MGA-72543 PHEMT* Low Noise Amplifier with Bypass Switch Data Sheet Description Features Avago’s MGA-72543 is an economical, easy-to-use GaAs MMIC Low Noise Amplifier (LNA),which is designed for an adaptive CDMA receiver LNA and adaptive CDMA transmit driver amplifier. The MGA-72543 features a minimum noise figure of 1.4 dB and 14 dB associated gain from a single stage, feedback FET amplifier. The output is internally matched to 50Ω. The input is optimally internally matched for lowest noise figure into 50Ω. The input may be additionally externally matched for low VSWR through the addition of a single series inductor. When set into the bypass mode,both input and output are internally matched to 50Ω. The MGA-72543 offers an integrated solution of LNA with adjustable IIP3. The IIP3 can be fixed to a desired current level for the receiver’s linearity requirements. The LNA has a bypass switch function,which sets the current to zero and provides low insertion loss. The bypass mode also boosts dynamic range when high level signal is being received. Lead-free Option Available Operating Frequency: 0.1 GHz ~ 6.0 GHz Noise Figure: 1.4 dB at 2 GHz Gain: 14 dB at 2 GHz Bypass Switch on Chip Loss = -2.5 dB (Id <5 μA) IIP3 = +35 dBm Adjustable Input IP3: +2 to +14 dBm 2.7 V to 4.2 V Operation Very Small Surface Mount Package Applications CDMA (IS-95, J-STD-008) Receiver LNA Transmit Driver Amp TDMA (IS-136)Handsets Surface Mount Package SOT-343 (SC-70) For the CDMA driver amplifier applications, the MGA72543 provides suitable gain and linearity to meet the ACPR requirements when the handset transmits the highest power. When transmitting lower power, the MGA72543 can be bypassed, saving the drawing current. Attention: Observe precautions for handling electrostatic sensitive devices. ESD Machine Model (Class A) ESD Human Body Model (Class 0) Refer to Avago Application Note A004R: Electrostatic Discharge Damage and Control. *Pseudomorphic High Electron Mobility Transistor Pin Connections and Package Marking 3 INPUT & Vref 4 GND 1 72x The MGA-72543 is a GaAs MMIC, processed on Avago’s cost effective PHEMT (Pseudomorphic High Electron Mobility Transistor). It is housed in the SOT343 (SC70 4-lead) package, and is part of the Avago Technologies CDMAdvantage RF chipset. GND 2 OUTPUT & Vd Package marking is 3 characters. The last character represents date code. MGA-72543 Absolute Maximum Ratings [1] Symbol Parameter Units Absolute Maximum Operation Maximum Vd Maximum Input to Output Voltage V 5.5 4.2 Vref Maximum Input to Ground DC Voltage V +0.3 -5.5 +0.1 -4.2 Id Supply Current mA 70 60 Pd Power Dissipation[2,3] mW 300 250 Pin CW RF Input Power dBm +20 +13 Tj Junction Temperature °C 170 150 TSTG Storage Temperature °C -65 to +150 -40 to +85 Thermal Resistance: [2] jc = 200°C/W Notes: 1. Operation of this device in excess of any of these limits may cause permanent damage. 2. Tcase = 25°C. Simplified Schematic Functional Block Diagram RF IN Input & V ref Control Output & Vd SW & Bias Control GainFET GND 2 RF OUT GND MGA-72543 Electrical Specifications Tc = +25°C, Zo = 50Ω, Id = 20 mA, Vd = 3V, unless noted. Symbol Parameters and Test Conditions Vc[1,3] Units Min. Typ. Max. 0.37 0.51 0.65 0.035 1.5 1.8 0.06 15.5 0.13 f = 2.0 GHz Vd = 3.0V (Vds = 2.5V) Id = 20 mA V NF test[1] f = 2.0 GHz Vd = 3.0V (= Vds + Vc) Id = 20 mA dB Ga test[1] f = 2.0 GHz Vd = 3.0V (= Vds + Vc) Id = 20 mA dB 13.5 14.4 Id = 20 mA dB 8.5 10.5 test[1] IIP3 f = 2.04 GHz Vd = 3.0V (= Vds + Vc) 0.67 IL test[1] f = 2.0 GHz Vd = 3.0V (Vds = 0V, Vc = 3V) Id = 0.0 mA dB 2.5 Ig test[1] f = 2.0 GHz Vd = 3.0V (Vds = 0V, Vc = 3V) Id = 0.0 mA μA 2.0 Minimum Noise Figure As measured in Figure 2 Test Circuit (opt computed from s-parameter and noise parameter performance as measured in a 50Ω impedance fixture) f = 1.0 GHz f = 1.5 GHz f = 2.0 GHz f = 2.5 GHz f = 4.0 GHz f = 6.0 GHz dB 1.35 1.38 1.42 1.45 1.54 1.70 Associated Gain at Nfo As measured in Figure 2 Test Circuit (opt computed from s-parameter and noise parameter performance as measured in a 50Ω impedance fixture) f = 1.0 GHz f = 1.5 GHz f = 2.0 GHz f = 2.5 GHz f = 4.0 GHz f = 6.0 GHz dB Output Power at 1 dB Gain Compression As measured in Figure 1 Test Circuit. Frequency = 2.04 GHz Id = 0 mA Id = 5 mA Id = 10 mA Id = 20 mA Id = 40 mA Id = 60 mA dBm Id = 0 mA Id = 5 mA Id = 10 mA Id = 20 mA Id = 40 mA Id = 60 mA dBm Adjacent Channel Power Rejection, f = 2 GHZ, offset = 1.25 MHz, Pout = 10 dBm (CDMA modulation scheme) f = 800 MHz, offset = 900 KHz, Pout = 8 dBm As measured in Figure 1 Test Circuit Id = 30 mA Id = 40 mA Id = 20 mA Id = 30 mA dBc -55 -60 -57 -60 Input Return Loss as measured in Fig. 1 f = 2.0 GHz dB 10.2 0.22 Output Return Loss as measured in Fig. 1 f = 2.0 GHz dB 19.5 1.1 f = 2.0 GHz dB -23.2 0.16 [2] NFo Ga[2] P1dB[1] IIP3[1] ACP RLin[1] [1] RLout ISOL[1] Input Third Order Intercept Point As measured in Figure 1 Test Circuit Frequency = 2.04 GHz Isolation |S12 |2 as measured in Fig. 2 3.5 0.01 2.0 0.04 14.8 14.2 13.6 13.0 11.2 9.2 0.11 +15.3 +3.2 +8.3 +11.2 +14.9 +17.1 0.52 +35 +3.5 +6.2 +10.5 +12.1 +14.8 0.67 Notes: 1. Standard Deviation and Typical Data as measured in the test circuit in Figure 1. Data based at least 500 part sample size and 3 wafer lots. 2. Typical data computed from s-parameter and noise parameter data measured in a 50É∂ system. Data based on 40 parts from 3 wafer lots. 3. Vc = -Vref test 960 pF Vd RF Input 56 pF 1 V ref 1000 W 4 2 Figure 1. MGA-72543 Production Test Circuit. 3 18 nH RF Output V ref Bias Tee Vd ICM Fixture 72x 3 72x 2.7 nH 50 pF RF Input Bias Tee RF Output 56 p F Figure 2. MGA-72543 Test Circuit for S, Noise, and Power Parameters Over Frequency. MGA-72543 Typical Performance, Tc = 25°C, Zo = 50, Vd = 3V, Id = 20 mA unless stated otherwise. All data as measured in Figure 2 test circuit (Input & Output presented to 50Ω). 18 18 2 15 15 12 12 G a (dB) NF (dB) 1.8 1.6 1.4 9 6 3 2.7 V 3.0 V 3.3 V 1.2 1 INPUT IP 3 (dBm) 2.2 0 1 2 3 4 5 2.7 V 3.0 V 3.3 V 0 -3 6 0 1 FREQUENCY (GHz) G a (dB) 1.6 1.4 1 2 3 2.7 V 3.0 V 3.3 V 0 1 4 5 15 15 12 12 9 6 -40 C +22 C +85 C 0 1 FREQUENCY (GHz) 2 3 3 4 5 4 5 9 6 3 -40 C +25 C +85 C 0 -3 6 0 1 FREQUENCY (GHz) 2 3 4 5 6 FREQUENCY (GHz) Figure 6. Minimum Noise Figure vs. Frequency and Temperature. Figure 7. Associated Gain with F min vs. Frequency and Temperature. Figure 8. Input Third Order Intercept Point vs. Frequency and Temperature. 5 5 0 In (LNA) Out (LNA) 6 Figure 5. Input Third Order Intercept Point vs. Frequency and Voltage. 18 -3 6 2 FREQUENCY (GHz) 18 0 0 -3 6 3 1.2 In (Swt) Out (Swt) 3 2 4 INSERTION LOSS (dB) VSWR (Bypass Switch) 4 VSWR (LNA) 5 INPUT IP 3 (dBm) -40 C +22 C +85 C 1.8 NF (dB) 4 3 0 Figure 4. Associated Gain with F min vs. Frequency and Voltage. 2.2 1 3 6 FREQUENCY (GHz) Figure 3. Minimum Noise Figure vs. Frequency and Voltage. 