory and issuing instructions to it, a valid and stable VCC voltage within the specified [VCC(min), VCC(max)] range must be applied (see Operating conditions in Section 8: DC and AC parameters). In order to secure a stable DC supply voltage, it is recommended to decouple the VCC line with a suitable capacitor (usually from10 nF to 100 nF) close to the VCC/VSS package pins. This voltage must remain stable and valid until the end of the transmission of the instruction and, for a write instruction, until the completion of the internal write cycle (tW). 2.4.2 Power-up conditions The VCC voltage has to rise continuously from 0 V up to the minimum VCC operating voltage (see Operating conditions in Section 8: DC and AC parameters) and the rise time must not vary faster than 1 V/µs. 2.4.3 Device reset In order to prevent inadvertent write operations during power-up, a power-on-reset (POR) circuit is included. At power-up, the device does not respond to any instruction until VCC has reached the internal reset threshold voltage. This threshold is lower than the minimum VCC operating voltage (see Operating conditions in Section 8: DC and AC parameters). When VCC passes over the POR threshold, the device is reset and enters the Standby Power mode; however, the device must not be accessed until VCC reaches a valid and stable DC voltage within the specified [VCC(min), VCC(max)] range (see Operating conditions in Section 8: DC and AC parameters). DocID026427 Rev 5 7/35 34 Signal description M24C32S-FCU In a similar way, during power-down (continuous decrease in VCC), the device must not be accessed when VCC drops below VCC(min). When VCC drops below the power-on-reset threshold voltage, the device stops responding to any instruction sent to it. 2.4.4 Power-down conditions During power-down (continuous decrease in VCC), the device must be in the Standby Power mode (mode reached after decoding a Stop condition, assuming that there is no internal write cycle in progress). 8/35 DocID026427 Rev 5 M24C32S-FCU Memory organization The memory is organized as shown below. Figure 3. Block diagram (IGH VOLTAGE GENERATOR #ONTROL LOGIC 3#, 3$! )/ SHIFT REGISTER !DDRESS REGISTER AND COUNTER $ATA REGISTER 9 DECODER 3 Memory organization PAGE 8 DECODER -36 DocID026427 Rev 5 9/35 34 Device operation 4 M24C32S-FCU Device operation The device supports the I2C protocol. This is summarized in Figure 4. Any device that sends data on to the bus is defined to be a transmitter, and any device that reads the data to be a receiver. The device that controls the data transfer is known as the bus master, and the other as the slave device. A data transfer can only be initiated by the bus master, which will also provide the serial clock for synchronization. The device is always a slave in all communications. Figure 4. I2C bus protocol 6&/ 6'$ 6'$ ,QSXW 67$57 &RQGLWLRQ 6&/ 6'$ 06% 6'$ &KDQJH 6723 &RQGLWLRQ $&. 67$57 &RQGLWLRQ 6&/ 6'$ 06% $&. 6723 &RQGLWLRQ $,' 10/35 DocID026427 Rev 5 M24C32S-FCU 4.1 Device operation Start condition Start is identified by a falling edge of Serial Data (SDA) while Serial Clock (SCL) is stable in the high state. A Start condition must precede any data transfer instruction. The device continuously monitors (except during a Write cycle) Serial Data (SDA) and Serial Clock (SCL) for a Start condition. 