Panasonic AN38 Sensor-less motor drive ic for vtr movie cylinder Datasheet

AN3861SA
Sensor-less Motor Drive IC for VTR Movie Cylinder
■ Overview
Unit : mm
The AN3861SA is a sensor-less motor drive IC for VTR
movie cylinder. It uses both sensor-less and sine wave drive,
thus excellent for low-noise applications.
11.0±0.3
32
17
1
16
• Operating supply voltage range : VCC=3.0 to 5.5V, VB=4.0 to
0.1±0.1
6.1±0.3
8.1±0.3
■ Features
10.5V
0.65
(0.625)
+ 0.1
1.5±0.2
(0.5)
0.65±0.1
drive. Built-in power transistor.
• Standby mode for minimizing power consumption
• Voltage output for controlling SW power supply
• Motor neutral point input terminal
0.2 – 0.05
• Reduced magnetosound using 3-phase full-wave overlap
+ 0.1
SEATING PLANE
0.3 – 0.05
SEATING PLANE
32-pin SSOP Package (SSOP032-P-0300)
■ Pin Descriptions
Pin No.
Symbol
Pin No.
Symbol
1
U
U-phase drive output terminal
Description
17
VCC
2
CS
Drive current output terminal
18
IN2H
3
VSC
Switching power supply control output terminal
19
OUT2
4
WIN
W-phase detection terminal
20
IN1–
Operational amplifier 1 reverse phase input terminal
5
VIN
V-phase detection terminal
21
IN1+
Operational amplifier 1 normal phase input terminal
6
UIN
U-phase detection terminal
22
MM
Motor neutral point input terminal
7
PCV
Voltage feedback system compensation terminal
23
OUT1
Operational amplifier 1 output terminal
8
SG
Signal ground
24
Vref
Servo reference voltage input terminal
9
SL3
Slope waveform generate terminal (3)
25
PCI
Current feedback system phase compensation terminal
10
SL2
Slope waveform generate terminal (2)
26
VS
Motor drive power supply terminal
11
SL1
Slope waveform generate terminal (1)
27
VB
Unregulated power supply terminal
12
FC
Oscillation terminal
28
CS
Drive current output terminal
13
BR
Short brake control terminal
29
W
W-phase drive output terminal
14
FR
Forward/Reverse change-over terminal
30
PG
Power ground
15
HSL
Slope current change-over terminal
31
V
V-phase drive output terminal
16
STB
Stand-by input terminal
32
PG
Power ground
Description
Power supply terminal
Operational amplifier 2 input terminal
Operational amplifier 2 output terminal
■ Block Diagram
SW Power Block
VS
SW Power
Control
Block
+
Vbatt
–
0.25Ω
0.1µF
SG
MM
8
VCC
VB
22
PC1
27
25
28
3
2
17
7
OUT 1
23
IN 1–
20
–
1+
21
OUT 2
19
PCV
+
VCE Detection
Amplifier
Distributor
–
Source Side
Drive Tr
0.1µF
U
0.1µF
31
V
STB
(Low : Stand-by)
16
+
18
29
W
Forward/Reverse
Control
FR
(High : Forward)
A3
Reference
Power Supply
Sink Side
Drive Tr
WIN
14
4
Conducting Phase
Switch Logic
FC
0.1µF
1
–
2+
IN
0.047µF
+
24
+
–
Vref
IN
VSC (Output for VS Control)
VS CS
26
12
VIN
5
BEMF Detection
Comparator
UIN
6
560pF
HSL
15
0.022µF × 3
Short Brake
11
10
9
13
SL 1 SL 2 SL 3
0.022µF
30
32
PG
PG
BR (High : Brake)
0.022µF
0.022µF
Note) Values of all external C and R are nominal one.
