MITSUBISHI M56789FP

MITSUBISHI <CONTROL / DRIVER IC>
M56789FP
4 CHANNEL ACTUATOR DRIVER
DESCRIPTION
PIN CONFIGURATION (TOP VIEW)
The M56789FP is a semiconductor integrated circuit in order to
drive 4ch actuator.
FEATURES
APPLICATION
CD-ROM, DVD, DVD-ROM etc.
1
42
MUTE1
2
41
VREF
SOUT2
3
40
VREFO
SIN2-
4
39
IN3-
IN2+
5
38
IN3+
IN2-
6
37
Vm3
GND
7
36
OUT3
OUT2
8
35
VM3-
VM2-
9
34
VM3+
VM2+
10
33
GND
GND
11
32
VM4+
VM1+
12
31
VM4-
VM1-
13
30
IN4A-
OUT1
14
29
GND
IN1-
15
28
Vm2
IN1+
16
27
IN4B-
Vm1
17
26
OP1OUT
SIN1-
18
25
OP1-
SOUT1
19
24
OP1+
VCC1
20
23
OP2+
OP2OUT 21
22
OP2-
M56789FP
● Large power dissipation (Power Package).
● 3.3V DSP available.
● Low saturation voltage (typical 0.6V at load current 500mA).
● Low cross-over distortion.
● Wide supply voltage range.(4.5V–13.2V)
● Divided Motor power supplies into three parts.
● Ch1, Ch2 and Ch3 can be controlled by PWM.
● Ch1 and Ch2 can act in the Current Control mode.
● Two naked Operational Amplifiers.
● TSD(Thermal Shut Down) circuit.
● Two mute circuits.
VCC2
MUTE2
Outline 42P9R-B
BLOCK DIAGRAM
VREFO
40
OP2
OUT
VREF OP2+ OP223 22
41
21
OP1
OP1+ OP1- OUT
24 25
26
VCC2
42
SOUT1 19
SIN1- 18
28 Vm2
IN1+ 16
IN1- 15
OUT1 14
VM1(-) 13
+
OUT2 8
IN2- 6
IN2+ 5
+
+
+
A1-
OP1
+
A1E4
27 IN4B30
VM1(+) 12
VM2(+) 10
A4
A4
OP2
+
-A3
E1
+
-
VM2(-) 9
A2
+
- S1
+A3
VCC2
CH1
CH4
VREFO
+
+
BIAS
CH2
CH3
VCC1
IN4A-
+
-
32 VM4(+)
+
31 VM4(-)
+
-
35 VM3(-)
+
34 VM3(+)
Hi:Sleep
E2
+A3
A3+
E3
1ch
2ch
3ch
+
- A3S2
4ch
TSD
39 IN338 IN3+
36 OUT3
SLEEP
A1+
SIN2- 4
SOUT2 3
37 Vm3
17
Vm1
2
MUTE1
1
MUTE2
7 11 29 33
GND (4PINS)
20
VCC1
MITSUBISHI <CONTROL / DRIVER IC>
M56789FP
4 CHANNEL ACTUATOR DRIVER
PIN DESCRIPTIONS
Pin No.
1
2
3
4
5
6
8
9
10
7
, 11
12
13
14
15
16
17
18
19
20
21
Symbol
MUTE2
MUTE1
SOUT2
SIN2IN2+
IN2OUT2
VM2(-)
VM2(+)
GND
VM1(+)
VM1(-)
OUT1
IN1IN1+
Vm1
SIN1SOUT1
VCC1
OP2OUT
Function
CH4 mute
CH1,2 and 3 mute
S2 amplifier output
S2 amplifier inverted input
E2 amplifier non-inverted input
E2 amplifier inverted input
E2 amplifier output
CH2 inverted output
CH2 non-inverted output
GND
CH1 non-inverted output
CH1 inverted output
E1 amplifier output
E1 amplifier inverted input
E1 amplifier non-inverted input
Motor power supply - 1
S1 amplifier inverted input
S1 amplifier output
Pin No.