4.2 Stop condition Stop is identified by a rising edge of Serial Data (SDA) while Serial Clock (SCL) is stable and driven high. A Stop condition terminates communication between the device and the bus master. A Read instruction that is followed by NoAck can be followed by a Stop condition to force the device into the Standby mode. A Stop condition at the end of a Write instruction triggers the internal Write cycle. 4.3 Data input During data input, the device samples Serial Data (SDA) on the rising edge of Serial Clock (SCL). For correct device operation, Serial Data (SDA) must be stable during the rising edge of Serial Clock (SCL), and the Serial Data (SDA) signal must change only when Serial Clock (SCL) is driven low. 4.4 Acknowledge bit (ACK) The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter, whether it be bus master or slave device, releases Serial Data (SDA) after sending eight bits of data. During the 9th clock pulse period, the receiver pulls Serial Data (SDA) low to acknowledge the receipt of the eight data bits. DocID026427 Rev 5 11/35 34 Device operation 4.5 M24C32S-FCU Device addressing To start communication between the bus master and the slave device, the bus master must initiate a Start condition. Following this, the bus master sends the device select code, shown in Table 2 (on Serial Data (SDA), most significant bit first). Table 2. Device select code Device type identifier(1) Chip Enable address RW b7 b6 b5 b4 b3 b2 b1 b0 1 0 1 0 0 0 1 RW 1. The most significant bit, b7, is sent first. The 8th bit is the Read/Write bit (RW). This bit is set to 1 for Read and 0 for Write operations. If a match occurs on the device select code, the corresponding device gives an acknowledgment on Serial Data (SDA) during the 9th bit time. If the device does not match the device select code, the device deselects itself from the bus, and goes into Standby mode (therefore will not acknowledge the device select code). 12/35 DocID026427 Rev 5 M24C32S-FCU Instructions 5 Instructions 5.1 Write operations Following a Start condition the bus master sends a device select code with the R/W bit (RW) reset to 0. The device acknowledges this, as shown in Figure 5, and waits for two address bytes. The device responds to each address byte with an acknowledge bit, and then waits for the data byte. Table 3. Most significant address byte A15 A14 A13 A12 A11 A10 A9 A8 A1 A0 Table 4. Least significant address byte A7 A6 A5 A4 A3 A2 When the bus master generates a Stop condition immediately after a data byte Ack bit (in the “10th bit” time slot), either at the end of a Byte Write or a Page Write, the internal Write cycle tW is triggered. A Stop condition at any other time slot does not trigger the internal Write cycle. After the Stop condition and the successful completion of an internal Write cycle (tW), the device internal address counter is automatically incremented to point to the next byte after the last modified byte. During the internal Write cycle, Serial Data (SDA) is disabled internally, and the device does not respond to any requests. DocID026427 Rev 5 13/35 34 Instructions 5.1.1 M24C32S-FCU Byte Write After the device select code and the address bytes, the bus master sends one data byte. If the addressed location is Write-protected, the device replies with NoAck, and the location is not modified, as shown in Figure 6. If, instead, the addressed location is not Writeprotected, the device replies with Ack, as shown in Figure 5. The bus master shall terminate the transfer by generating a Stop condition. Figure 5. Write mode sequence (data write enabled) !