MITSUBISHI <CONTROL / DRIVER IC> M56789FP 4 CHANNEL ACTUATOR DRIVER DESCRIPTION PIN CONFIGURATION (TOP VIEW) The M56789FP is a semiconductor integrated circuit in order to drive 4ch actuator. FEATURES APPLICATION CD-ROM, DVD, DVD-ROM etc. 1 42 MUTE1 2 41 VREF SOUT2 3 40 VREFO SIN2- 4 39 IN3- IN2+ 5 38 IN3+ IN2- 6 37 Vm3 GND 7 36 OUT3 OUT2 8 35 VM3- VM2- 9 34 VM3+ VM2+ 10 33 GND GND 11 32 VM4+ VM1+ 12 31 VM4- VM1- 13 30 IN4A- OUT1 14 29 GND IN1- 15 28 Vm2 IN1+ 16 27 IN4B- Vm1 17 26 OP1OUT SIN1- 18 25 OP1- SOUT1 19 24 OP1+ VCC1 20 23 OP2+ OP2OUT 21 22 OP2- M56789FP ● Large power dissipation (Power Package). ● 3.3V DSP available. ● Low saturation voltage (typical 0.6V at load current 500mA). ● Low cross-over distortion. ● Wide supply voltage range.(4.5V–13.2V) ● Divided Motor power supplies into three parts. ● Ch1, Ch2 and Ch3 can be controlled by PWM. ● Ch1 and Ch2 can act in the Current Control mode. ● Two naked Operational Amplifiers. ● TSD(Thermal Shut Down) circuit. ● Two mute circuits. VCC2 MUTE2 Outline 42P9R-B BLOCK DIAGRAM VREFO 40 OP2 OUT VREF OP2+ OP223 22 41 21 OP1 OP1+ OP1- OUT 24 25 26 VCC2 42 SOUT1 19 SIN1- 18 28 Vm2 IN1+ 16 IN1- 15 OUT1 14 VM1(-) 13 + OUT2 8 IN2- 6 IN2+ 5 + + + A1- OP1 + A1E4 27 IN4B30 VM1(+) 12 VM2(+) 10 A4 A4 OP2 + -A3 E1 + - VM2(-) 9 A2 + - S1 +A3 VCC2 CH1 CH4 VREFO + + BIAS CH2 CH3 VCC1 IN4A- + - 32 VM4(+) + 31 VM4(-) + - 35 VM3(-) + 34 VM3(+) Hi:Sleep E2 +A3 A3+ E3 1ch 2ch 3ch + - A3S2 4ch TSD 39 IN338 IN3+ 36 OUT3 SLEEP A1+ SIN2- 4 SOUT2 3 37 Vm3 17 Vm1 2 MUTE1 1 MUTE2 7 11 29 33 GND (4PINS) 20 VCC1 MITSUBISHI <CONTROL / DRIVER IC> M56789FP 4 CHANNEL ACTUATOR DRIVER PIN DESCRIPTIONS Pin No. 1 2 3 4 5 6 8 9 10 7 , 11 12 13 14 15 16 17 18 19 20 21 Symbol MUTE2 MUTE1 SOUT2 SIN2IN2+ IN2OUT2 VM2(-) VM2(+) GND VM1(+) VM1(-) OUT1 IN1IN1+ Vm1 SIN1SOUT1 VCC1 OP2OUT Function CH4 mute CH1,2 and 3 mute S2 amplifier output S2 amplifier inverted input E2 amplifier non-inverted input E2 amplifier inverted input E2 amplifier output CH2 inverted output CH2 non-inverted output GND CH1 non-inverted output CH1 inverted output E1 amplifier output E1 amplifier inverted input E1 amplifier non-inverted input Motor power supply - 1 S1 amplifier inverted input S1 amplifier output Pin No. 42 41 40 39 38 37 36 35 34 29 , 33 32 31 30 28 27 26 25 24 5V power supply OP2 amplifier output 23 22 Symbol VCC2 VREF VREFO IN3IN3+ Vm3 OUT3 VM3(-) VM3(+) GND VM4(+) VM4(-) IN4AVm2 IN4BOP1OUT OP1OP1+ OP2+ OP2- Function Bootstrap power supply Reference voltage input Reference voltage output E3 amplifier inverted input E3 amplifier non-inverted input Motor power