42
41
40
39
38
37
36
35
34
29
, 33
32
31
30
28
27
26
25
24
5V power supply
OP2 amplifier output
23
22
Symbol
VCC2
VREF
VREFO
IN3IN3+
Vm3
OUT3
VM3(-)
VM3(+)
GND
VM4(+)
VM4(-)
IN4AVm2
IN4BOP1OUT
OP1OP1+
OP2+
OP2-
Function
Bootstrap power supply
Reference voltage input
Reference voltage output
E3 amplifier inverted input
E3 amplifier non-inverted input
Motor power supply - 3
E3 amplifier output
CH3 inverted output
CH3 non-inverted output
GND
CH4 non-inverted output
CH4 inverted output
E4 amplifier low gain input
Motor power supply - 2
E4 amplifier high gain input
OP1 amplifier output
OP1 amplifier inverted input
OP1 amplifier non-inverted input
OP2 amplifier non-inverted input
OP2 amplifier inverted input
ABSOLUTE MAXIMUM RATING (Ta=25˚C )
Symbol
VCC2
Vm
Parameter
Bootstrap power supply
Motor power supply
VCC1
Io
Vin1
Vin2
Pt
Kθ
Tj
5V power supply
Output Current
Maximum input voltage
of terminals
Topr
Tstg
Operating temperature
Storage temperature
Power dissipation
Thermal derating
Junction temperature
Conditions
pin input voltage
17 , 28 and 37 pins input voltage
20 pin input voltage
42
, 2 , 5 , 6 , 15 , 16 , 22 , 23 , 24 , 25 , 27 , 30 , 38 , 39 , 41 pins
, 18 pins
Free Air
Free Air
1
4
Rating
15
15
Unit
V
V
7.0
700
0 – VCC1
0 – Vm1
1.2
9.6
150
V
mA
-20 – +75
-40 – +150
V
W
mW / ˚C
˚C
˚C
˚C
RECOMMENDED OPERATING CONDITIONS
Symbol
VCC1
VCC2
Vm1, 2, 3
Parameter
5V power supply
Bootstrap power supply
Motor power supply-1, 2, 3
Min.
4.5
Limits
Typ.
5.0
Vm + 1.0
5.0
Max.
5.5
Unit
V
V
V
MITSUBISHI <CONTROL / DRIVER IC>
M56789FP
4 CHANNEL ACTUATOR DRIVER
ELECTRICAL CHARACTERISTICS
(Ta=25˚C, VCC1=Vm1=Vm2=Vm3=5V,VCC2=12V, no-load current unless otherwise noted.)
Symbol
ICC1
ICC2
Conditions
Parameter
Supply current - 1
Supply current - 2
Sleep Mode Supply
current - 3
VsatCH1 Ch1 Saturation voltage
VsatCH2 Ch2 Saturation voltage
VsatCH3 Ch3 Saturation voltage
VsatCH4 Ch4 Saturation voltage
Vmute-on Mute-on voltage
Vmute-off Mute-off voltage
Mute terminals input current
Imute
ICC3
Min.
, 28 , 37 , 42 pins supply current ( Vref=Vctl=2.5V)
20 pin[VCC1] supply current ( Vref=Vctl=2.5V)
17
17
1.28
V
V
V
V
170
0.8
250
V
V
µA
0.5
VCC2-1.0
V
VCC1-0.5
V
Load current 500mA. At bootstrap.
2.0
OP1 and OP2 amplifier
output voltage range
Io=
2.0mA
0.5
VofOP
OP1 and OP2 amplifier
input offset voltage
Vin = 2.5V(at buffer )
-10
IinOP
OP1 and OP2 amplifier
input current
inverted input = non-inverted input =2.5V
-1.0
inverted input = non-inverted input =2.5V
VinE
E1,E2 and E3 amplifier
Input voltage range
VoutE
E1,E2 and E3 amplifier
output voltage range
VofE
µA
1.28
0.9
1.0
VoutOP
GBOP
mA
mA
0.85
0.6
0.7
VinOP
OP1 and OP2 amplifier
input current offset
OP1 and OP2 amplifier GB
Unit
0.85
Top and Bottom saturation voltage.