#+ !#+ "YTE ADDR $EV SEL 3TART $ATA IN !#+ "YTE ADDR !#+ $ATA IN $ATA IN 27 !#+ $ATA IN . 3TOP 14/35 !#+ 27 !#+ 0AGE 7RITE CONTgD "YTE ADDR "YTE ADDR !#+ 0AGE 7RITE !#+ 3TOP $EV SEL 3TART "YTE 7RITE !#+ DocID026427 Rev 5 !)E M24C32S-FCU Page Write The Page Write mode allows up to 32 bytes to be written in a single Write cycle, provided that they are all located in the same page in the memory: that is, the most significant memory address bits, A15/A5, are the same. If more bytes are sent than will fit up to the end of the page, a “roll-over” occurs, i.e. the bytes exceeding the page end are written on the same page, from location 0. The bus master sends from 1 to 32 bytes of data, each of which is acknowledged by the device if the page is not write-protected, as shown in Figure 5. If the page is write-protected, the contents of the addressed memory location are not modified, and each data byte is followed by a NoAck, as shown in Figure 6. After each transferred byte, the internal page address counter is incremented. The transfer is terminated by the bus master generating a Stop condition. Figure 6. Write mode sequence (data write inhibited) ACK ACK Byte addr Dev sel Data in ACK Byte addr ACK Byte addr NO ACK Data in 1 Data in 2 R/W NO ACK NO ACK Data in N Stop Page Write (cont'd) Byte addr NO ACK R/W ACK Page Write ACK Stop Dev sel Start Byte Write Start 5.1.2 Instructions DocID026427 Rev 5 AI01120e 15/35 34 Instructions 5.1.3 M24C32S-FCU Write protection By writing specific values in a register (Table 5) located at address 1xxx.xxxx.xxxx.xxxxb, the memory array can be write-protected by blocks, which size can be defined as: • the upper quarter memory array • the upper half memory array • the upper 3/4 memory array • the whole memory array Table 5. Write Protect register (Address = 1xxx.xxxx.xxxx.xxxxb) b7 b6 b5 b4 Write x x x x Read 0 0 0 0 Note: b3 b2 b1 b0 Write protect activation Size of write protected block Size of write protected block Write protect lock Location 1xxx.xxxx.xxxx.xxxxb is outside of the addressing field of the EEPROM memory (16 Kbytes are addressed within the 00xx.xxxx.xxxx.xxxx range) • • • • Bit b3 enables or disables the Write protection – b3=0: the whole memory can be written (no Write protection) – b3=1: the concerned block is write-protected Bits b2 and b1 define the size of the memory block to be protected against write instructions – b2,b1=0,0: the upper quarter of memory is write-protected – b2,b1=0,1: the upper half memory is write-protected – b2,b1=1,0: the upper 3/4 of memory are write-protected – b2,b1=1,1: the whole memory is write-protected bit b0 locks the write protect status – b0=0: bits b3,b2,b1,b0 can be modified – b0=1: bits b3,b2,b1,b0 cannot be modified and therefore the memory write protection is frozen. b7, b6, b5, b4 bits are Don't Care bits. Writing the Write Protect register Writing in the Write protect register is performed with a Byte Write instruction at address 1xxx.xxxx.xxxx.xxxxb. Bits b7,b6,b5,b4 of the data byte are not significant (Don't Care). Writing more than one byte will discard the write cycle (Write protect register content will not be changed). 