2 2 9 3 2 -1 -2 -3 -40 C +25 C +85 C 1 0 1 2 3 4 FREQUENCY (GHz) Figure 9. LNA on (Switch off) VSWR vs. Frequency. 4 5 6 1 0 1 2 3 4 FREQUENCY (GHz) Figure 10. LNA off (Switch on) VSWR vs. Frequency. 5 6 -4 0 1 2 3 4 FREQUENCY (GHz) Figure 11. Insertion Loss (Switch on) vs. Frequency and Temperature. 5 6 18 18 15 15 15 12 12 12 9 6 3 2.7 V 3.0 V 3.3 V 0 -3 0 1 2 3 4 5 9 6 3 0 FREQUENCY (GHz) 2.2 2.0 G a (dBm) NF (dB) 1 2 3 4 5 1.8 1.6 21 15 18 12 15 9 6 60 -3 80 0 20 40 60 40 60 Id CURRENT (mA) Figure 18. Output Power at 1 dB Compression vs. Current and Temperature. 5 0 0 20 60 80 1 0.8 0.6 Gamma Input Output 3 0.4 -40 C +25 C +85 C 0.2 80 40 Figure 17. Input Third Order Intercept Point vs. Current and Temperature. 2 -40 C +25 C +85 C 20 -40 C +25 C +85 C V ref (V) VSWR 1 dB Compression (dBm) 3 6 Id CURRENT (mA) 4 6 5 6 80 15 9 4 9 5 12 3 3 Figure 16. Associated Gain (Fmin) vs. Current and Temperature. 18 0 2 Id CURRENT (mA) Figure 15. Minimum Noise Figure vs. Current and Temperature. -3 1 12 -40 C +25 C +85 C Id CURRENT (mA) 0 0 Figure 14. Input Third Order Intercept Point vs. Frequency and Current. 18 0 1.2 40 10 mA 20 mA 40 mA FREQUENCY (GHz) 3 1.4 20 -3 6 INPUT IP 3 (dBm) -40 C +25 C +85 C 0 3 0 Figure 13. Output Power at 1 dB Compression vs. Frequency and Temperature. 2.6 1.0 6 FREQUENCY (GHz) Figure 12. Output Power at 1 dB Compression vs. Frequency and Voltage. 2.4 9 -40 C +25 C +85 C 0 -3 6 INPUT IP 3 (dBm) 18 1 dB COMPRESSION (dBm) 1 dB COMPRESSION (dBm) MGA-72543 Typical Performance, continued, Tc = 25°C, Zo = 50, Vd = 3V, Id = 20 mA, Frequency = 2 GHz, unless stated otherwise. All data as measured in Figure 2 test circuit (Input & Output presented to 50Ω). 1 0 20 40 Id CURRENT (mA) Figure 19. Input and Output VSWR and VSWR of | opt | vs. Current. 60 80 0 0 20 40 60 Id CURRENT (mA) Figure 20. V ref vs. Current and Temperature. 80 MGA-72543 Typical Scattering Parameters and Noise Parameters TC = 25°C, Vd = 3.0V, Id = 0 mA, ZO = 50Ω, Vref = -3.0V (from S and Noise Parameters in Figure 1 test circuit) 2 Freq. S11 S21 S12 S22 |S21| RLin RLout Gmax Isolation (GHz) Mag. Ang. Mag. Ang. Mag. Ang. Mag. Ang. (dB) (dB) (dB) (dB) (dB) 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 6 0.97 0.91 0.84 0.77 0.70 0.65 0.59 0.54 0.50 0.47 0.44 0.41 0.39 0.37 0.35 0.34 0.32 0.31 0.30 0.28 0.27 0.26 0.26 0.25 0.24 0.23 0.23 0.22 0.21 0.21 0.20 0.20 0.19 0.19 0.19 0.18 0.18 0.18 0.18 0.17 0.17 0.18 0.19 0.16 0.20 0.23 0.24 0.25 0.26 0.27 -13 -25 -34 -43 -50 -54 -60 -64 -67 -71 -73 -76 -78 -80 -82 -84 -86 -87 -89 -90 -92 -93 -94 -95 -96 -98 -99 -99 -100 -101 -102 -103 -104 -105 -106 -107 -108 -110 -112 -113 -123 -136 -149 -176 175 171 164 154 142 125 0.19 0.34 0.46 0.54 0.60 0.64 0.67 0.70 0.71 0.73 0.74 0.75 0.76 0.76 0.77 0.77 0.77 0.77 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.78 0.78 0.77 0.76 0.75 0.74 0.73 0.71 0.70 74 60 49 40 33 26 20 16 12 8 4 1 -2 -5 -7 -10 -12 -15 -17 -19 -21 -23 -25 -27 -29 -31 -33 -35 -37 -39 -41 -43 -45 -47 -49 -51 -52 -54 -56 -58 -67 -77 -86 -95 -105 -115 -125 -135 -146 -157 0.19 0.34 0.46 0.54 0.60 0.64 0.68 0.70 0.72 0.73 0.74 0.75 0.76 0.76 0.77 0.77 0.77 0.77 0.78 0.78 0.78 0.78 0.78 0.78 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.78 0.77 0.77 0.76 0.75 0.74 0.73 0.71 0.70 74 60 49 40 33 26 21 16 12 8 4 1 -2 -4 -7 -10 -12 -14 -17 -19 -21 -23 -25 -27 -29 -31 -33 -35 -37 -39 -41 -43 -45 -47 -49 -50 -52 -54 -56 -58 -67 -77 -86 -95 -105 -115 -125 -135 -146 -157 0.96 0.86 0.77 0.68 0.61 0.54 0.49 0.45 0.42 0.39 0.36 0.34 0.33 0.31 0.29 0.28 0.27 0.26 0.25 0.24 0.23 0.22 0.21 0.20 0.19 0.18 0.17 0.17 0.16 0.15 0.15 0.14 0.13 0.13 0.12 0.12 0.11 0.11 0.11 0.10 0.01 0.10 0.12 0.13 0.13 0.13 0.13 0.14 0.16 0.19 -16 -29 -40 -48 -54 -60 -64 -67 -70 -73 -75 -77 -80 -82 -83 -85 -86 -88 -89 -90 -92 -93 -94 -96 -97 -98 -100 -101 -103 -104 -106 -108 -110 -111 -113 -115 -117 -120 -122 -124 -138 -150 -161 -178 170 160 150 137 121 104 -14.5 -9.3 -6.8 -5.3 -4.4 -3.8 -3.4 -3.1 -2.9 -2.7 -2.6 -2.5 -2.4 -2.4 -2.3 -2.2 -2.3 -2.2 -2.2 -2.2 -2.2 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.0 -2.2 -2.2 -2.3 -2.4 -2.5 -2.6 -2.8 -2.9 -3.2 -0.3 -0.8 -1.5 -2.3 -3.1 -3.8 -4.6 -5.3 -6.0 -6.6 -7.1 -7.7 -8.1 -8.6 -9.0 -9.4 -9.8 -10.2 -10.6 -10.9 -11.2 -11.5 -11.8 -12.1 -12.4 -12.7 -12.9 -13.2 -13.4 -13.7 -13.9 -14.1 -14.3 -14.5 -14.7 -14.8 -14.9 -15.0 -15.1 -15.1 -15.3 -15.1 -14.6 -15.8 -13.8 -12.8 -12.3 -12.0 -11.8 -11.3 -0.4 -1.3 -2.3 -3.3 -4.3 -5.4 -6.2 -6.9 -7.6 -8.2 -8.8 -9.3 -9.8 -10.2 -10.6 -11.1 -11.5 -11.8 -12.2 -12.6 -12.9 -13.3 -13.7 -14.0 -14.4 -14.8 -15.2 -15.5 -15.9 -16.3 -16.7 -17.1 -17.5 -17.9 -18.2 -18.6 -18.9 -19.1 -19.4 -19.6 -20.1 -19.7 -18.7 -18.1 -17.8 -17.7 -17.5 -17.1 -16.2 -14.4 -14.2 -8.3 -5.3 -3.7 -2.8 -2.3 -2.1 -2.0 -1.9 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -2.0 -2.0 -2.1 -2.2 -2.2 -2.3 -2.4 -2.5 -2.6 -2.8 -14.5 -9.3 -6.8 -5.3 -4.4 -3.8 -3.4 -3.1 -2.9 -2.7 -2.6 -2.5 -2.4 -2.4 -2.3 -2.3 -2.3 -2.2 -2.2 -2.2 -2.2 -2.1 -2.1 -2.1 -2.0 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.2 -2.2 -2.3 -2.4 -2.5 -2.6 -2.8 -2.9 -3.2 MGA-72543 Typical Scattering Parameters and Noise Parameters TC = 25°C, Vd = 3.0V, Id = 5 mA, ZO = 50Ω, Vref = 0.7V (from S and Noise Parameters in Figure 2 test circuit) 2 Freq. S11 S21 S12 S22 |S21| RLin RLout Gmax Isolation (GHz) Mag. Ang. Mag. Ang. Mag. Ang. Mag. Ang. (dB) (dB) (dB) (dB) (dB) 0.10 0.50 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 0.82 0.78 0.76 0.75 0.74 0.73 0.72 0.72 0.71 0.70 0.69 0.69 0.68 0.67 0.66 0.66 0.65 0.64 0.63 0.63 0.59 0.56 0.53 0.51 0.50 0.49 0.49 0.50 0.49 0.47 0.47 -9 -24 -34 -38 -41 -45 -48 -51 -54 -58 -61 -64 -67 -70 -73 -76 -79 -82 -85 -88 -103 -118 -138 -152 -169 176 160 148 136 123 109 4.01 3.83 3.70 3.65 3.61 3.57 3.52 3.48 3.45 3.40 3.36 3.32 3.29 3.25 3.22 3.18 3.15 3.12 3.08 3.06 2.92 2.80 2.65 2.55 2.42 2.30 2.18 2.07 1.97 1.89 1.82 174 161 151 148 145 142 139 136 133 130 127 124 121 119 116 113 111 108 105 103 90 77 62 52 40 28 18 7 -4 -15 -26 Freq. (GHz) NFmin (dB) opt Mag Ang 0.80 0.90 1.00 1.50 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 1.58 1.46 1.43 1.57 1.67 1.66 1.68 1.69 1.72 1.73 1.74 1.74 1.78 1.80 1.83 1.87 1.87 1.94 1.94 0.59 0.53 0.46 0.33 0.31 0.31 0.29 0.29 0.29 0.27 0.28 0.27 0.25 0.23 0.22 0.21 0.22 0.23 0.26 31 33 37 47 55 58 60 62 66 69 71 74 87 103 121 143 164 -179 -150 7 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.08 0.08 0.08 0.08 0.09 0.09 0.01 0.10 0.11 0.12 0.12 0.12 0.13 0.13 0.14 0.14 0.15 19 13 15 16 17 18 18 18 19 19 19 18 18 18 17 17 16 16 15 15 11 7 1 -3 -9 -13 -17 -23 -28 -32 -37 0.60 0.58 0.56 0.56 0.56 0.56 0.56 0.55 0.55 0.55 0.54 0.54 0.54 0.53 0.53 0.53 0.52 0.52 0.51 0.51 0.48 0.44 0.40 0.38 0.36 0.34 0.32 0.31 0.29 0.28 0.26 -8 -15 -23 -26 -28 -30 -32 -35 -37 -39 -42 -44 -45 -47 -49 -51 -53 -55 -57 -59 -69 -80 -94 -104 -117 -129 -142 -154 -165 -176 171 12.1 11.7 11.4 11.3 11.2 11.1 10.9 10.8 10.7 10.6 10.5 10.4 10.3 10.2 10.1 10.1 10.0 9.9 9.8 9.7 9.3 8.9 8.4 8.1 7.7 7.2 6.8 6.3 5.9 5.5 5.2 1.7 2.1 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.0 4.5 5.0 5.5 5.8 6.0 6.1 6.1 6.0 6.2 6.5 6.5 4.5 4.8 5.0 5.0 5.0 5.1 5.1 5.2 5.2 5.2 5.3 5.4 5.4 5.5 5.5 5.6 5.6 5.7 5.8 5.9 6.4 7.1 7.9 8.4 8.9 9.3 9.8 10.1 10.7 11.2 11.8 14.6 13.9 13.6 13.4 13.2 13.1 12.9 12.8 12.6 12.5 12.3 12.2 12.1 11.9 11.8 11.7 11.5 11.4 11.3 11.2 10.7 10.2 9.6 9.2 8.8 8.3 7.8 7.5 7.0 6.6 6.3 -26.2 -25.4 -24.8 -24.6 -24.4 -24.2 -23.9 -23.7 -23.4 -23.2 -23.0 -22.7 -22.5 -22.3 -22.1 -21.9 -21.7 -21.5 -21.3 -21.1 -20.3 -19.7 -19.1 -18.7 -18.3 -18.1 -17.8 -17.5 -17.3 -17.1 -16.6 Rn/Zo Ga (dB) |opt|RL (dB) Rn (Ω) P1dB (dBm) OIP3 (dBm) IIP3 (dBm) 0.34 0.34 0.32 0.30 0.30 0.29 0.28 0.28 0.27 0.27 0.26 0.26 0.24 0.21 0.18 0.16 0.15 0.14 0.15 12.53 12.19 11.84 10.97 10.64 10.53 10.42 10.33 10.23 10.12 10.03 9.95 9.53 9.13 8.74 8.31 7.87 7.45 7.04 4.60 5.47 6.74 9.67 10.17 10.31 10.62 10.62 10.90 11.23 11.13 11.22 11.95 12.60 13.01 13.41 13.12 12.61 11.76 17.20 16.84 16.09 14.94 14.78 14.35 14.04 13.96 13.63 13.29 13.12 12.83 11.80 10.44 9.14 8.06 7.28 7.13 7.67 3.4 3.3 3.2 3.2 3.2 3.3 3.2 3.3 3.3 3.4 3.4 3.5 3.4 3.3 3.1 2.4 2.3 2.4 2.0 13.0 12.9 12.8 12.4 11.9 11.8 12.7 12.7 12.8 12.8 12.9 12.9 12.9 13.0 13.3 13.6 14.0 14.5 14.2 3.0 3.2 3.3 3.4 3.5 3.5 3.5 3.5 3.5 3.7 3.8 3.9 4.1 4.1 4.2 4.5 4.8 6.8 7.5 MGA-72543 Typical Scattering Parameters and Noise Parameters TC = 25°C, Vd = 3.0V, Id = 10 mA, ZO = 50Ω, Vref = 0.6V (from S and Noise Parameters in Figure 2 test circuit) Freq. S11 S21 S12 S22 |S21|2 RLin RLout Gmax Isolation (GHz) Mag. Ang. Mag. Ang. Mag. Ang. Mag. Ang. (dB) (dB) (dB) (dB) 0.10 0.50 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 Freq. (GHz) 0.80 0.80 0.90 1.00 1.50 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 8 0.79 0.74 0.72 0.71 0.70 0.69 0.68 0.67 0.66 0.66 0.65 0.64 0.63 0.62 0.61 0.60 0.59 0.59 0.58 0.57 0.54 0.50 0.48 0.46 0.45 0.45 0.45 0.46 0.45 0.44 0.44 -10 -26 -37 -40 -44 -47 -51 -54 -58 -61 -65 -68 -71 -74 -77 -81 -84 -87 -90 -93 -108 -124 -141 -158 -175 170 154 142 131 119 105 5.30 5.04 4.84 4.77 4.71 4.64 4.58 4.51 4.45 4.39 4.33 4.27 4.21 4.15 4.01 4.04 3.99 3.94 3.89 3.84 3.62 3.42 3.23 3.05 2.88 2.72 2.57 2.43 2.31 2.21 2.12 173 160 150 146 143 140 137 134 131 128 125 122 119 116 113 111 108 105 103 100 87 75 62 50 38 27 17 6 -5 -16 0 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.08 0.08 0.09 0.01 0.10 0.11 0.11 0.12 0.12 0.13 0.14 0.15 19 13 15 16 17 17 18 18 19 19 19 19 18 18 18 18 17 17 16 16 13 9 6 2 -3 -6 -10 -14 -19 -23 -28 0.49 0.47 0.45 0.45 0.45 0.45 0.45 0.45 0.44 0.44 0.44 0.43 0.43 0.43 0.42 0.42 0.42 0.41 0.41 0.40 0.37 0.34 0.31 0.29 0.27 0.26 0.24 0.24 0.22 0.21 0.20 -9 -17 -24 -27 -29 -31 -33 -36 -38 -40 -42 -44 -46 -48 -50 -52 -54 -55 -57 -59 -69 -79 -90 -103 -115 -128 -141 -154 -165 -176 169 14.5 14.0 13.7 13.6 13.5 13.3 13.2 13.1 13.0 12.8 12.7 12.6 12.5 12.4 12.3 12.1 12.0 11.9 11.8 11.7 11.2 10.7 10.2 9.7 9.2 8.7 8.2 7.7 7.3 6.9 6.6 2.1 2.6 2.9 3.0 3.2 3.2 3.4 3.4 3.6 3.7 3.8 3.9 4.0 4.2 4.3 4.4 4.5 4.6 4.7 4.8 5.4 6.0 6.4 6.8 6.9 7.0 6.9 6.7 6.9 7.2 7.1 6.3 6.6 6.9 6.9 6.9 6.9 7.0 7.0 7.1 7.1 7.2 7.3 7.3 7.4 7.5 7.5 7.6 7.7 7.8 7.9 8.6 9.3 10.1 10.8 11.5 11.8 12.3 12.5 13.0 13.5 14.0 17.3 16.5 16.0 15.8 15.6 15.4 15.2 15.1 14.9 14.7 14.5 14.3 14.2 14.0 13.8 13.7 13.5 13.4 13.2 13.1 12.4 11.8 11.2 10.6 10.1 9.6 9.1 8.7 8.2 7.8 7.5 (dB) -26.9 -26.2 -25.7 -25.5 -25.3 -25.0 -24.8 -24.6 -24.3 -24.1 -23.9 -23.7 -23.5 -23.3 -23.1 -22.9 -22.7 -22.5 -22.4 -22.2 -21.5 -20.8 -20.3 -19.8 -19.4 -19.0 -18.6 -18.2 -17.9 -17.4 -16.7 NFmin opt (dB) Mag Ang Rn/Zo Ga (dB) |opt|RL (dB) Rn (Ω) P1dB (dBm) OIP3 (dBm) IIP3 (dBm) 1.58 1.33 1.33 1.34 1.41 1.44 1.45 1.47 1.47 1.49 1.52 1.51 1.50 1.55 1.56 1.58 1.60 1.62 1.68 1.67 0.34 0.23 0.24 0.24 0.24 0.23 0.22 0.22 0.21 0.21 0.21 0.20 0.20 0.19 0.17 0.15 0.14 0.13 0.13 0.15 12.53 14.45 14.27 14.00 13.10 12.71 12.58 12.45 12.32 12.21 12.08 11.98 11.86 11.32 10.81 10.31 9.82 9.32 8.86 8.45 4.60 6.96 7.27 8.30 11.42 11.95 12.21 12.58 12.66 12.83 13.27 13.10 13.21 13.98 14.79 15.24 15.23 14.59 13.61 11.99 17.20 11.52 11.84 12.24 11.94 11.35 11.02 10.85 10.66 10.55 10.26 10.23 10.02 9.33 8.31 7.46 6.92 6.51 6.58 7.33 3.4 9.3 9.3 9.3 8.8 8.5 8.4 8.3 8.3 8.3 8.4 8.4 8.5 8.7 8.8 9.0 9.3 9.6 10.0 9.8 13.0 17.9 17.8 17.7 17.5 17.4 17.2 17.3 17.5 17.6 17.7 17.8 17.9 18.1 18.3 19.1 19.4 19.8 20.2 19.8 3.0 4.1 4.2 4.3 5.0 5.1 5.2 5.2 4.5 4.8 5.0 5.4 5.6 6.1 6.8 7.9 8.7 9.1 11.0 11.6 0.59 0.45 0.43 0.38 0.27 0.25 0.25 0.23 0.23 0.23 0.22 0.22 0.22 0.20 0.18 0.17 0.17 0.19 0.21 0.25 31 37 37 42 51 56 60 62 66 68 71 74 78 92 110 131 154 177 -167 -136 MGA-72543 Typical Scattering Parameters and Noise Parameters TC = 25°C, Vd = 3.0V, Id = 20 mA, ZO = 50Ω, Vref = 0.5V (from S and Noise Parameters in Figure 2 test circuit) Freq. S11 S21 S12 S22 |S21|2 RLin RLout Gmax Isolation (GHz) Mag. Ang. Mag. Ang. Mag. Ang. Mag. Ang. (dB) (dB) (dB) (dB) 0.10 0.50 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 Freq. (GHz) 0.80 0.90 1.00 1.50 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 9 0.76 0.71 0.69 0.67 0.66 0.65 0.64 0.64 0.63 0.62 0.61 0.60 0.59 0.58 0.57 0.56 0.55 0.55 0.54 0.53 0.49 0.46 0.44 0.42 0.41 0.41 0.42 0.43 0.42 0.41 0.41 -11 -27 -38 -42 -46 -50 -54 -57 -60 -64 -67 -71 -74 -77 -81 -84 -87 -90 -93 -97 -112 -128 -145 -162 -179 166 150 139 127 116 102 6.35 6.00 5.74 5.65 5.57 5.48 5.39 5.32 5.23 5.15 5.06 4.98 4.90 4.83 4.75 4.68 4.61 4.54 4.48 4.41 4.11 3.85 3.61 3.39 3.18 2.99 2.83 2.67 2.53 2.42 2.33 173 159 148 145 142 138 135 132 129 126 123 120 117 114 111 109 106 103 101 98 85 73 60 49 37 26 16 6 -5 -15 -26 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.07 0.07 0.07 0.08 0.08 0.09 0.01 0.10 0.11 0.11 0.12 0.12 0.13 0.14 18 12 15 16 17 18 18 19 19 19 19 20 20 20 19 19 19 19 18 18 16 13 10 6 2 -1 -5 -10 -14 -18 -23 0.40 0.38 0.37 0.37 0.37 0.37 0.37 0.36 0.36 0.36 0.36 0.35 0.35 0.35 0.34 0.34 0.34 0.33 0.33 0.33 0.30 0.27 0.25 0.22 0.21 0.20 0.19 0.18 0.17 0.16 0.15 -11 -17 -25 -27 -29 -32 -33 -36 -38 -40 -42 -44 -46 -47 -49 -51 -52 -54 -56 -57 -66 -75 -86 -98 -111 -124 -138 -151 -162 -172 172 16.1 15.6 15.2 15.0 14.9 14.8 14.6 14.5 14.4 14.2 14.1 14.0 13.8 13.7 13.5 13.4 13.3 13.2 13.0 12.9 12.3 11.7 11.2 10.6 10.1 9.5 9.0 8.5 8.1 7.7 7.3 2.4 3.0 3.3 3.4 3.6 3.7 3.8 3.9 4.0 4.2 4.3 4.5 4.6 4.7 4.9 5.0 5.1 5.2 5.4 5.5 6.2 6.7 7.2 7.6 7.7 7.7 7.6 7.3 7.6 7.8 7.7 8.0 8.4 8.7 8.7 8.7 8.7 8.7 8.8 8.9 8.9 9.0 9.0 9.1 9.2 9.3 9.3 9.4 9.5 9.6 9.7 10.5 11.3 12.2 13.1 13.8 14.1 14.6 14.8 15.4 15.9 16.4 19.0 18.0 17.4 17.2 17.0 16.8 16.6 16.4 16.2 16.0 15.8 15.6 15.4 15.2 15.0 14.8 14.7 14.5 14.3 14.2 13.4 12.7 12.0 11.4 10.8 10.3 9.8 9.4 8.9 8.4 8.1 (dB) -27.5 -26.9 -26.5 -26.3 -26.1 -25.9 -25.6 -25.4 -25.2 -25.0 -24.8 -24.6 -24.4 -24.2 -24.0 -23.8 -23.6 -23.4 -23.2 -23.1 -22.3 -21.6 -21.0 -20.4 -19.9 -19.5 -19.0 -18.5 -18.1 -17.5 -16.9 NFmin opt (dB) Mag Ang Rn/Zo Ga (dB) |opt|RL (dB) Rn (Ω) P1dB (dBm) OIP3 (dBm) IIP3 (dBm) 1.30 1.31 1.32 1.35 1.38 1.37 1.39 1.40 1.41 1.40 1.43 1.43 1.45 1.47 1.47 1.51 1.54 1.60 1.67 0.25 0.25 0.22 0.21 0.20 0.20 0.19 0.19 0.19 0.19 0.18 0.18 0.17 0.15 0.14 0.13 0.12 0.13 0.14 15.72 15.53 15.39 14.51 14.00 13.85 13.71 13.57 13.44 13.30 13.17 13.04 12.40 11.82 11.26 10.71 10.19 9.71 9.33 8.63 9.11 9.18 11.47 13.11 13.33 13.73 13.85 13.85 13.94 14.17 14.19 15.12 15.77 16.13 15.96 14.85 13.81 11.47 12.40 12.47 11.01 10.50 10.05 9.89 9.71 9.48 9.47 9.26 9.12 8.95 8.45 7.52 6.86 6.47 6.20 6.34 7.13 11.8 11.7 11.7 11.6 11.5 11.6 11.6 11.6 11.7 11.7 11.8 11.8 11.9 12.0 12.1 12.3 12.4 12.5 12.6 23.9 23.9 23.9 24.0 24.0 24.0 24.0 24.1 24.3 24.4 24.3 24.4 24.7 24.6 24.5 24.6 24.8 24.9 25.0 8.8 9.0 9.1 9.7 10.0 10.1 10.2 10.3 10.4 10.5 10.6 10.7 11.2 11.8 12.6 14.3 15.0 15.5 15.7 0.37 0.35 0.35 0.27 0.22 0.22 0.21 0.20 0.20 0.20 0.20 0.20 0.18 0.16 0.16 0.16 0.18 0.20 0.27 39 40 41 51 58 61 65 70 71 74 78 81 95 117 139 163 -175 -160 -129 MGA-72543 Typical Scattering Parameters and Noise Parameters TC = 25°C, Vd = 3.0V, Id = 40 mA, ZO = 50Ω, Vref = 0.3V (from S and Noise Parameters in Figure 2 test circuit) Freq. S11 S21 S12 S22 |S21|2 RLin RLout Gmax Isolation (GHz) Mag. Ang. Mag. Ang. Mag. Ang. Mag. Ang. (dB) (dB) (dB) (dB) 0.10 0.50 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 Freq. (GHz) 0.80 0.90 1.00 1.50 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 10 0.75 0.70 0.68 0.67 0.65 0.64 0.63 0.63 0.62 0.61 0.60 0.59 0.58 0.57 0.56 0.55 0.54 0.53 0.53 0.52 0.48 0.45 0.42 0.41 0.40 0.40 0.41 0.42 0.41 0.40 0.40 -11 -28 -39 -43 -47 -51 -55 -58 -62 -65 -69 -72 -75 -79 -82 -85 -89 -92 -95 -98 -114 -130 -147 -164 179 165 148 137 126 115 101 6.84 6.45 6.15 6.05 5.96 5.87 5.77 5.68 5.58 5.49 5.40 5.31 5.22 5.13 5.05 4.96 4.89 4.81 4.74 4.66 4.32 4.03 3.77 3.53 3.31 3.11 2.93 2.77 2.63 2.51 2.42 173 159 148 144 141 138 134 131 128 125 122 119 116 113 110 108 105 102 100 97 84 72 60 48 37 26 16 6 -5 -15 -25 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.08 0.08 0.09 0.09 0.10 0.11 0.11 0.12 0.13 0.14 17 11 14 15 16 17 18 19 19 20 20 20 20 20 21 21 20 20 20 20 18 16 14 11 7 3 0 -5 -9 -13 -18 0.36 0.34 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.32 0.32 0.32 0.32 0.32 0.31 0.31 0.31 0.31 0.30 0.30 0.28 0.25 0.23 0.21 0.19 0.18 0.17 0.17 0.16 0.15 0.14 -12 -17 -24 -26 -28 -30 -32 -34 -36 -38 -40 -41 -43 -44 -46 -47 -49 -50 -52 -53 -61 -69 -79 -90 -102 -114 -127 -140 -150 -158 -173 16.7 16.2 15.8 15.6 15.5 15.4 15.2 15.1 14.9 14.8 14.6 14.5 14.4 14.2 14.1 13.9 13.8 13.6 13.5 13.4 12.7 12.1 11.5 11.0 10.4 9.9 9.3 8.9 8.4 8.0 7.7 2.5 3.1 3.4 3.5 3.7 3.8 4.0 4.1 4.2 4.3 4.5 4.6 4.8 4.9 5.1 5.2 5.3 5.5 5.6 5.7 6.4 7.0 7.5 7.8 7.9 7.9 7.8 7.5 7.8 8.0 7.9 8.9 9.3 9.6 9.6 9.6 9.6 9.7 9.7 9.8 9.8 9.9 9.9 10.0 10.0 10.1 10.2 10.2 10.3 10.4 10.5 11.2 12.0 12.9 13.7 14.4 14.7 15.3 15.5 16.1 16.5 17.0 19.7 18.7 18.1 17.8 17.6 17.4 17.1 17.0 16.8 16.5 16.3 16.1 15.9 15.7 15.5 15.3 15.1 14.9 14.8 14.6 13.8 13.0 12.3 11.7 11.1 10.6 10.1 9.7 9.2 8.7 8.4 (dB) -28.1 -27.6 -27.2 -27.0 -26.9 -26.7 -26.5 -26.3 -26.1 -25.9 -25.6 -25.4 -25.2 -25.1 -24.9 -24.7 -24.5 -24.3 -24.1 -23.9 -23.1 -22.4 -21.7 -21.1 -20.5 -20.0 -19.4 -18.9 -18.4 -17.8 -17.0 NFmin opt (dB) Mag Ang Rn/Zo Ga (dB) |opt|RL (dB) Rn (Ω) P1dB (dBm) OIP3 (dBm) IIP3 (dBm) 1.29 1.26 1.22 1.40 1.49 1.50 1.52 1.52 1.53 1.53 1.55 1.55 1.59 1.60 1.64 1.68 1.71 1.78 1.74 0.27 0.27 0.27 0.27 0.23 0.23 0.22 0.22 0.22 0.21 0.21 0.20 0.18 0.16 0.14 0.13 0.13 0.13 0.15 16.44 16.25 16.02 15.13 14.62 14.46 14.30 14.16 14.01 13.86 13.73 13.59 12.91 12.29 11.71 11.15 10.61 10.15 9.76 8.03 8.34 9.06 10.79 11.65 11.87 12.27 12.16 12.35 12.59 12.60 12.57 13.32 13.81 13.86 13.63 12.87 11.91 10.27 13.29 13.34 13.39 13.44 11.72 11.41 11.20 10.92 10.79 10.52 10.33 10.14 9.18 8.06 7.11 6.57 6.35 6.54 7.69 15.2 15.1 15.1 14.8 14.8 14.8 14.9 14.9 15.0 15.0 15.1 15.1 15.2 15.3 15.6 15.5 15.2 16.0 15.5 26.0 26.0 25.9 26.2 26.1 26.1 26.0 26.2 26.3 26.4 26.5 26.7 26.9 27.0 27.3 27.5 27.7 28.1 27.9 10.6 10.8 11.0 11.8 11.8 11.9 12.0 12.4 12.7 13.0 13.2 13.4 14.1 14.8 15.7 16.5 16.7 17.7 18.4 0.40 0.38 0.35 0.29 0.26 0.26 0.24 0.25 0.24 0.23 0.23 0.24 0.22 0.20 0.20 0.21 0.23 0.25 0.31 36 37 41 53 61 64 68 72 75 78 81 85 100 120 142 163 -175 -159 -133 MGA-72543 Typical Scattering Parameters and Noise Parameters TC = 25°C, Vd = 3.0V, Id = 60 mA, ZO = 50Ω, Vref = 0.1V (from S and Noise Parameters in Figure 2 test circuit) Freq. S11 S21 S12 S22 |S21|2 RLin RLout Gmax Isolation (GHz) Mag. Ang. Mag. Ang. Mag. Ang. Mag. Ang. (dB) (dB) (dB) (dB) 0.10 0.50 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 Freq. (GHz) 0.80 0.90 1.00 1.50 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 11 0.77 0.72 0.69 0.68 0.67 0.66 0.65 0.65 0.64 0.63 0.62 0.61 0.60 0.59 0.58 0.57 0.56 0.55 0.55 0.54 0.50 0.47 0.44 0.43 0.42 0.42 0.43 0.44 0.43 0.42 0.42 -10 -27 -39 -43 -47 -51 -54 -58 -62 -65 -69 -72 -75 -79 -82 -85 -89 -92 -95 -98 -114 -130 -147 -164 179 164 148 137 126 115 101 6.38 6.01 5.75 5.66 5.58 5.49 5.40 5.32 5.23 5.15 5.07 4.98 4.90 4.82 4.75 4.67 4.60 4.53 4.47 4.39 4.09 3.83 3.59 3.36 3.15 2.97 2.80 2.65 2.51 2.40 2.32 173 159 148 145 141 138 135 132 129 125 122 119 117 114 111 108 105 103 100 97 84 72 60 48 37 26 16 5 -6 -16 -26 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.07 0.07 0.08 0.08 0.09 0.09 0.10 0.11 0.11 0.12 0.13 17 10 13 14 15 16 17 18 18 19 19 19 19 20 20 20 20 20 20 19 18 17 15 12 9 6 3 -1 -5 -9 -14 0.37 0.36 0.35 0.35 0.35 0.35 0.35 0.35 0.34 0.34 0.34 0.34 0.34 0.34 0.33 0.33 0.33 0.33 0.32 0.32 0.30 0.28 0.25 0.23 0.22 0.21 0.20 0.20 0.19 0.18 0.17 -11 -16 -22 -24 -26 -28 -30 -32 -34 -36 -38 -39 -41 -42 -44 -45 -46 -48 -49 -51 -58 -66 -75 -86 -97 -108 -121 -132 -141 -149 -162 16.1 15.6 15.2 15.1 14.9 14.8 14.7 14.5 14.4 14.2 14.0 14.0 13.8 13.7 13.5 13.4 13.3 13.1 13.0 12.9 12.2 11.7 11.1 10.5 10.0 9.5 8.9 8.5 8.0 7.6 7.3 2.3 2.9 3.2 3.3 3.5 3.6 3.7 3.8 3.9 4.0 4.2 4.3 4.5 4.6 4.7 4.9 5.0 5.1 5.2 5.4 6.0 6.6 7.0 7.4 7.5 7.5 7.3 7.1 7.3 7.6 7.4 8.5 8.9 9.2 9.2 9.2 9.2 9.2 9.2 9.3 9.3 9.4 9.4 9.4 9.5 9.5 9.6 9.7 9.7 9.8 9.9 10.5 11.1 11.9 12.6 13.2 13.5 14.0 14.2 14.6 14.9 15.4 19.2 18.2 17.6 17.3 17.1 16.9 16.7 16.5 16.3 16.1 15.9 15.7 15.5 15.3 15.1 14.9 14.7 14.5 14.4 14.2 13.4 12.6 12.0 11.4 10.8 10.3 9.8 9.4 8.9 8.4 8.1 (dB) -28.2 -27.8 -27.5 -27.3 -27.2 -27.0 -26.8 -26.6 -26.5 -26.3 -26.1 -25.9 -25.7 -25.5 -25.3 -25.2 -25.0 -24.8 -24.7 -24.5 -23.7 -23.1 -22.4 -21.8 -21.2 -20.6 -20.0 -19.4 -18.9 -18.2 -17.4 NFmin opt (dB) Mag Ang Rn/Zo Ga (dB) |opt|RL (dB) Rn (Ω) P1dB (dBm) OIP3 (dBm) IIP3 (dBm) 1.61 1.46 1.51 1.70 1.81 1.83 1.85 1.85 1.86 1.88 1.89 