Mute-on
Mute-off
1 and 2 pin input current at 5V input voltage.
Max.
36
15
500
, 20 , 28 , 37 , 42 pins supply current (MUTE1,2=H)
OP1 and OP2 amplifier
Input voltage range
IofOP
Limits
Typ.
24
9.5
+10
mV
-0.15
0
µA
-100
0
+100
nA
2.3
4
MHz
0.5
VCC2-2.0
V
No load
1.0
VCC1-0.5
V
E1,E2 and E3 amplifier
input offset voltage
Vin = 2.5V(at buffer )
-10
IinE
E1,E2 and E3 amplifier
input current
inverted input = non-inverted input =2.5V
-1.0
IofE
E1,E2 and E3 amplifier
input current offset
inverted input = non-inverted input =2.5V
-100
VoutS
S1 and S2 amplifier
output voltage range
No load
VREF buffer amplifier
VinVREF Input voltage range
+10
mV
-0.15
0
µA
0
+100
nA
VCC1-0.5
V
VCC1-1.2
V
-10
+10
mV
-26
+26
mV
-26
+26
mV
1.0
1.5
2.5
VofVREF
VREF buffer amplifier
offset voltage
VofCH1
Ch1 output offset voltage
VofCH2
Ch2 output offset voltage
VofCH3
Ch3 output offset voltage
VREFO = OUT3 = 2.5V
when the OUT3 voltage is adjusted at the
same VREFO voltage, at VREF= 2.5V
-26
+26
mV
VofCH4
Ch4 output offset voltage
VREFO = IN4A- = 2.5V
when the IN4A- voltage is adjusted at the same
VREFO voltage, at VREF= 2.5V
-26
+26
mV
VofS1
S1 output offset voltage
SOUT1-VREFO (at SI N1[-] = VM1[+] )
at VREF = 2.5V
-20
+20
mV
VofS2
S2 output offset voltage
SOUT2-VREFO (at SI N2[-] = VM2[+] )
at VREF = 2.5V
-20
+20
mV
41
pin input voltage = 2.5V
VREFO = OUT1 = 2.5V
when the OUT1 voltage is adjusted at the
same VREFO voltage, at VREF= 2.5V
VREFO = OUT2 = 2.5V
when the OUT2 voltage is adjusted at the
same VREFO voltage, at VREF= 2.5V
MITSUBISHI <CONTROL / DRIVER IC>
M56789FP
4 CHANNEL ACTUATOR DRIVER
ELECTRICAL CHARACTERISTICS
(Ta=25˚C, VCC1=Vm1=Vm2=Vm3=5V,VCC2=12V, no-load current unless otherwise noted.)
Symbol
Parameter
Conditions
Min.
Limits
Typ.
Max.
Unit
GainCH1 Ch1 power amplifier
voltage gain
{VM1(+) – VM1(-) } at VREF=2.5V
( OUT1 – VREFO)
13.1
14
14.8
dB
GainCH2 Ch2 power amplifier
voltage gain
{VM2(+) – VM2(-)}
at VREF=2.5V
( OUT2 – VREFO)
13.1
14
14.8
dB
GainCH3 Ch3 power amplifier
voltage gain
{VM3(+) – VM3(-)}
at VREF=2.5V
( OUT3 – VREFO)
19.1
20
20.8
dB
GainCH4
Ch4 power amplifier
voltage gain
-1• {VM4(+) – VM4(-)}
at VREF=2.5V
( I N4A[-] – VREFO)
3.17
4.08
4.91
dB
GainS1
S1 amplifier voltage gain
{SOUT1 - VREFO}
at VREF=2.5V
(VM1[+] - SI N1[-] )
5.11
6.02
6.85
dB
GainS2
S2 amplifier voltage gain
{SOUT2 - VREFO}
at VREF=2.5V
(VM2[+] - SI N2[-] )
5.11
6.02
6.85
dB
INPUT and OUTPUT CHARACTERISTICS of EACH CHANNELS
<INPUT>
CH1 amplifier
VREF
VREFO
41
40
+
-
+
-
12 VM1+
+
-
13 VM1-
VREFO
0.2V
CH1
16
2.5V
OUT1
Output of non-inverted Amp.