16/35 DocID026427 Rev 5 M24C32S-FCU 5.1.4 Instructions Minimizing Write delays by polling on ACK During the internal Write cycle, the device disconnects itself from the bus, and writes a copy of the data from its internal latches to the memory cells. The maximum Write time (tw) is shown in AC characteristics tables in Section 8: DC and AC parameters, but the typical time is shorter. To make use of this, a polling sequence can be used by the bus master. The sequence, as shown in Figure 7, is: • Initial condition: a Write cycle is in progress. • Step 1: the bus master issues a Start condition followed by a device select code (the first byte of the new instruction). • Step 2: if the device is busy with the internal Write cycle, no Ack will be returned and the bus master goes back to Step 1. If the device has terminated the internal Write cycle, it responds with an Ack, indicating that the device is ready to receive the second part of the instruction (the first byte of this instruction having been sent during Step 1). Figure 7. Write cycle polling flowchart using ACK :ULWHF\FOH LQSURJUHVV 6WDUWFRQGLWLRQ 'HYLFHVHOHFW ZLWK5: 12 $&. UHWXUQHG <(6 )LUVWE\WHRILQVWUXFWLRQ ZLWK5: DOUHDG\ GHFRGHGE\WKHGHYLFH 12 1H[W 2SHUDWLRQLV DGGUHVVLQJWKH PHPRU\ <(6 6HQG$GGUHVV DQG5HFHLYH$&. 5H6WDUW 12 6WRS 'DWDIRUWKH :ULWHRSHUDWLRQ &RQWLQXHWKH :ULWHRSHUDWLRQ 6WDUW&RQGLWLRQ <(6 'HYLFHVHOHFW ZLWK5: &RQWLQXHWKH 5DQGRP5HDGRSHUDWLRQ $,H 1. The seven most significant bits of the Device Select code of a Random Read (bottom right box in the figure) must be identical to the seven most significant bits of the Device Select code of the Write (polling instruction in the figure). DocID026427 Rev 5 17/35 34 Instructions 5.2 M24C32S-FCU Read operations Read operations are performed independently of the Write protection state. After the successful completion of a Read operation, the device internal address counter is incremented by one, to point to the next byte address. For the Read instructions, after each byte read (data out), the device waits for an acknowledgment (data in) during the 9th bit time. If the bus master does not acknowledge during this 9th time, the device terminates the data transfer and switches to its Standby mode. Figure 8. Read mode sequences !#+ $ATA OUT 3TOP 3TART $EV SEL ./ !#+ 27 !#+ 2ANDOM !DDRESS 2EAD "YTE ADDR $EV SEL !#+ ./ !#+ $ATA OUT . 27 !#+ !#+ "YTE ADDR !#+ "YTE ADDR 27 !#+ $EV SEL 3TART 3TART $EV SEL !#+ $ATA OUT 27 !#+ $ATA OUT ./ !#+ 3TOP 3TART $EV SEL 3EQUENTION 2ANDOM 2EAD !#+ "YTE ADDR 27 !#+ 3EQUENTIAL #URRENT 2EAD !#+ 3TART 3TART $EV SEL !#+ 3TOP #URRENT !DDRESS 2EAD !#+ $ATA OUT 27 ./ !#+ 3TOP $ATA OUT . 5.2.1 !)D Random Address Read A dummy Write is first performed to load the address into this address counter (as shown in Figure 8) but without sending a Stop condition. Then, the bus master sends another Start condition, and repeats the device select code, with the RW bit set to 1. The device acknowledges this, and outputs the contents of the addressed byte. The bus master must not acknowledge the byte, and terminates the transfer with a Stop condition. 