1.90 1.95 1.99 2.02 2.09 2.13 2.23 2.23 0.41 0.44 0.39 0.87 0.33 0.32 0.31 0.31 0.30 0.29 0.28 0.27 0.24 0.20 0.16 0.14 0.13 0.14 0.18 15.94 15.83 15.80 14.86 14.30 14.13 13.97 13.82 13.68 13.53 13.41 13.26 12.60 12.01 11.44 10.91 10.40 9.97 9.58 7.42 7.27 6.81 8.21 9.20 9.47 9.65 9.69 9.82 9.99 9.98 10.01 10.54 10.75 10.79 10.60 10.03 9.38 8.43 20.58 21.84 19.69 43.44 16.67 16.16 15.72 15.27 14.96 14.39 14.13 13.72 12.01 9.93 8.22 7.17 6.74 7.17 9.17 17.0 17.0 16.9 16.7 16.9 16.8 17.1 16.9 17.1 17.1 17.2 17.2 17.5 17.3 17.5 17.8 17.5 16.6 16.0 28.0 28.2 28.4 28.5 27.7 27.9 27.8 28.1 28.2 28.4 28.6 28.8 28.4 28.8 28.7 29.2 29.0 27.9 29.0 13.3 13.5 13.6 14.1 14.2 14.2 14.8 15.0 15.3 15.5 15.6 15.9 16.2 16.9 17.4 18.6 18.8 18.5 19.9 0.43 0.43 0.46 0.39 0.35 0.34 0.33 0.33 0.32 0.32 0.32 0.31 0.30 0.29 0.29 0.30 0.32 0.34 0.38 36 37 40 53 64 67 71 74 77 81 84 87 103 122 143 163 -178 -161 -138 MGA-72543 Typical Scattering Parameters (LNA/Switch Powered Off ) TC = 25°C, Vd = 0V, Id = 0 mA, ZO = 50Ω Freq. S11 S21 S12 (GHz) Mag. Ang. Mag. Ang. Mag. Ang. 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.0 12 0.80 0.75 0.71 0.69 0.66 0.65 0.64 0.64 0.63 0.63 0.63 0.64 0.64 0.64 0 0 0 0 0 171 157 144 132 121 112 103 94 86 0.097 0.122 0.141 0.157 0.171 0.184 0.195 0.204 0.211 0.216 0.218 0.224 0.227 0.229 50 39 31 25 18 12 6 0 0 0 0 0 0 0 0.097 0.122 0.141 0.157 0.171 0.184 0.195 0.204 0.211 0.216 0.218 0.224 0.227 0.229 50 39 31 25 18 12 6 0 0 0 0 0 0 0 S22 Mag. 0.81 0.81 0.80 0.80 0.80 0.80 0.81 0.80 0.80 0.81 0.81 0.82 0.82 0.82 Ang. |S21|2 (dB) RLin (dB) RLout (dB) 167 160 152 145 137 129 122 115 108 102 95 89 83 76 -20.3 -18.3 -17.0 -16.1 -15.3 -14.7 -14.2 -13.8 -13.5 -13.3 -13.2 -13.0 -12.9 -12.8 1.9 2.5 3.0 3.2 3.6 3.7 3.9 3.9 4.0 4.0 4.0 3.9 3.9 3.9 1.8 1.8 1.9 1.9 1.9 1.9 1.8 1.9 1.9 1.8 1.8 1.7 1.7 1.7 Applications Information: Designing with the MGA-72543 RFIC Amplifier/Bypass Switch Description The MGA-72543 is a single-stage, GaAs RFIC amplifier with an integrated bypass switch. A functional diagram of the MGA-72543 is shown in Figure 1. The MGA-72543 is designed for receivers and transmitters operating from 100 MHz to 6 GHz with an emphasis on 1.9 GHz CDMA applications. The MGA-72543 combines low noise performance with high linearity to make it especially advantageous for use in receiver front-ends. RF INPUT BYPASS MODE RF OUTPUT AMPLIFIER Figure 1. MGA-72543 Functional Diagram. The purpose of the switch feature is to prevent distortion of high signal levels in receiver applications by bypassing the amplifier altogether. The bypass switch can be thought of as a 1-bit digital AGC circuit that not only prevents distortion by bypassing the MGA-72543 amplifier, but also reduces front-end system gain by approximately 16 dB to avoid overdriving subsequent stages in the receiver such as the mixer. An additional feature of the MGA-72543 is the ability to externally set device current to balance output power capability and high linearity with low DC power consumption. The adjustable current feature of the MGA-72543 allows it to deliver output power levels in excess of +15 dBm (P1dB), thus extending its use to other system applications such as transmitter driver stages. current range of 10 – 30 mA, the magnitude of É°opt at 1900 MHz is typically less than 0.25 and additional impedance matching would only net about 0.1 dB improvement in noise figure. Without external matching, the input return loss for the MGA-72543 is approximately 5 dB at 1900 MHz. If desired, a small amount of NF can be traded off for a significant improvement in input match. For example, the addition of a series inductance of 2.7 to 3.9 nH at the input of the MGA-72543 will improve the input return loss to greater than 10 dB with a sacrifice in NF of only 0.1 dB. The output of the MGA-72543 is internally matched to provide an output SWR of approximately 2:1 at 1900 MHz. Input and output matches both improve at higher frequencies. Driver Amplifier Applications The flexibility of the adjustable current feature makes the MGA-72543 suitable for use in transmitter driver stages. Biasing the amplifier at 40 – 50 mA enables it to deliver an output power at 1-dB gain compression of up to +16 dBm. Power efficiency in the unsaturated driver mode is on the order of 30%. If operated as a saturated amplifier, both output power and efficiency will increase. Since the MGA-72543 is internally matched for low noise figure, it may be desirable to add external impedance matching at the input to improve the power match for driver applications. Since the reactive part of the input of the device impedance is capacitive, a series inductor at the input is often all that is needed to provide a suitable match for many applications. For 1900 MHz circuits, a series inductance of 3.9 nH will match the input to a return loss of approximately 13 dB. As in the case of low noise bias levels, the output of the MGA-72543 is already well matched to 50 É∂ and no additional matching is needed for most applications. The MGA-72543 is designed to operate from a +3-volt power supply and is contained in a miniature 4-lead, SOT-343 (SC-70) package to minimize printed circuit board space. When used for driver stage applications, the bypass switch feature of the MGA-72543 can be used to shut down the amplifier to conserve supply current during non-transmit periods. Supply current in the bypass state is nominally 2 μA. LNA Applications Biasing For low noise amplifier applications, the MGA-72543 is typically biased in the 10 – 20 mA range. Minimum NF occurs at 20 mA as noted in the performance curve of NFmin vs. Id. Biasing at currents significantly less than 10 mA is not recommended since the characteristics of the device began to change very rapidly at lower currents. Biasing the MGA-72543 is similar to biasing a discrete GaAs FET. Passive biasing of the MGA-72543 may be accomplished by either of two conventional methods, either by biasing the gate or by using a source resistor. The MGA-72543 is matched internally for low NF. Over a 13 • Gate Bias • Source Resistor Bias Using this method, Pins 1 and 4 of the amplifier are DC grounded and a negative bias voltage is applied to Pin 3 as shown in Figure 2. This method has the advantage of not only DC, but also RF grounding both of the ground pins of the MGA-72543. Direct RF grounding of the device’s ground pins results in slightly improved performance while decreasing potential instabilities, especially at higher frequencies. The disadvantage is that a negative supply voltage is required. The source resistor method is the simplest way of biasing the MGA-72543 using a single, positive supply voltage. This method, shown in Figure 4, places the RF Input (Pin 3) at DC ground and requires both of the device grounds (Pins 1 and 4) to be RF bypassed. Device current, Id, is