supply - 3 E3 amplifier output CH3 inverted output CH3 non-inverted output GND CH4 non-inverted output CH4 inverted output E4 amplifier low gain input Motor power supply - 2 E4 amplifier high gain input OP1 amplifier output OP1 amplifier inverted input OP1 amplifier non-inverted input OP2 amplifier non-inverted input OP2 amplifier inverted input ABSOLUTE MAXIMUM RATING (Ta=25˚C ) Symbol VCC2 Vm Parameter Bootstrap power supply Motor power supply VCC1 Io Vin1 Vin2 Pt Kθ Tj 5V power supply Output Current Maximum input voltage of terminals Topr Tstg Operating temperature Storage temperature Power dissipation Thermal derating Junction temperature Conditions pin input voltage 17 , 28 and 37 pins input voltage 20 pin input voltage 42 , 2 , 5 , 6 , 15 , 16 , 22 , 23 , 24 , 25 , 27 , 30 , 38 , 39 , 41 pins , 18 pins Free Air Free Air 1 4 Rating 15 15 Unit V V 7.0 700 0 – VCC1 0 – Vm1 1.2 9.6 150 V mA -20 – +75 -40 – +150 V W mW / ˚C ˚C ˚C ˚C RECOMMENDED OPERATING CONDITIONS Symbol VCC1 VCC2 Vm1, 2, 3 Parameter 5V power supply Bootstrap power supply Motor power supply-1, 2, 3 Min. 4.5 Limits Typ. 5.0 Vm + 1.0 5.0 Max. 5.5 Unit V V V MITSUBISHI <CONTROL / DRIVER IC> M56789FP 4 CHANNEL ACTUATOR DRIVER ELECTRICAL CHARACTERISTICS (Ta=25˚C, VCC1=Vm1=Vm2=Vm3=5V,VCC2=12V, no-load current unless otherwise noted.) Symbol ICC1 ICC2 Conditions Parameter Supply current - 1 Supply current - 2 Sleep Mode Supply current - 3 VsatCH1 Ch1 Saturation voltage VsatCH2 Ch2 Saturation voltage VsatCH3 Ch3 Saturation voltage VsatCH4 Ch4 Saturation voltage Vmute-on Mute-on voltage Vmute-off Mute-off voltage Mute terminals input current Imute ICC3 Min. , 28 , 37 , 42 pins supply current ( Vref=Vctl=2.5V) 20 pin[VCC1] supply current ( Vref=Vctl=2.5V) 17 17 1.28 V V V V 170 0.8 250 V V µA 0.5 VCC2-1.0 V VCC1-0.5 V Load current 500mA. At bootstrap. 2.0 OP1 and OP2 amplifier output voltage range Io= 2.0mA 0.5 VofOP OP1 and OP2 amplifier input offset voltage Vin = 2.5V(at buffer ) -10 IinOP OP1 and OP2 amplifier input current inverted input = non-inverted input =2.5V -1.0 inverted input = non-inverted input =2.5V VinE E1,E2 and E3 amplifier Input voltage range VoutE E1,E2 and E3 amplifier output voltage range VofE µA 1.28 0.9 1.0 VoutOP GBOP mA mA 0.85 0.6 0.7 VinOP OP1 and OP2 amplifier input current offset OP1 and OP2 amplifier GB Unit 0.85 Top and Bottom saturation voltage. Mute-on Mute-off 1 and 2 pin input current at 5V input voltage. Max. 36 15 500 , 20 , 28 , 37 , 42 pins supply current (MUTE1,2=H) OP1 and OP2 amplifier Input voltage range IofOP Limits Typ. 24 9.5 +10 mV -0.15 0 µA -100 