18/35 DocID026427 Rev 5 M24C32S-FCU 5.2.2 Instructions Current Address Read For the Current Address Read operation, following a Start condition, the bus master only sends a device select code with the R/W bit set to 1. The device acknowledges this, and outputs the byte addressed by the internal address counter. The counter is then incremented. The bus master terminates the transfer with a Stop condition, as shown in Figure 8, without acknowledging the byte. 5.2.3 Sequential Read This operation can be used after a Current Address Read or a Random Address Read. The bus master does acknowledge the data byte output, and sends additional clock pulses so that the device continues to output the next byte in sequence. To terminate the stream of bytes, the bus master must not acknowledge the last byte, and must generate a Stop condition, as shown in Figure 8. The output data comes from consecutive addresses, with the internal address counter automatically incremented after each byte output. After the last memory address, the address counter “rolls-over”, and the device continues to output data from memory address 00h. 5.2.4 Read the Write Protect register Reading the Write Protect register is performed with a Random Read instruction at address 1xxx.xxxx.xxxx.xxxxb. Bits b7, b6, b5, b4 of the Write Protect register content are read as 0, 0, 0, 0. The signification of the Protect Register lower bits b3, b2, b1, b0 are defined in Section 5.1.3: Write protection. Reading more than one byte will loop on reading the Write Protect Register value. The Write Protect register cannot be read while a write cycle (tw) is ongoing. DocID026427 Rev 5 19/35 34 Initial delivery state 6 M24C32S-FCU Initial delivery state The device is delivered with all the memory array bits set to 1 (each byte contains FFh) and the Write Protect register set to 0 (00h). 20/35 DocID026427 Rev 5 M24C32S-FCU 7 Maximum rating Maximum rating Stressing the device outside the ratings listed in Table 6 may cause permanent damage to the device. These are stress ratings only, and operation of the device at these, or any other conditions outside those indicated in the operating sections of this specification, is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Table 6. Absolute maximum ratings Symbol TSTG TLEAD Parameter Min. Max. Unit Ambient operating temperature –40 130 °C Storage temperature –65 150 °C note(1) °C –0.50 6 V - 5 mA –0.50 6 V - 4000 V Lead temperature during soldering VIO Input or output range IOL DC output current (SDA = 0) VCC Supply voltage VESD Electrostatic pulse (Human Body model) see 1. Compliant with JEDEC standard J-STD-020D (for small-body, Sn-Pb or Pb free assembly), the ST ECOPACK® 7191395 specification, and the European directive on Restrictions on Hazardous Substances (RoHS directive 2011/65/EU of July 2011). DocID026427 Rev 5 21/35 34 DC and AC parameters 8 M24C32S-FCU DC and AC parameters This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the device. Table 7. Test conditions Symbol Data retention(1) Cycling Parameter Min. Unit TA = 55 °C 200 year TA = 25 °C 4 million cycle 1. The data retention behavior is checked in production. The 200-year limit is defined from characterization and qualification results. Table 8. Operating conditions Symbol VCC TA fC 22/35 Parameter Min. Supply voltage 1.60 1.70 Ambient operating temperature: READ –40 –40 Ambient operating temperature: WRITE 0 –40 Max. Unit 5.5 V 85 °C Operating clock frequency, VCC = 1.6 V - 400 Operating clock frequency, VCC = 1.7 V - 1000 DocID026427 Rev 5 kHz M24C32S-FCU DC and AC parameters Table 9. DC characteristics Symbol Parameter ILI Input leakage current (SCL, SDA) ILO Output leakage current ICC Supply current (Read) Test conditions Min. Max. Unit VIN = VSS or VCC device in Standby mode - ±2 µA SDA in Hi-Z, external voltage applied on SDA: VSS or VCC - ±2 µA VCC < 1.8 V, fC = 400 kHz - 0.8 mA VCC >= 1.8 V, fC = 400 kHz - 