determined by the value of the source resistance, Rbias, between either Pin 1 or Pin 4 of the MGA-72543 and DC ground. Note: Pins 1 and 4 are connected internally in the RFIC. Maximum device current (approximately 65 mA) occurs for Rbias = 0. INPUT 3 2 OUTPUT & Vd INPUT 1 3 2 4 OUTPUT & Vd 4 1 Rbias Vref Figure 2. Gate Bias Method. DC access to the input terminal for applying the gate bias voltage can be made through either a RFC or high impedance transmission line as indicated in Figure 2. The device current, Id, is determined by the voltage at Vref (Pin 3) with respect to ground. A plot of typical Id vs. Vref is shown in Figure 3. Maximum device current (approximately 65 mA) occurs at Vref = 0. Figure 4. Source Resistor Bias. A simple method recommended for DC grounding the input terminal is to merely add a resistor from Pin 3 to ground, as shown in Figure 4. The value of the shunt R can be comparatively high since the only voltage drop across it is due to minute leakage currents that in the μA range. A value of 1 KΩ would adequately DC ground the input while loading the RF signal by only 0.2 dB loss. A plot of typical Id vs. Rbias is shown in Figure 5. 50 60 40 40 Id (mA) Id (mA) 50 30 20 10 30 20 0 -0.80 -0.70 -0.60 -0.50 -0.40 -0.30 -0.20 10 Vref (V) 0 Figure 3. Device Current vs. Vref. 0 20 40 60 80 100 120 140 Rbias () The device current may also be estimated from the following equation: Figure 5. Device Current vs. Rbias. Vref = 0.11 Id – 0.96 The approximate value of the external resistor, Rbias, may also be calculated from: where Id is in mA and Vref is in volts. The gate bias method would not normally be used unless a negative supply voltage was readily available. For reference, this is the method used in the characterization test circuits shown in Figures 1 and 2 of the MGA-72543 data sheet. 14 Rbias = 964 (1 – 0.112 Id) Id where Rbias is in ohms and Id is the desired device current in mA. The source resistor technique is the preferred and most common method of biasing the MGA-72543. • Adaptive Biasing For applications in which input power levels vary over a wide range, it may be useful to dynamically adapt the bias of the MGA-72543 to match the signal level. This involves sensing the signal level at some point in the system and automatically adjusting the bias current of the ampli fier accordingly. The advantage of adaptive biasing is conservation of supply current (longer battery life) by using only the amount of current necessary to handle the input signal without distortion. Adaptive biasing of the MGA-72543 can be accomplished by either analog or digital means. For the analog control case, an active current source (discrete device or IC) is used in lieu of the source bias resistor. For simple digital control, electronic switches can be used to control the value of the source resistor in discrete increments. Both methods of adaptive biasing are depicted in Figure 6. A DC blocking capacitor at the output of the RFIC isolates the supply voltage from succeeding circuits. If the source resistor method of biasing is used, the RF input terminal of the MGA-72543 is at DC ground potential and a blocking capacitor is not required unless the input is connected directly to a preceding stage that has a DC voltage present. Vd = +2.5 V RFC RF Input RF Output 2 1 72 3 4 Vref = -0.5 V 3 2 1 3 4 Figure 7. DC Schematic for Gate Bias. 2 1 4 Vd = +3 V RFC Analog Control (b) Digital RF Output 72 RF Input (a) Analog 2 1 Digital Control 3 4 Rbias Figure 6. Adaptive Bias Control. Figure 8. DC Schematic of Source Resistor Biasing. • Applying the Device Voltage Common to all methods of biasing, voltage Vd is applied to the MGA-72543 through the RF Output connection (Pin 2). A RF choke is used to isolate the RF signal from the DC supply. The bias line is capacitively bypassed to keep RF from the DC supply lines and prevent resonant dips or peaks in the response of the amplifier. Where practical, it may be cost effective to use a length of high impedance transmission line (preferably /4) in place of the RFC. When using the gate bias method, the overall device voltage is equal to the sum of Vref at Pin 3 and voltage Vd at Pin 2. As an example, to bias the device at the typical operating voltage of 3 volts, Vd would be set to 2.5 volts for a Vref of -0.5 volts. Figure 7 shows a DC schematic of a gate bias circuit. Just as for the gate bias method, the overall device voltage for source resistor biasing is equal to Vref + Vd. Since Vref is zero when using a source resistor, Vd is the same as the device operating voltage, typically 3 volts. A source resistor bias circuit is shown in Figure 8. 15 • Biasing for Higher Linearity or Output Power While the MGA-72543 is designed primarily for use up to 50 mA in +3 volt applications, the output power can be increased by using higher currents and/or higher supply voltages. If higher bias levels are used, appropriate caution should be observed for both the thermal limits and the Absolute Maximum Ratings. As a guideline for operation at higher bias levels, the Maximum Operating conditions shown in the data sheet table of Absolute Maximum Ratings should be followed. This set of conditions is the maximum combination of bias voltage, bias current, and device temperature that is recommended for reliable operation. Note: In contrast to Absolute Maximum ratings, in which exceeding any one parameter may result in damage to the device, all of the Maximum Operating conditions may reliably be applied to the MGA-72543 simultaneously. Controlling the Switch Thermal Considerations The state of the MGA-72543 (amplifier or bypass mode) is controlled by the device current. For device currents greater than 5 mA, the MGA-72543 functions as an amplifier. If the device current is set to zero, the MGA- 72543 is switched into a bypass mode in which the amplifier is turned off and the signal is routed around the amplifier with a loss of approximately 2.5 dB. Good thermal design is always an important consideration in the reliable use of any device, since the Mean Time To Failure (MTTF) of semiconductors is inversely proportional to the operating temperature. The bypass state is normally engaged in the presence of high input levels to prevent distortion of the signal that might occur in the amplifier. In the bypass state, the input TOI is very high, typically +39 dBm at 1900 MHz. The simplest method of placing the MGA-72543 into the bypass mode is to open-circuit the ground terminals at Pins 1 and 4. With the ground connection open, the internal control circuit of the MGA-72543 auto-switches from the amplifier mode into a bypass state and the device current drops to near zero. Nominal current in the bypass state is 2 μA with a maximum of 15 μA. 3 2 1 4 Rbias Bypass Switch Enable Figure 9. MGA-72543 Amplifier/Bypass State Switching. An electronic switch can be used to control states as shown in Figure 9. The control switch could be implemented with either a discrete transistor or simple IC. The speed at which the MGA-72543 switches between states is extremely fast and will normally be limited by the time constants of external circuit components, such as the bias circuit and the bypass and blocking capacitors. The input and output of the MGA-72543 while in the bypass state are internally matched to 50 É∂. The input return loss can be further improved at 1900 MHz by adding a 2.7 to 3.9 nH series inductor added to the input. This is the same approximate value of inductor that is used to improve input match when the MGA-72543 is in the amplifier state. 