(Gain = X2.5)
IN1+
15
IN1-
14
E1
+
-
<OUTPUT>
VM1+
Output of inverted Amp.
(Gain = X-2.5)
OUT1
Differential voltage gain =  5
GainCH1
VM1-
0.5V
VREFO
0.5V
<INPUT>
CH2 amplifier
VREF
41
VREFO
+
-
40
5
2.5V
6
IN2+
IN2-
8
OUT2
OUT2
Output of non-inverted Amp.
(Gain = X2.5)
+
-
E2
+
-
10 VM2+
+
-
9 VM2-
VREFO
0.2V
CH2
Output of inverted Amp.
(Gain = X-2.5)
<OUTPUT>
VM2+
0.5V
GainCH2
Differential voltage gain =  5
VREFO
0.5V
VM2-
MITSUBISHI <CONTROL / DRIVER IC>
M56789FP
4 CHANNEL ACTUATOR DRIVER
<INPUT>
CH3 amplifier
Output of non-inverted Amp.
(Gain = X5)
OUT3
VREF
+
-
41
VREFO
40
38
39
2.5V
36
+
-
34 VM3+
+
-
35 VM3-
VREFO
0.2V
CH3
IN3+
+
-
IN3-
<OUTPUT>
VM3+
VM3-
Output of inverted Amp.
(Gain = X-5)
OUT3
GainCH3
E3
Differential voltage gain =  10
CH4 amplifier
Output of non-inverted Amp.
Vrefm3
(Vm3/2)
1.0V
1.0V
<INPUT>
Vctl4
(Gain = X5)
VREF
41
VREFO
+
-
40
IN4BIN4AVctl4
27
30
32 VM4+
+
-
31 VM4-
1.0V
VREFO
CH4
E4
2.5V
+
-
+
-
25K
4K
(Gain = X-0.16)
GainCH4
<OUTPUT>
VM4-
Output of inverted Amp.
(Gain = X-5)
Differential voltage gain =  1.6
Vrefm4
(Vm4/2)
0.8V
0.8V
VM4+
MITSUBISHI <CONTROL / DRIVER IC>
M56789FP
4 CHANNEL ACTUATOR DRIVER
<INPUT>
S1 amplifier
SIN1SIN118
5K
10K
VM1+
0.5V
19 SOUT1
+
VM1+
40 VREFO
12
<OUTPUT>
SOUT1
10K
5K
Voltage gain =  2
GainS1
VREFO
1.0V
<INPUT>
S2 amplifier
SIN24
SIN2-
5K
10K
VM2+
0.5V
3 SOUT2
+
VM2+
10
40 VREFO
5K
GainS2
<OUTPUT>
SOUT2
10K
Voltage gain =  2
VREFO
1.0V
MITSUBISHI <CONTROL / DRIVER IC>
M56789FP
4 CHANNEL ACTUATOR DRIVER
I/O terminal equivalent circuit
(1)VREF amplifier I/O terminal equivalent circuit
(VREF, VREFO)
(2)E1,E2,E3 amplifier I/O terminal equivalent circuit
(IN1+, IN1-, OUT1, IN2+, IN2-, OUT2, IN3+, IN3-, OUT3)
VCC1
VCC2
VCC1
VREFO
GND
VCC1
GND
GND
VCC1
VREFO
VREF
VCC1
GND
GND
IN-
(3)E4 amplifier I/O terminal equivalent circuit
(IN4A-, IN4B-)
GND
VCC1
IN+
OUT
(4)OP1, OP2 amplifier I/O terminal equivalent circuit
(OP1+, OP1-, OP1OUT, OP2+, OP2-, OP2OUT)
VCC2
VCC2
VCC1
VCC1
VREFO
GND
VCC1 GND
GND
IN4B-
GND
OP-
IN4A-
5K
VCC1 GND
GND
VCC1
(5)S1,S2 amplifier I/O terminal equivalent circuit
(SIN1-, SOUT1, SIN2-, SOUT2)
VM(+)
10K
VCC1
OP+
(6)MUTE circuits equivalent circuit
(MUTE1, MUTE2)
VREFO
VCC2
VCC1
MUTE
GND
VCC1
VCC1
25K
23K
GND
5K
GND
SIN-
Vm1
10K
VCC1
GND
VCC1
SOUT
GND
VCC1
OPOUT
MITSUBISHI <CONTROL / DRIVER IC>
M56789FP
4 CHANNEL ACTUATOR DRIVER
The equivalent circuits of an output stage of the power amplifier
are shown in (7) .