2 mA (1) - 2.5 mA During tW - 2 mA Device not selected (3), VIN = VSS or VCC, VCC = 1.8 V - 1 µA Device not selected (3), VIN = VSS or VCC, VCC = 2.5 V - 2 µA Device not selected (3), VIN = VSS or VCC, VCC = 5.5 V - 3 µA VCC >= 1.8 V, fC = 1 MHz ICC0 ICC1 Supply current (Write)(2) Standby supply current VIL Input low voltage (SCL, SDA) –0.45 0.25 VCC V VIH Input high voltage (SCL, SDA) 0.75 VCC VCC + 1 V IOL = 1 mA, VCC < 1.8 V - 0.2 V IOL = 2.1 mA, VCC = 2.5 V - 0.4 V IOL = 3 mA, VCC = 5.5 V - 0.4 V VOL Output low voltage 1. Only for devices operating at fcMax = 1 MHz (See Table 8) 2. Characterized value, not tested in production. 3. The device is not selected after power-up, after a Read instruction (after the Stop condition), or after the completion of the internal write cycle tW (tW is triggered by the correct decoding of a Write instruction). DocID026427 Rev 5 23/35 34 DC and AC parameters M24C32S-FCU Table 10. 400 kHz AC characteristics Symbol Alt. fC fSCL Clock frequency tCHCL tHIGH tCLCH tLOW tQL1QL2(1) tF tXH1XH2 tR Parameter Min. Max. Unit - 400 kHz Clock pulse width high 600 - ns Clock pulse width low 1300 - ns SDA (out) fall time 20 (2) 300 ns Input signal rise time (3) (3) ns (3) (3) ns 100 - ns tXL1XL2 tF Input signal fall time tDXCH tSU:DAT Data in set up time tCLDX tHD:DAT Data in hold time 0 - ns 50 - ns - 900 ns tCLQX (4) tDH Data out hold time tCLQV (5) tAA Clock low to next data valid (access time) tCHDL tSU:STA Start condition setup time 600 - ns tDLCL tHD:STA Start condition hold time 600 - ns tCHDH tSU:STO Stop condition set up time 600 - ns tDHDL tBUF Time between Stop condition and next Start condition 1300 - ns tW tWR Write time - 5 ms tNS(1) - Pulse width ignored (input filter on SCL and SDA) - single glitch - 50 ns 1. Characterized only, not tested in production. 2. With CL = 10 pF. 3. There is no min. or max. value for the input signal rise and fall times. It is however recommended by the I²C specification that the input signal rise and fall times be more than 20 ns and less than 300 ns when fC < 400 kHz. 4. The min value for tCLQX (Data out hold time) offers a safe timing to bridge the undefined region of the falling edge SCL. 5. tCLQV is the time (from the falling edge of SCL) required by the SDA bus line to reach either 0.3VCC or 0.7VCC, assuming that Rbus × Cbus time constant is less than 400 ns. 24/35 DocID026427 Rev 5 M24C32S-FCU DC and AC parameters Table 11. High frequency clock AC characteristics Symbol Alt. Parameter fC fSCL Clock frequency tCHCL tHIGH Clock pulse width high Min. Max. Unit 0 1 MHz - ns - ns 260 tCLCH tLOW Clock pulse width low tXH1XH2 tR Input signal rise time (2) (2) ns Input signal fall time (2) (2) ns 120 ns tXL1XL2 (3) tF 700 (1) tF SDA (out) fall time tDXCH tSU:DAT Data in setup time 50 - ns tCLDX tHD:DAT Data in hold time 0 - ns 50 - ns - 650 ns tQL1QL2 tCLQX (5) tDH Data out hold time tCLQV (6) tAA Clock low to next data valid (access time) 20 (4) tCHDL tSU:STA Start condition setup time 250 - ns tDLCL tHD:STA Start condition hold time 250 - ns tCHDH tSU:STO Stop condition setup time 250 - ns tDHDL tBUF Time between Stop condition and next Start condition 500 - ns tW tWR Write time - 5 ms tNS (3) - Pulse width ignored (input filter on SCL and SDA) - 50 ns 1. 600ns when -20°C ≤ t°≤ +85°C. Characterized only, not tested in production. 