16 The MGA-72543 is a comparatively low power dissipation device and, as such, operates at conservative temperatures. When biased at 3 volts and 20 mA for LNA applications, the power dissipation is 3.0 volts x 20 mA, or 60 mW. The temperature increment from the RFIC channel to its case is then 0.060 watt x 200°C/watt, or only 12°C. Subtracting the channel-to-case temperature rise from the suggested maximum junction temperature of 150°C, the resulting maximum allowable case temperature is 138°C. The worst case thermal situation occurs when the MGA72543 is operated at its Maximum Operating conditions in an effort to maximize output power or achieve minimum distortion. A similar calculation for the Maximum Operating bias of 4.2 volts and 60 mA yields a maximum allowable case temperature of 100°C. This calculation further assumes the worst case of no RF power being extracted from the device. When operated in a saturated mode, both power-added efficiency and the maximum allowable case temperature will increase. Note: “Case” temperature for surface mount packages such as the SOT-343 refers to the interface between the package pins and the mounting surface, i.e., the temperature at the PCB mounting pads. The primary heat path from the RFIC chip to the system heatsink is by means of conduction through the package leads and ground vias to the groundplane of the PCB. PCB Layout and Grounding When laying out a printed circuit board for the MGA72543, several points should be considered. Of primary concern is the RF bypassing of the ground terminals when the device is biased using the source resistor method. • Package Footprint • PCB Materials A suggested PCB pad print for the miniature,4-lead SOT343 (SC-70) package used by the MGA-72543 is shown in Figure 10. This pad print provides allowance for package placement by auto- mated assembly equipment without adding excessive parasitics that could impair the high frequency performance of the MGA-72543.The layout is shown with a footprint of the MGA-72543 superimposed on the PCB pads for reference. FR-4 or G-10 type dielectric materials are typical choices for most low cost wireless applica- tions using single or multilayer printed circuit boards. The thickness of singlelayer boards usually range from 0.020 to 0.031 inches. Circuit boards thicker than 0.031 inches are not recommended due to excessive induc- tance in the ground vias. 0.80 0.031 1.71 0.067 0.50 0.020 .080 0.031 1.15 0.045 Figure 10. Recommended PCB Pad Layout for Avago’s SC70 4L/SOT-343 Products. • RF bypass An example evaluation PCB layout for the MGA-72543 is shown in Figure 12. This evalua- tion circuit is designed for operation from a +3-volt supply and includes provision for a 2-bit DIP switch to set the state of the MGA-72543. For evaluation purposes, the 2-bit switch is used to set the device to either of four states: (1)bypass mode – switch bypasses the amplifier, (2)low noise amplifier mode – low bias current, (3)and (4) driver ampli- fier modes – high bias currents. A completed evaluation amplifier optimized for use at 1900 MHz is shown with all related compo- nents and SMA connectors in Figure 13. A schematic diagram of the evaluation circuit is shown in Figure 14 with component values in Table 1. The on-board resistors R3 and R4 form the equivalent source bias resistor Rbias as indicated in the schematic diagram in Figure 14. In this example,resistor values of R3 = 10Ω and R4 = 24Ω were chosen to set the nominal device current for the four states to: (1) bypass mode, 0 mA, (2) LNA mode, 20 mA, (3) driver, 35 mA, and, (4) driver, 40 mA. For layouts using the source resistor method of biasing,both of the ground terminals of the MGA- 72543 must be well bypassed to maintain device stability. Beginning with the package pad print in Figure 10, an RF layout similar to the one shown in Figure 11 is a good starting point for using the MGA-72543 with capacitor-bypassed ground terminals.It is a best practice to use multiple vias to minimize overall ground path inductance. Figure 11. Layout for RF Bypass. Vd MGA-71, MGA-72 HM 8/98 IN Out Vin Two capacitors are used at each of the PCB pads for both Pins 1 and 4. The value of the bypass capacitors is a balance between providing a small reactance for good RF grounding, yet not being so large that the capacitor’s parasitics introduce undesirable resonances or loss. If the source resistor biasing method is used,a ground pad located near either Pin 1 or 4 pin may be used to connect the current-setting resistor (Rbias) directly to DC ground. If the Rbias resistor is not located immediately adjacent to the MGA-72543 (as may be the case of dynamic control of the device ’s linearity), then a small series resistor (e.g., 10Ω) located near the ground terminal will help de-Q the connection from the MGA-72543 to an external currentsetting circuit. 72 Vcon 1.30 0.051 Application Example Figure 12. PCB Layout for Evaluation Circuit. 17 Other currents can be set by positioning the DIP switch to the bypass state and adding an external bias resistor to Vcon. Unless an external resistor is used to set the current, the Vcon terminal is left open. DC blocking capacitors are provided for the both the input and output. The 2-pin, 0.100” centerline single row headers attached to the Vd and Vcon connections on the PCB provide a convenient means of making connections to the board using either a mating connector or clip leads. A Note on Performance Actual performance of the MGA-72543 as measured in an evaluation circuit may not exactly match the data sheet specifications. The circuit board material, passive components, RF bypasses, and connectors all introduce losses and parasitics that degrade device performance. For the evaluation circuit above, fabricated on 0.031-inch thick GETEK[1] G200D (r = 4.2) dielectric material, circuit losses of about 0.3 dB would be expected at both the input an output sides of the RFIC at 1900 MHz. Measured noise figure (3 volts, 20 mA bias) would then be approximately 1.8 dB and gain 13.8 dB. Table 1. Component Values for 1900 MHz Amplifier. R1 = 5.1 KΩ C (3 ea) =100 pF R2 = 5.1 KΩ C (3 ea) =1000 pF R3 = 10Ω C1 =100 pF R4 = 24Ω C2 = 47 pF L1 = 3.9 nH C3 = 30 pF RFC = 22 nH C4 = 22 pF SW1, SW2 DIP switch C5 =22 pF SC Short C6 =30 pF Hints and Troubleshooting • Preventing Oscillation Stability of the MGA-72543 is dependent on having very good RF grounding. Inadequate device grounding or poor PCB layout techniques could cause the device to be potentially unstable. [1] General Electric Co. Vd C0 C RFC MGA-71, MGA-72 HM 8/98 Vd C4 SC L1 72 C8 C1 L1 Out R3 R4 SW 1 C C6 R1 C0 ON 4 3 C5 Vcon Vin RF Input C C 2 72 C2 C5 R1 R2 C0 1 RFC C3 C1 C4 C3 C C0 IN C2 2 C SW1 R3 SW2 R4 Vin R2 C0 C0 Rbias Vcon Figure 13. Completed Amplifier with Component Reference Designators. 