The power supplies of CH1,CH2 are Vm1.
The power supply of CH3 is Vm3, and the power supply of CH4 is
Vm2.
The source side of the power amplifier output stage consists of a
PNP and a NPN. The emitta of the PNP is connected to VCC2. So
the power supplies of the PNP can be adjusted externally.
I/O terminal equivalent circuit
(7)CH1,2,3,4 power amplifier
OUTPUT terminal equivalent circuit
(VM1(+), VM1(-), VM2(+), VM2(-),
VM3(+), VM3(-), VM4(+), VM4(-), )
VCC2
[About bootstrap advantage]
The output stage of the power amplifier consists of the preceding
components. If VCC2 is provided with higher voltage input than
Vm* (The recommendation voltage is Vm*+1V) externally, the
output range can be wider than that of VCC2=Vm*.
Please take advantage of this bootstrap function for the system
which has many power supplies. And it is the same with the
external bootstrap circuit which provides VCC2 with higher voltage
inputs than Vm*.
Also the bootstrap can decrease the saturation voltage at the
source side of the power amplifier output stage. Therefore, when
the outputs of the power amplifiers which drive motors and
actuators are fully swung, the power dissipation of the IC will be
decreased.
Vm
VM(+,-)
GND
BASICALLY CHARACTERISTICS
Output saturation voltage and Load current characteristic.
This data is an example for typical sample.
BOOTSTRAP
CH1
CH2
Vm1=VCC1=5v,VCC2=12v
5.0
0.3v
3.0
2.0
VM1+
0.35v
0.5v
0.3v
4.0
VM1+,VM1-
Output Voltage (V)
4.0
Output Voltage (V)
Vm1=VCC1=5v,VCC2=12v
5.0
1.0
VM2+,VM2-
3.0
2.0
0.5v
VM2+
0.3v
1.0
VM10
0.2
CH3
0.4 0.5 0.6
Load Current (mA)
0.8
0
1.0
VM3+,VM30.22v
Output Voltage (V)
Output Voltage (V)
0.8
1.0
Vm2=VCC1=5v,VCC2=12v
5.0
4.0
0.46v
3.0
2.0
0
0.4 0.5 0.6
Load Current (mA)
CH4
Vm3=VCC1=5v,VCC2=12v
5.0
1.0
VM20.2
0.5v
0.24v
VM3+,VM3-
0.2
0.4 0.5
Load Current (mA)
0.6
0.8
1.0
VM4+,VM4-
4.0
0.3v
0.6v
3.0
0.6v
2.0
0.3v
VM4+,VM4-
1.0
0
0.2
0.4 0.5 0.6
Load Current (mA)
0.8
1.0
MITSUBISHI <CONTROL / DRIVER IC>
M56789FP
4 CHANNEL ACTUATOR DRIVER
NON-BOOTSTRAP
CH1
5.0
VM1+,VM11.0v
3.0
2.0
0.35v
0.5v
Vm1=VCC1=VCC2=5v
VM2+,VM2-
4.0
Output Voltage (V)
4.0
Output Voltage (V)
CH2
Vm1=VCC1=VCC2=5v
5.0
VM1+
1.0
1.0v
3.0
2.0
0.5v
VM2+
0.3v
1.0
VM10
0.2
0.4 0.5 0.6
Load Current (mA)
CH3
0.8
0
1.0
CH4
Vm3=VCC1=VCC2=5v
5.0
VM20.2
5.0
0.4 0.5 0.6
Load Current (mA)
VM4+,VM44.0
Output Voltage (V)
Output Voltage (V)
1.0
Vm2=VCC1=VCC2=5v
VM4+,VM44.0
1.0v
3.0
2.0
0.5v
1.0
0
0.8
0.24v
0.2
VM3+,VM30.4 0.5 0.6
Load Current (mA)
0.8
0.6v
2.0
0.3v
VM4+,VM4-
1.0
0
1.0
1.0v
3.0
0.2
0.4 0.5 0.6
Load Current (mA)
0.8
1.0
THERMAL DERATING
6.0
(W)
This IC's package is POWER-SSOP, so improving the board on
which the IC is mounted enables a large power dissipation without
a heat sink.