0 +100 nA 2.3 4 MHz 0.5 VCC2-2.0 V No load 1.0 VCC1-0.5 V E1,E2 and E3 amplifier input offset voltage Vin = 2.5V(at buffer ) -10 IinE E1,E2 and E3 amplifier input current inverted input = non-inverted input =2.5V -1.0 IofE E1,E2 and E3 amplifier input current offset inverted input = non-inverted input =2.5V -100 VoutS S1 and S2 amplifier output voltage range No load VREF buffer amplifier VinVREF Input voltage range +10 mV -0.15 0 µA 0 +100 nA VCC1-0.5 V VCC1-1.2 V -10 +10 mV -26 +26 mV -26 +26 mV 1.0 1.5 2.5 VofVREF VREF buffer amplifier offset voltage VofCH1 Ch1 output offset voltage VofCH2 Ch2 output offset voltage VofCH3 Ch3 output offset voltage VREFO = OUT3 = 2.5V when the OUT3 voltage is adjusted at the same VREFO voltage, at VREF= 2.5V -26 +26 mV VofCH4 Ch4 output offset voltage VREFO = IN4A- = 2.5V when the IN4A- voltage is adjusted at the same VREFO voltage, at VREF= 2.5V -26 +26 mV VofS1 S1 output offset voltage SOUT1-VREFO (at SI N1[-] = VM1[+] ) at VREF = 2.5V -20 +20 mV VofS2 S2 output offset voltage SOUT2-VREFO (at SI N2[-] = VM2[+] ) at VREF = 2.5V -20 +20 mV 41 pin input voltage = 2.5V VREFO = OUT1 = 2.5V when the OUT1 voltage is adjusted at the same VREFO voltage, at VREF= 2.5V VREFO = OUT2 = 2.5V when the OUT2 voltage is adjusted at the same VREFO voltage, at VREF= 2.5V MITSUBISHI <CONTROL / DRIVER IC> M56789FP 4 CHANNEL ACTUATOR DRIVER ELECTRICAL CHARACTERISTICS (Ta=25˚C, VCC1=Vm1=Vm2=Vm3=5V,VCC2=12V, no-load current unless otherwise noted.) Symbol Parameter Conditions Min. Limits Typ. Max. Unit GainCH1 Ch1 power amplifier voltage gain {VM1(+) – VM1(-) } at VREF=2.5V ( OUT1 – VREFO) 13.1 14 14.8 dB GainCH2 Ch2 power amplifier voltage gain {VM2(+) – VM2(-)} at VREF=2.5V ( OUT2 – VREFO) 13.1 14 14.8 dB GainCH3 Ch3 power amplifier voltage gain {VM3(+) – VM3(-)} at VREF=2.5V ( OUT3 – VREFO) 19.1 20 20.8 dB GainCH4 Ch4 power amplifier voltage gain -1• {VM4(+) – VM4(-)} at VREF=2.5V ( I N4A[-] – VREFO) 3.17 4.08 4.91 dB GainS1 S1 amplifier voltage gain {SOUT1 - VREFO} at VREF=2.5V (VM1[+] - SI N1[-] ) 5.11 6.02 6.85 dB GainS2 S2 amplifier voltage gain {SOUT2 - VREFO} at VREF=2.5V (VM2[+] - SI N2[-] ) 5.11 6.02 6.85 dB INPUT and OUTPUT CHARACTERISTICS of EACH CHANNELS <INPUT> CH1 amplifier VREF VREFO 41 40 + - + - 12 VM1+ + - 13 VM1- VREFO 0.2V CH1 16 2.5V OUT1 Output of non-inverted Amp. (Gain = X2.5) IN1+ 15 IN1- 14 E1 + - <OUTPUT> VM1+ Output of inverted Amp. (Gain = X-2.5) OUT1 Differential voltage gain = 5 GainCH1 VM1- 0.5V VREFO 0.5V <INPUT> CH2 amplifier VREF 41 VREFO + - 40 5 2.5V 6 IN2+ IN2- 8 OUT2 OUT2 Output of non-inverted Amp. (Gain = X2.5) + - E2 + - 10 VM2+ + - 9 VM2- VREFO 0.2V CH2 Output of inverted Amp. (Gain = X-2.5) <OUTPUT> VM2+ 0.5V GainCH2 Differential voltage gain = 5 VREFO 0.5V VM2- MITSUBISHI <CONTROL / DRIVER IC> M56789FP 4 CHANNEL ACTUATOR DRIVER <INPUT> CH3 amplifier Output of non-inverted Amp. (Gain = X5) OUT3 VREF + - 41 VREFO 40 38 39 2.5V 36 + - 34 VM3+ + - 35 VM3- VREFO 0.2V CH3 IN3+ + - IN3- <OUTPUT> VM3+ VM3- Output of inverted Amp. (Gain = X-5) OUT3 GainCH3 E3 Differential voltage gain = 10 CH4 amplifier Output of non-inverted Amp. Vrefm3 (Vm3/2) 1.0V 1.0V <INPUT> Vctl4 (Gain = X5) VREF 41 VREFO + - 40 IN4BIN4AVctl4 27 30 32 VM4+ + - 31 VM4- 1.0V VREFO CH4 E4 2.5V + - + - 25K 4K (Gain = X-0.16) GainCH4 <OUTPUT> VM4- Output of inverted Amp. (Gain = X-5) Differential voltage gain = 1.6 Vrefm4 (Vm4/2) 0.8V 0.8V VM4+ MITSUBISHI <CONTROL / DRIVER IC> M56789FP 4 CHANNEL ACTUATOR DRIVER <INPUT> S1 amplifier SIN1SIN118 5K 10K VM1+ 0.5V 19 SOUT1 + VM1+ 40 VREFO 12 <OUTPUT> SOUT1 10K 5K Voltage gain = 2 GainS1 VREFO 1.0V <INPUT> S2 amplifier SIN24 SIN2- 5K 10K VM2+ 0.5V 3 SOUT2 + VM2+ 10 40 VREFO 5K GainS2 <OUTPUT> SOUT2 10K Voltage gain = 2 VREFO 1.0V MITSUBISHI <CONTROL / DRIVER IC> M56789FP 4 CHANNEL ACTUATOR DRIVER I/O terminal equivalent circuit (1)VREF amplifier I/O terminal equivalent circuit (VREF, VREFO) (2)E1,E2,E3 amplifier I/O terminal equivalent circuit (IN1+, IN1-, OUT1, IN2+, IN2-, OUT2, IN3+, IN3-, OUT3) VCC1 VCC2 VCC1 VREFO GND VCC1 GND GND VCC1 VREFO VREF VCC1 GND GND IN- (3)E4 amplifier I/O terminal equivalent circuit (IN4A-, IN4B-) GND VCC1 IN+ OUT (4)OP1, OP2 amplifier I/O terminal equivalent circuit (OP1+, OP1-, OP1OUT, OP2+, OP2-, OP2OUT) VCC2 VCC2 VCC1 VCC1 VREFO GND VCC1 GND GND IN4B- GND OP- IN4A- 5K VCC1 GND GND VCC1 (5)S1,S2 amplifier I/O terminal equivalent circuit (SIN1-, SOUT1, SIN2-, SOUT2) VM(+) 10K VCC1 OP+ (6)MUTE circuits equivalent circuit (MUTE1, MUTE2) VREFO VCC2 VCC1 MUTE GND VCC1 VCC1 25K 23K GND 5K GND SIN- Vm1 10K VCC1 GND VCC1 SOUT GND VCC1 OPOUT MITSUBISHI <CONTROL / DRIVER IC> M56789FP 4 CHANNEL ACTUATOR DRIVER The equivalent circuits of an output stage of the power amplifier are shown in (7) . The power supplies of CH1,CH2 are Vm1. The power supply of CH3 is Vm3, and the power supply of CH4 is Vm2. The source side of the power amplifier output stage consists of a PNP and a NPN. The emitta of the PNP is connected to VCC2. So the power supplies of the PNP can be adjusted externally. I/O terminal equivalent circuit (7)CH1,2,3,4 power amplifier OUTPUT terminal equivalent circuit (VM1(+), VM1(-), VM2(+), VM2(-), VM3(+), VM3(-), VM4(+), VM4(-), ) VCC2 [About bootstrap advantage] The output stage of the power amplifier consists of the preceding components. If VCC2 is provided with higher voltage input than Vm* (The recommendation voltage is Vm*+1V) externally, the output range can be wider than that of VCC2=Vm*. Please take advantage of this bootstrap function for the system which has many power supplies. And it is the same with the external bootstrap circuit which provides VCC2 with higher voltage inputs than Vm*. Also the bootstrap can decrease the saturation voltage at the source side of the power amplifier output stage. Therefore, when the outputs of the power amplifiers which drive motors and actuators are fully swung, the power dissipation of the IC will be decreased. Vm VM(+,-) GND BASICALLY CHARACTERISTICS Output saturation voltage and Load current characteristic. This data is an example for typical sample. BOOTSTRAP CH1 CH2 Vm1=VCC1=5v,VCC2=12v 5.0 0.3v 3.0 2.0 VM1+ 0.35v 0.5v 0.3v 4.0 VM1+,VM1- Output Voltage (V) 4.0 Output Voltage (V) Vm1=VCC1=5v,VCC2=12v 5.0 1.0 VM2+,VM2- 3.0 2.0 0.5v VM2+ 0.3v 1.0 VM10 0.2 CH3 0.4 0.5 0.6 Load Current (mA) 0.8 0 1.0 VM3+,VM30.22v Output Voltage (V) Output Voltage (V) 0.8 1.0 Vm2=VCC1=5v,VCC2=12v 5.0 4.0 0.46v 3.0 2.0 0 0.4 0.5 0.6 Load Current (mA) CH4 Vm3=VCC1=5v,VCC2=12v 5.0 1.0 VM20.2 0.5v 0.24v VM3+,VM3- 0.2 0.4 0.5 Load Current (mA) 0.6 0.8 1.0 VM4+,VM4- 4.0 0.3v 0.6v 3.0 0.6v 2.0 0.3v VM4+,VM4- 1.0 0 0.2 0.4 0.5 0.6 Load Current (mA) 0.8 1.0 MITSUBISHI <CONTROL / DRIVER IC> M56789FP 4 CHANNEL ACTUATOR DRIVER NON-BOOTSTRAP CH1 5.0 VM1+,VM11.0v 3.0 2.0 0.35v 0.5v Vm1=VCC1=VCC2=5v VM2+,VM2- 4.0 Output Voltage (V) 4.0 Output Voltage (V) CH2 Vm1=VCC1=VCC2=5v 5.0 VM1+ 1.0 1.0v 3.0 2.0 0.5v VM2+ 0.3v 1.0 VM10 0.2 0.4 0.5 0.6 Load Current (mA) CH3 0.8 0 1.0 CH4 Vm3=VCC1=VCC2=5v 5.0 VM20.2 5.0 0.4 0.5 0.6 Load Current (mA) VM4+,VM44.0 Output Voltage (V) Output Voltage (V) 1.0 Vm2=VCC1=VCC2=5v VM4+,VM44.0 1.0v 3.0 2.0 0.5v 1.0 0 0.8 0.24v 0.2 VM3+,VM30.4 0.5 0.6 Load Current (mA) 0.8 0.6v 2.0 0.3v VM4+,VM4- 1.0 0 1.0 1.0v 3.0 0.2 0.4 0.5 0.6 Load Current (mA) 0.8 1.0 THERMAL DERATING 6.0 (W) This IC's package is POWER-SSOP, so improving the board on which the IC is mounted enables a large power dissipation without a heat sink. For example, using an 1 layer glass epoxy resin board, the IC's power dissipation is 2.6W at least. And it comes to 3.6W by using an improved 2 layer board. The information of the N, P type board is shown in the board information. 