18 Figure 14. Schematic Diagram of 1900 MHz Evaluation Amplifier. RF Output Even though a design may be unconditionally stable (K > 1 and B1 > 0) over its full frequency range, other possibilities exist that may cause an amplifier circuit to oscillate. One condition to check for is feedback in the bias circuit. It is important to capacitively bypass the connections to active bias circuits to ensure stable operation. In multistage circuits, feedback through bias lines can also lead to oscillation. Components of insufficient quality for the frequency range of the amplifier can sometimes lead to instability. Also, component values that are chosen to be much higher in value than is appropriate for the application can present a problem. In both of these cases, the components may have reactive parasitics that make their impedances very different than expected. Chip capacitors may have excessive inductance, or chip inductors can exhibit resonances at unexpected frequencies. • A Note on Supply Line Bypassing Multiple bypass capacitors are normally used throughout the power distribution within a wireless system. Consideration should be given to potential resonances formed by the combination of these capacitors and the inductance of the DC distribution lines. The addition of a small value resistor in the bias supply line between bypass capacitors will often de-Q the bias circuit and eliminate resonance effects. Statistical Parameters Several categories of parameters appear within the electrical specification portion of the MGA-72543 data sheet. Parameters may be described with values that are either “minimum or maximum,” “typical,” or “standard deviations.” The values for parameters are based on comprehensive product characterization data, in which automated measurements are made on a statistically significant number of parts taken from nonconsecutive process lots of semiconductor wafers. The data derived from product characterization tends to be normally distributed, e.g., fits the standard bell curve. Parameters considered to be the most important to system performance are bounded by minimum or maximum values. For the MGA-72543, these parameters are: Vc test, NFtest, Ga test, IIP3 test, and IL test. Each of the guaranteed parameters is 100% tested as part of the normal manufacturing and test process. Values for most of the parameters in the table of Electrical Specifications that are described by typical data are the mathematical mean (μ ), of the normal distribution taken from the characterization data. For parameters where 19 measurements or mathematical averaging may not be practical, such as S-parameters or Noise Parameters and the performance curves, the data represents a nominal part taken from the center of the characterization distribution. Typical values are intended to be used as a basis for electrical design. To assist designers in optimizing not only the immediate amplifier circuit using the MGA-72543, but to also evaluate and optimize trade-offs that affect a complete wireless system, the standard deviation () is provided for many of the Electrical Specification parameters (at 25°C). The standard deviation is a measure of the variability about the mean. It will be recalled that a normal distribution is completely described by the mean and standard deviation. Standard statistics tables or calculations provide the probability of a parameter falling between any two values, usually symmetrically located about the mean. Referring to Figure 15 for example, the probability of a parameter being between ±1 is 68.3%; between ±2 is 95.4%; and between ±3 is 99.7%. 68% 95% 99% -3σ -2σ -1σ Mean () +1σ (typical) +2σ +3σ Parameter Value Figure 15. Normal Distribution Curve. Phase Reference Planes The positions of the reference planes used to specify Sparameters and Noise Parameters for the MGA-72543 are shown in Figure 16. As seen in the illustration, the reference planes are located at the point where the package leads contact the test circuit. REFERENCE PLANES TEST CIRCUIT Figure 16. Phase Reference Planes. Part Number Ordering Information Part Number No. of Devices Container MGA-72543-TR1G MGA-72543-TR2G MGA-72543-BLKG 3000 10000 100 7” Reel 13” Reel antistatic bag Note: For lead-free option, the part number will have the character “G” at the end. Package Dimensions Recommended PCB Pad Layout for Avago’s SC70 4L/SOT-343 Products SC-70 4L/SOT-343 1.30 (.051) BSC 1.30 (0.051) 1.00 (0.039) HE E 2.00 (0.079) 0.60 (0.024) 1.15 (.045) BSC b1 0.9 (0.035) D 1.15 (0.045) A2 A Dimensions in A1 b L C DIMENSIONS (mm) SYMBOL E D HE A A2 A1 b b1 c L 20 MIN. 1.15 1.85 1.80 0.80 0.80 0.00 0.15 0.55 0.10 0.10 MAX. 1.35 2.25 2.40 1.10 1.00 0.10 0.40 0.70 0.20 0.46 NOTES: 1. All dimensions are in mm. 2. Dimensions are inclusive of plating. 3. Dimensions are exclusive of mold flash & metal burr. 4. All specifications comply to EIAJ SC70. 5. Die is facing up for mold and facing down for trim/form, ie: reverse trim/form. 6. Package surface to be mirror finish. mm (inches) Device Orientation REEL TOP VIEW END VIEW 4 mm CARRIER TAPE 8 mm USER FEED DIRECTION 72x 72x 72x 72x COVER TAPE Tape Dimensions For Outline 4T P P2 D P0 E F W C D1 t1 (CARRIER TAPE THICKNESS) K0 10 MAX. A0 DESCRIPTION Tt (COVER TAPE THICKNESS) 10 MAX. B0 SYMBOL SIZE (mm) SIZE (INCHES) CAVITY LENGTH WIDTH DEPTH PITCH BOTTOM HOLE DIAMETER A0 B0 K0 P D1 2.40 0.10 2.40 0.10 1.20 0.10 4.00 0.10 1.00 + 0.25 0.094 0.004 0.094 0.004 0.047 0.004 0.157 0.004 0.039 + 0.010 PERFORATION DIAMETER PITCH POSITION D P0 E 1.55 0.10 4.00 0.10 1.75 0.10 0.061 + 0.002 0.157 0.004 0.069 0.004 CARRIER TAPE WIDTH THICKNESS W t1 8.00 + 0.30 - 0.10 0.254 0.02 0.315 + 0.012 0.0100 0.0008 COVER TAPE WIDTH TAPE THICKNESS C Tt 5.40 0.10 0.062 0.001 0.205 + 0.004 0.0025 0.0004 DISTANCE CAVITY TO PERFORATION (WIDTH DIRECTION) F 3.50 0.05 0.138 0.002 CAVITY TO PERFORATION (LENGTH DIRECTION) P2 2.00 0.05 0.079 0.002 For product information and a complete list of distributors, please go to our web site: www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2012 Avago Technologies. All rights reserved. Obsoletes 5989-4189EN AV02-1296EN - June 8, 2012