2. There is no min. or max. values for the input signal rise and fall times. However, it is recommended by the I²C specification that the input signal rise and fall times be more than 20 ns and less than 120 ns when fC < 1 MHz. 3. Characterized only, not tested in production. 4. With CL = 10 pF. 5. To avoid spurious Start and Stop conditions, a minimum delay is placed between SCL=1 and the falling or rising edge of SDA. 6. tCLQV is the time (from the falling edge of SCL) required by the SDA bus line to reach either 0.3 VCC or 0.7 VCC, assuming that the Rbus × Cbus time constant is within the values specified in Figure 9. DocID026427 Rev 5 25/35 34 DC and AC parameters M24C32S-FCU Figure 9. Maximum Rbus value versus bus parasitic capacitance (Cbus) for an I2C bus at maximum frequency fC = 400 kHz %XVOLQH3XOOXSUHVLVWRU N 5E 7KH5EXV[&EXVWLPH FRQVWDQWPXVWEHEHORZ WKHQVWLPHFRQVWDQW OLQHUHSUHVHQWHGRQWKHOHIW XV [ &E XV +HUH5EXV[&EXV QV Nȍ 9&& 5EXV Q V ,ð&EXV PDVWHU 6&/ 0[[[ 6'$ S) &EXV %XVOLQHFDSDFLWRU S) 06Y9 5EXV6'$OLQH3XOOXSUHVLVWRU N Figure 10. Maximum Rbus value versus bus parasitic capacitance (Cbus) for an I2C bus at high clock frequency 7KHPD[LPXPYDOXHRIWKH WLPHFRQVWDQW 5EXV[&EXV QVZKHQ9&&9 QVZKHQ9&&9 5EXV&EXVYDOXHVIRUIF 0+] 9&& 5EXV ,&EXV PDVWHU 6&/ 0[[[ 6'$ &EXV &EXV6'$OLQHSDUDVLWLFFDSDFLWRU S) 06Y9 26/35 DocID026427 Rev 5 M24C32S-FCU DC and AC parameters Figure 11. AC waveforms ^ƚĂƌƚ ĐŽŶĚŝƚŝŽŶ ^ƚŽƉ ĐŽŶĚŝƚŝŽŶ ƚy>ϭy>Ϯ ƚy,ϭy,Ϯ ƚ,> ^ƚĂƌƚ ĐŽŶĚŝƚŝŽŶ ƚ>, ^> ƚ>> ƚy>ϭy>Ϯ ^/Ŷ ƚ,> ƚy,ϭy,Ϯ ^ /ŶƉƵƚ ƚy, ^ ŚĂŶŐĞ ƚ>y ƚ,, ^ƚŽƉ ĐŽŶĚŝƚŝŽŶ ƚ,> ^ƚĂƌƚ ĐŽŶĚŝƚŝŽŶ ^> ^/Ŷ ƚt ƚ,, ƚ,> tƌŝƚĞĐLJĐůĞ ƚ,> ^> ƚ>Ys ^KƵƚ ƚ>Yy ĂƚĂǀĂůŝĚ ƚY>ϭY>Ϯ ĂƚĂǀĂůŝĚ /ϬϬϳϵϱũ DocID026427 Rev 5 27/35 34 Package information 9 M24C32S-FCU Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 9.1 Ultra Thin WLCSP package information Figure 12. Ultra Thin WLCSP- 4-bump, 0.833 x 0.833 mm, wafer level chip scale package outline EEE = ' 2ULHQWDWLRQ UHIHUHQFH 'HWDLO$ ; < H ) ( H ) 2ULHQWDWLRQ UHIHUHQFH DDD $ $ ; :DIHUEDFNVLGH * * 6LGHYLHZ %XPS $ HHH = = E ; T FFF0 = ; < TGGG0 = 6HDWLQJSODQH 'HWDLO$ 5RWDWHG $=B0(B9 1. Drawing is not to scale. 28/35 DocID026427 Rev 5 M24C32S-FCU Package information Table 12. Ultra Thin WLCSP- 4-bump, 0.833 x 0.833 mm, wafer level chip scale package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.2400 0.2700 0.3000 0.0094 0.0106 0.0118 A1 - 0.0950 - - 0.0037 - A2 - 0.1750 - - 0.0069 - (2) - 0.1850 - - 0.0073 - D - 0.8330 0.8530 - 0.0328 0.0336 E - 0.8330 0.8530 - 0.0328 0.0336 e - 0.4000 - - 0.0157 - e1 - 0.5000 - - 0.0197 - F - 0.2170 - - 0.0085 - G 0.1670 - - 0.0066 - aaa 0.1100 0.0043 bbb 0.1100 0.0043 ccc 0.1100 0.0043 ddd 0.0600 0.0024 eee 0.0600 0.0024 b 1. Values in inches are converted from mm and rounded to four decimal digits. 2. Dimension is measured at the maximum bump diameter parallel to primary datum Z DocID026427 Rev 5 29/35 34 Package information M24C32S-FCU Figure 13. Ultra Thin WLCSP- 4-bump, 0.833 x 0.833 mm, wafer level chip scale package outline with BSC %DFNVLGHFRDWLQJ WKLFNQHVVPP ' ; EEE = 2ULHQWDWLRQ UHIHUHQFH 'HWDLO$ < H ) ( H ) 2ULHQWDWLRQ UHIHUHQFH DDD ; $ :DIHUEDFNVLGH $ $ * * 6LGHYLHZ %XPS $ HHH = = E ; = ;< = T FFF0 TGGG0 6HDWLQJSODQH 'HWDLO$ 5RWDWHG $=B37GB0(B9 1. Drawing is not to scale. 