3.6W using N-type board Power Dissipation (Pdp) 5.0 4.0 2.6W using P-type board 3.0 2.0 1.0 0 25 50 75 100 Ambient Temperature Ta (˚C) 125 150 VCC2 + - + + VM3+ TRAVERSE M VM3- - - - + OUT3 - VREFO + IN3- IN3+ - + IN2- IN2+ - OP2+ OP2- VCTL3 TSD Vm3 + SIN2- OP1OUT OP2OUT + + + OUT2 - - - VCC1 VM2+ + TRAY M VM4+ VM4- + - 12.5K IN4A- - + Vm1 VM2- 12.5K GND VREFO - - - VM1- 2.5K TRACKING VCTL2 SOUT2 OP1+ OP1- + + + VM1+ 12.5K IN4B- + IN1- OUT1 Ra FOCUS 12.5K 2.5K 5K 10K 10K 10K 12.5K VCTL4 + - - VREFO R2 IN1+ 25K 5V 5K 2.5K + - VREF Vm2 ch1, ch2, ch3 R1 5K 2.5K 10K 10K 5K 12.5K 12.5K 5K 12.5K 5V VCTL1 5K 2.5K 12V 2.5K 10K 12.5K VREF0 ch4 5K 10K 10K 2.5V MUTE2 MUTE1 SOUT1 SIN1- 10K cf.R1=10K,R2=14K Voltage gain=GainCH1•R2/R1 =5•14/10 =7(V/V)=16.9dB if.Ra=10 Current gain=7/10=0.7(A/V) 12.5K 5K 10K 12.5K 5K 12.5K 2.5K 10K 4K 10K 5K 2.5K 5V - MITSUBISHI <CONTROL / DRIVER IC> M56789FP 4 CHANNEL ACTUATOR DRIVER APPLICATION CIRCUIT No.1 * single input (linear signal) * Direct voltage control + VCC2 + + - + + VM3+ TRAVERSE M VM3- - - - + OUT3 OUT2 - VREFO + IN3- IN3+ - + IN2- IN2+ - OP2+ OP2- VCTL3 TSD Vm3 + SIN2- OP1OUT OP2OUT + - - VCC1 VM2+ VREFO - TRAY M VM4+ VM4- + - 12.5K IN4A- - + Vm1 VM2- 12.5K GND + - - VM1- 2.5K TRACKING VCTL2 - + + VM1+ Ra 12.5K IN4B- + IN1- OUT1 Rs 5K 12.5K 2.5K 10K 10K SOUT2 OP1+ OP1- 10K 12.5K 5V 5K 2.5K VCTL4 + - S1 - IN1+ VREFO FOCUS 5K 2.5K 5K 12.5K + - VREF Vm2 ch1, ch2, ch3 R2 5K 2.5K *Phase compensation filter + VCTL1 R1 10K 5K 12.5K 12.5K 10K 25K E1 12V 2.5K 10K 12.5K VREF0 ch4 5K 5V MUTE2 MUTE1 SOUT1 SIN1- 10K 10K 10K 2.5V cf.R1=10K,R2=14K,Rs=1 Current gain=R2 / [R1•GainS1•Rs] =14 / [10•2•1] =0.7(A/V) 12.5K 5K 10K 12.5K 5K 12.5K 2.5K 10K 4K 10K 5K 2.5K 5V - MITSUBISHI <CONTROL / DRIVER IC> M56789FP 4 CHANNEL ACTUATOR DRIVER APPLICATION CIRCUIT No.2 * single input (linear signal) * Direct current control (for FOCUS and TRACKING) MITSUBISHI <CONTROL / DRIVER IC> M56789FP 4 CHANNEL ACTUATOR DRIVER APPLICATION CIRCUIT No.3 * Differential PWM input (for FOCUS,TRACKING and TRAVERSE) * Direct voltage control VCTL4 + - + - 4K - 12.5K 2.5K 12.5K - 2.5K IN4A- 25K + 10K - 10K 12.5K 2.5K 12.5K - 5K TRAY M VM4+ VM4- + 5K + VM1+ + VM1- Vm1 12.5K 2.5K 12.5K 2.5K 12.5K 2.5K 12.5K 5K - + OUT2 C3 OUT3 5K + 10K + - Vm3 + + + OP2+ OP2- OP2OUT - 5V PWM2 10K PWM1 10K R5 R5 - TSD 10K OP1OUT OP1+ OP1- SOUT2 PWM1 PWM2 5K R6 - + SIN2- R3 R3 IN3- IN3+ R6 C3 - IN2- IN2+ R4 C2 5K VREFO TRAVERSE M VM3+ + - 10K 5K VM3- 10K 12.5K VM2+ 2.5K 12V 12.5K + VM2- TRACKING VREFO 12.5K + - GND VCC1 5K 2.5K VCC2 + 12.5K - FOCUS VREFO R4 IN4B- + 10K 5K 5V C2 VREF Vm2 5K IN1- OUT1 C1 5V + - 10K 10K - IN1+ R2 C1 R2 VREF0 ch1, ch2, ch3 R1 ch4 MUTE2 