For example, using an 1 layer glass epoxy resin board, the IC's
power dissipation is 2.6W at least. And it comes to 3.6W by using
an improved 2 layer board.
The information of the N, P type board is shown in the board
information.
3.6W using N-type board
Power Dissipation (Pdp)
5.0
4.0
2.6W using P-type board
3.0
2.0
1.0
0
25
50
75
100
Ambient Temperature Ta (˚C)
125
150
VCC2
+ -
+
+
VM3+
TRAVERSE
M
VM3-
-
-
-
+
OUT3
-
VREFO
+
IN3- IN3+
-
+
IN2- IN2+
-
OP2+ OP2-
VCTL3
TSD
Vm3
+
SIN2-
OP1OUT
OP2OUT
+
+
+
OUT2
-
-
-
VCC1
VM2+
+
TRAY
M
VM4+ VM4-
+
-
12.5K
IN4A-
-
+
Vm1
VM2-
12.5K
GND
VREFO
-
-
-
VM1-
2.5K
TRACKING
VCTL2
SOUT2
OP1+ OP1-
+
+
+
VM1+
12.5K
IN4B-
+
IN1- OUT1
Ra
FOCUS
12.5K
2.5K
5K
10K
10K
10K
12.5K
VCTL4
+ -
-
VREFO
R2
IN1+
25K
5V
5K
2.5K
+ -
VREF Vm2
ch1,
ch2, ch3
R1
5K
2.5K
10K
10K
5K
12.5K
12.5K
5K
12.5K
5V
VCTL1
5K
2.5K
12V
2.5K
10K 12.5K
VREF0
ch4
5K
10K
10K
2.5V
MUTE2 MUTE1 SOUT1 SIN1-
10K
cf.R1=10K,R2=14K
Voltage gain=GainCH1•R2/R1
=5•14/10
=7(V/V)=16.9dB
if.Ra=10
Current gain=7/10=0.7(A/V)
12.5K
5K
10K
12.5K
5K
12.5K
2.5K
10K
4K
10K
5K
2.5K
5V
-
MITSUBISHI <CONTROL / DRIVER IC>
M56789FP
4 CHANNEL ACTUATOR DRIVER
APPLICATION CIRCUIT No.1
* single input (linear signal)
* Direct voltage control
+
VCC2
+
+ -
+
+
VM3+
TRAVERSE
M
VM3-
-
-
-
+
OUT3
OUT2
-
VREFO
+
IN3- IN3+
-
+
IN2- IN2+
-
OP2+ OP2-
VCTL3
TSD
Vm3
+
SIN2-
OP1OUT
OP2OUT
+
-
-
VCC1
VM2+
VREFO
-
TRAY
M
VM4+ VM4-
+
-
12.5K
IN4A-
-
+
Vm1
VM2-
12.5K
GND
+
-
-
VM1-
2.5K
TRACKING
VCTL2
-
+
+
VM1+
Ra
12.5K
IN4B-
+
IN1- OUT1
Rs
5K
12.5K
2.5K
10K
10K
SOUT2
OP1+ OP1-
10K
12.5K
5V
5K
2.5K
VCTL4
+ -
S1
-
IN1+
VREFO
FOCUS
5K
2.5K
5K
12.5K
+ -
VREF Vm2
ch1,
ch2, ch3
R2
5K
2.5K
*Phase compensation filter
+
VCTL1
R1
10K
5K
12.5K
12.5K
10K
25K
E1
12V
2.5K
10K 12.5K
VREF0
ch4
5K
5V
MUTE2 MUTE1 SOUT1 SIN1-
10K
10K
10K
2.5V
cf.R1=10K,R2=14K,Rs=1