2. Primary datum Z and seating plane are defined by the spherical crowns of the bump. 30/35 DocID026427 Rev 5 M24C32S-FCU Package information Table 13. Ultra Thin WLCSP- 4-bump, 0.833 x 0.833 mm, wafer level chip scale package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.265 0.295 0.330 0.0104 0.0116 0.0130 A1 - 0.095 - - 0.0037 - A2 - 0.200 - - 0.0079 - A3 (BSC) - 0.025 - - 0.0010 - - 0.185 - - 0.0073 - D - 0.833 0.853 - 0.0328 0.0336 E - 0.833 0.853 - 0.0328 0.0336 e - 0.400 - - 0.0157 - e1 - 0.500 - - 0.0197 - F - 0.217 - - 0.0085 - G - 0.167 - - 0.0066 - aaa - - 0.110 - - 0.0043 bbb - - 0.110 - - 0.0043 ccc - - 0.110 - - 0.0043 ddd - - 0.060 - - 0.0024 eee - - 0.060 - - 0.0024 (2) (3) b 1. Values in inches are converted from mm and rounded to 4 decimal digits. 2. Dimension is measured at the maximum bump diameter parallel to primary datum Z. 3. Primary datum Z and seating plane are defined by the spherical crowns of the bump. Figure 14. Thin WLCSP- 4-bump, 0.833 x 0.833 mm, wafer level chip scale package recommended footprint EXPSV[PP H H $=B)3B9 DocID026427 Rev 5 31/35 34 Part numbering 10 M24C32S-FCU Part numbering Table 14. Ordering information scheme Example: M24 C32S -F CU 6 T /T F Device type M24 = I2C serial access EEPROM Device function C32S = 32 Kbits (4 K x 8 bits) Operating voltage F = VCC = 1.7 V to 5.5 V Package(1) CU = ultra-thin 4-bump WLCSP Device grade 6 = device tested with standard test flow over –40 to 85 °C Packing T = Tape and reel packing Process technology(2) /T = Process letter Option blank = no Back Side Coating (WLCSP height = 0.300mm) F = Back Side Coating (WLCSP height = 0.330mm) 1. The package is ECOPACK2® (RoHS compliant and free of brominated, chlorinated and antimony oxide flame retardants). 2. The process letter appears on the device package (marking) and on the shipment box. Please contact your nearest ST Sales Office for further information. 32/35 DocID026427 Rev 5 M24C32S-FCU Part numbering Engineering samples Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. DocID026427 Rev 5 33/35 34 Revision history 11 M24C32S-FCU Revision history Table 15. Document revision history Date Revision 05-Jun-2014 1 Initial release 2 Updated Features Updated Table 8: Operating conditions Added Table 11: High frequency clock AC characteristics Updated Table 12: Ultra Thin WLCSP- 4-bump, 0.833 x 0.833 mm, wafer level chip scale package mechanical data Added Table 13: Ultra Thin WLCSP- 4-bump, 0.833 x 0.833 mm, wafer level chip scale package mechanical data Added Figure 10: Maximum Rbus value versus bus parasitic capacitance (Cbus) for an I2C bus at high clock frequency Added Figure 12: Ultra Thin WLCSP- 4-bump, 0.833 x 0.833 mm, wafer level chip scale package outline Added Figure 13: Ultra Thin WLCSP- 4-bump, 0.833 x 0.833 mm, wafer level chip scale package outline with BSC Added Figure 14: Thin WLCSP- 4-bump, 0.833 x 0.833 mm, wafer level chip scale package recommended footprint Added option F inside Table 14: Ordering information scheme Added note after Table 14: Ordering information scheme. 3 Change from Preliminary to Production data status Updated Icc(read) value in Table 9: DC characteristics Updated Figure 10: Maximum Rbus value versus bus parasitic capacitance (Cbus) for an I2C bus at high clock frequency 27-Jul-2015 4 Updated: – Features in cover page – Figure 2 – Note 1 on Table 6 – Table 7 and its note 1. – Figure 13 – Table 13 14-Oct-2015 5 Added: – Note 1 on Table 11. – notes 1 and 2 on Table 14 13-Jan-2015 30-Apr-2015 34/35 Changes DocID026427 Rev 5 M24C32S-FCU IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2015 STMicroelectronics – All rights reserved DocID026427 Rev 5 35/35 35