MUTE1 SOUT1 SIN1- PWM1 PWM2 R1 10K 2.5V MITSUBISHI <CONTROL / DRIVER IC> M56789FP 4 CHANNEL ACTUATOR DRIVER APPLICATION CIRCUIT No.4 * Differential PWM input (for FOCUS,TRACKING and TRAVERSE) * Direct current control (for FOCUS and TRACKING) VREF0 - 12.5K 2.5K 12.5K - 2.5K IN4A- + 25K 10K - 10K 12.5K 2.5K 12.5K - 5K TRAY M VM4+ VM4- + 5K + VM1- Vm1 12.5K 2.5K 12.5K 2.5K 12.5K 2.5K 12.5K 5K - + + 10K + - Vm3 + + - + OP2+ OP2- OP2OUT - 5V PWM2 10K PWM1 TSD OP1OUT OP1+ OP1- SOUT2 10K 10K R5 R5 - SIN25K C3 IN3- IN3+ R6 R6 C3 - IN2- IN2+ OUT3 5K 5K VREFO TRAVERSE M VM3+ + OUT2 - + PA 10K 5K VM3- - VM2+ 2.5K 12V 12.5K + VM2- 12.5K + - GND VCC1 5K 2.5K VCC2 + 12.5K 10K 12.5K VREFO R4 R3 R3 VCTL4 - 4K + VM1+ TRACKING C2 IN4B- + 10K 5K IN1- OUT1 FOCUS R4 5V + - 5K 5V C2 VREF Vm2 + - OP1 10K 10K + IN1+ C1 10K - R2 VREFO C1 ch1, ch2, ch3 R2 ch4 R1 MUTE2 MUTE1 SOUT1 SIN1- PWM1 PWM2 R1 2.5V PWM1 PWM2 MITSUBISHI <CONTROL / DRIVER IC> M56789FP 4 CHANNEL ACTUATOR DRIVER APPLICATION CIRCUIT No.5 (for 3.3V DSP) * single input (linear signal) * Direct voltage control VREF0 + - 10K VCTL4 5K IN4B- + + 10K 4K - 5K - IN1- OUT1 2.5K 12.5K - 10K - 10K 12.5K 2.5K 12.5K - 5K TRAY M VM4+ VM4- + + VM1+ + VM1- Vm1 12.5K 2.5K 12.5K 2.5K 12.5K 2.5K 12.5K 5K - + OUT2 OUT3 5K + 10K + - Vm3 + + + OP2+ OP2- OP2OUT - 10K 5V REF 10K VCTL3 TSD OP1OUT OP1+ OP1- SOUT2 VCTL2 REF 10K R5 R5 - SIN2- R3 R3 5K R6 R6 IN3- IN3+ - + IN2- IN2+ R4 5K VREFO TRAVERSE M VM3+ + - 10K 5K VM3- 10K 12.5K VM2+ 2.5K 12V 12.5K + VM2- TRACKING VREFO 12.5K + - GND VCC1 5K 2.5K VCC2 + 12.5K - FOCUS VREFO 12.5K IN4A- + 25K 2.5K 5K 5V R4 5V MCU power supply 5v 10K - IN1+ R2 R2 10K 10K + - 10K VREF Vm2 ch1, ch2, ch3 R1 ch4 MUTE2 MUTE1 SOUT1 SIN1- VCTL1 REF R1 VREFO MITSUBISHI <CONTROL / DRIVER IC> M56789FP 4 CHANNEL ACTUATOR DRIVER APPLICATION CIRCUIT No.6 (for 3.3V DSP) * single input (linear signal) * Direct current control (for FOCUS and TRACKING) VREF0 IN4B- + + 10K 5K - 4K + 25K - IN1- OUT1 12.5K 2.5K 12.5K - 2.5K IN4A- IN1+ 10K - 10K 12.5K 2.5K 12.5K - 5K TRAY M VM4+ VM4- + 5K + VM1+ + VM1- FOCUS VCC1 5K 2.5K 12.5K 2.5K 12.5K 2.5K 12.5K 2.5K 12.5K + OUT3 5K + 10K + - Vm3 + + - + OP2+ OP2- OP2OUT - 5V Vref 1.65v 10K VCTL3 TSD OP1OUT OP1+ OP1- SOUT2 10K 10K R5 R5 - SIN25K R6 R6 IN3- IN3+ - + IN2- IN2+ VREFO 5K VREFO VM3+ + OUT2 - + PA TRAVERSE M 5K VM3- 10K 12V 5K 10K 12.5K VM2+ 12.5K 12.5K + VM2- 2.5K VCC2 + 12.5K Vm1 GND TRACKING R4 R3 R3 5V VCTL4 5K 5V R4 10K MCU power supply 5v 10K + - 10K VREF Vm2 + - OP1 10K 10K - VREFO R2 ch1, ch2, ch3 R2 ch4 R1 MUTE2 MUTE1 SOUT1 SIN1- VCTL1 Vref 1.65V R1 VREFO VCTL2 Vref 1.65v