Current gain=R2 / [R1•GainS1•Rs]
=14 / [10•2•1]
=0.7(A/V)
12.5K
5K
10K
12.5K
5K
12.5K
2.5K
10K
4K
10K
5K
2.5K
5V
-
MITSUBISHI <CONTROL / DRIVER IC>
M56789FP
4 CHANNEL ACTUATOR DRIVER
APPLICATION CIRCUIT No.2
* single input (linear signal)
* Direct current control (for FOCUS and TRACKING)
MITSUBISHI <CONTROL / DRIVER IC>
M56789FP
4 CHANNEL ACTUATOR DRIVER
APPLICATION CIRCUIT No.3
* Differential PWM input (for FOCUS,TRACKING and TRAVERSE)
* Direct voltage control
VCTL4
+ -
+
-
4K
-
12.5K
2.5K
12.5K
-
2.5K
IN4A-
25K
+
10K
-
10K
12.5K
2.5K
12.5K
-
5K
TRAY
M
VM4+ VM4-
+
5K
+
VM1+
+
VM1-
Vm1
12.5K
2.5K
12.5K
2.5K
12.5K
2.5K
12.5K
5K
-
+
OUT2
C3
OUT3
5K
+
10K
+
-
Vm3
+
+
+
OP2+ OP2-
OP2OUT
-
5V
PWM2
10K
PWM1
10K
R5
R5
-
TSD
10K
OP1OUT
OP1+ OP1-
SOUT2
PWM1
PWM2
5K
R6
-
+
SIN2-
R3
R3
IN3- IN3+
R6
C3
-
IN2- IN2+
R4
C2
5K
VREFO
TRAVERSE
M
VM3+
+
-
10K
5K
VM3-
10K 12.5K
VM2+
2.5K
12V
12.5K
+
VM2-
TRACKING
VREFO
12.5K
+ -
GND
VCC1
5K
2.5K
VCC2
+
12.5K
-
FOCUS
VREFO
R4
IN4B-
+
10K
5K
5V
C2
VREF Vm2
5K
IN1- OUT1
C1
5V
+ -
10K
10K
-
IN1+
R2
C1
R2
VREF0
ch1,
ch2, ch3
R1
ch4
MUTE2 MUTE1 SOUT1 SIN1-
PWM1
PWM2
R1
10K
2.5V
MITSUBISHI <CONTROL / DRIVER IC>
M56789FP
4 CHANNEL ACTUATOR DRIVER
APPLICATION CIRCUIT No.4
* Differential PWM input (for FOCUS,TRACKING and TRAVERSE)
* Direct current control (for FOCUS and TRACKING)
VREF0
-
12.5K
2.5K
12.5K
-
2.5K
IN4A-
+
25K
10K
-
10K
12.5K
2.5K
12.5K
-
5K
TRAY
M
VM4+ VM4-
+
5K
+
VM1-
Vm1
12.5K
2.5K
12.5K
2.5K
12.5K
2.5K
12.5K
5K
-
+
+
10K
+
-
Vm3
+
+
-
+
OP2+ OP2-
OP2OUT
-
5V
PWM2
10K
PWM1
TSD
OP1OUT
OP1+ OP1-
SOUT2
10K
10K
R5
R5
-
SIN25K
C3
IN3- IN3+
R6
R6
C3
-
IN2- IN2+
OUT3
5K
5K
VREFO
TRAVERSE
M
VM3+
+
OUT2
- +
PA
10K
5K
VM3-
-
VM2+
2.5K
12V
12.5K
+
VM2-
12.5K
+ -
GND
VCC1
5K
2.5K
VCC2
+
12.5K
10K 12.5K
VREFO
R4
R3 R3
VCTL4
-
4K
+
VM1+
TRACKING
C2
IN4B-
+
10K
5K
IN1- OUT1
FOCUS
R4
5V
+ -
5K
5V
C2
VREF Vm2
+ -
OP1
10K
10K
+
IN1+
C1
10K
-
R2
VREFO
C1
ch1,
ch2, ch3
R2
ch4
R1
MUTE2 MUTE1 SOUT1 SIN1-
PWM1
PWM2
R1
2.5V
PWM1
PWM2
MITSUBISHI <CONTROL / DRIVER IC>
M56789FP
4 CHANNEL ACTUATOR DRIVER
APPLICATION CIRCUIT No.5 (for 3.3V DSP)
* single input (linear signal)
* Direct voltage control
VREF0
+ -
10K
VCTL4
5K
IN4B-
+
+
10K
4K
-
5K
-
IN1- OUT1
2.5K
12.5K
-
10K
-
10K
12.5K
2.5K
12.5K
-
5K
TRAY
M
VM4+ VM4-
+
+
VM1+
+
VM1-
Vm1
12.5K
2.5K
12.5K
2.5K
12.5K
2.5K
12.5K
5K
-
+
OUT2
OUT3
5K
+
10K
+
-
Vm3
+
+
+
OP2+ OP2-
OP2OUT
-
10K
5V
REF
10K
VCTL3
TSD
OP1OUT
OP1+ OP1-
SOUT2
VCTL2
REF
10K
R5
R5
-
SIN2-
R3
R3
5K
R6
R6
IN3- IN3+
-
+
IN2- IN2+
R4
5K
VREFO
TRAVERSE
M
VM3+
+
-
10K
5K
VM3-
10K 12.5K
VM2+
2.5K
12V
12.5K
+
VM2-
TRACKING
VREFO
12.5K
+ -
GND
VCC1
5K
2.5K
VCC2
+
12.5K
-
FOCUS
VREFO
12.5K
IN4A-
+
25K
2.5K
5K
5V
R4
5V
MCU
power
supply
5v
10K
-
IN1+
R2
R2
10K
10K
+ -
10K
VREF Vm2
ch1,
ch2, ch3
R1
ch4
MUTE2 MUTE1 SOUT1 SIN1-
VCTL1
REF
R1
VREFO
MITSUBISHI <CONTROL / DRIVER IC>
M56789FP
4 CHANNEL ACTUATOR DRIVER
APPLICATION CIRCUIT No.6 (for 3.3V DSP)
* single input (linear signal)
* Direct current control (for FOCUS and TRACKING)
VREF0
IN4B-
+
+
10K
5K
-
4K
+
25K
-
IN1- OUT1
12.5K
2.5K
12.5K
-
2.5K
IN4A-
IN1+
10K
-
10K
12.5K
2.5K
12.5K
-
5K
TRAY
M
VM4+ VM4-
+
5K
+
VM1+
+
VM1-
FOCUS
VCC1
5K
2.5K
12.5K
2.5K
12.5K
2.5K
12.5K
2.5K
12.5K
+ OUT3
5K
+
10K
+
-
Vm3
+
+
-
+
OP2+ OP2-
OP2OUT
-
5V
Vref
1.65v
10K
VCTL3
TSD
OP1OUT
OP1+ OP1-
SOUT2
10K
10K
R5
R5
-
SIN25K
R6
R6
IN3- IN3+
-
+
IN2- IN2+
VREFO
5K
VREFO
VM3+
+
OUT2
- +
PA
TRAVERSE
M
5K
VM3-
10K
12V
5K
10K 12.5K
VM2+
12.5K
12.5K
+
VM2-
2.5K
VCC2
+
12.5K
Vm1
GND
TRACKING
R4
R3 R3
5V
VCTL4
5K
5V
R4
10K
MCU
power
supply
5v
10K
+ -
10K
VREF Vm2
+ -
OP1
10K
10K
-
VREFO
R2
ch1,
ch2, ch3
R2
ch4
R1
MUTE2 MUTE1 SOUT1 SIN1-
VCTL1
Vref
1.65V
R1
VREFO
VCTL2
Vref
1.65v