■ Absolute Maximum Rating (Ta=25˚C)
Parameter
Symbol
Rating
Supply voltage
VCC
6.0
Unit
V
Unregulated voltage
VB
11
V
V
Motor power supply voltage (under VB)
VS
11
Output terminal voltage
n=1, 29, 31
Vn
11
Output current
n=1, 29, 31
IOn
1000
mA
mW
V
Power dissipation Note 1)
PD
400
Operating ambient temperature
Topr
–25 to + 70
˚C
Storage temperature
Tstg
–55 to + 150
˚C
Note 1) Package power dissipation when Ta=75˚C
■ Recommended Operating Range (Ta=25˚C)
Parameter
Operating supply voltage
Symbol
Range
VCC
3.0V to 5.5V
VB
4.0V to 10.5V
VS
1.5V to VB
■ Package Power Dissipation
PD –Ta
Power Dissipation PD (mW)
1400
Glass epoxy board (50 × 50 × 0.8tmm)
Rthj – a = 96.9˚C/W
PD=1290mW (25˚C)
1290
1200
1000
Single unit
Rthj– a = 187.1˚C/W
PD= 668mW (25˚C)
800
668
600
400
200
0
0
25
50
75
100
125
150
Ambient Temperature Ta (˚C)
■ Electrical Characteristics (VCC=3.3V, VB=6V, VS=6V, Ta=25±2˚C)
Parameter
Symbol
Condition
min
typ
max
0.11
0.14
0.17
–100
6
100
mV
875
mA
Unit
Drive Block
Drive gain
Gio
∆VCS
∆OUT1
Input offset voltage of
Vref and OUT1
RCS=0.25Ω
Drive amplifier offset
ViOCS
Output maximum current
IOMAX
Brake current
IBR
Sink-side output voltage
VCE
IO=100mA
Sink-side saturation voltage
VSAT (1)
Source-side saturation voltage
VSAT (2)
625
750
200
500
0.15
0.25
0.35
V
IO=500mA
0.25
0.35
V
IO=500mA
0.90
1.3
V
16
29
mV
mA
Bemf Detection Block
Comparator hysteresis width
VHCOM
4
■ Electrical Characteristics (cont.) (VCC=3.3V, VB=6V, VS=6V, Ta=25±2˚C)
Parameter
Symbol
Triangular wave oscillation frequency
fFC
Condition
min
typ
max
CFC=560PF
11.0
16.3
22.8
kHz
HSL : L CFC=560pF
femf < 160Hz
–26
–20
–14
µA
14
20
26
µA
HSL : L CFC=560pF
femf > 181Hz
–52
–40
–28
µA
28
40
52
µA
HSL : H CFC=560pF
femf < 160Hz
–52
–40
–28
µA
28
40
52
µA
HSL : H CFC=560pF
femf > 181Hz
–78
–60
–42
µA
42
60
78
µA
Unit
Oscillator
Slope
Slope terminal charging current (1)
ISLC (1)
Slope terminal discharging current (1)
ISLD (1)
Slope terminal charging current (2)
ISLC (2)
Slope terminal discharging current (2)
ISLD (2)
Slope terminal charging current (3)
ISLC (3)
Slope terminal discharging current (3)
ISLD (3)
Slope terminal charging current (4)
ISLC (4)
Slope terminal discharging current (4)
ISLD (4)
Operational Amp. 1 only
Common-mode input voltage range
Input offset current
Voltage gain
VICR (1)
0.2
IIOAI
–50
GAI
Output sink current (1)
IOSI1 (1)
OUT1=0.2V
VB –1.4
or VCC
5
50
V
nA
60
67
dB
20
140
µA
Operational Amp. 2 only
Common-mode input voltage range
VICR (2)
0
VB–1.4
V
Operational Amp. 1 and 2
Input offset voltage
VIOA1, 2
–20
–3
Output sink current 1– (2)
IOSI 1 (2)
1.8
4
mA
Output sink current 2– (2)
IOSI 2 (2)
2
4
mA
Output source current (2)
IOSA 1, 2
–15
20
–2
mV
mA
Mode Switch=HSL, STB, FR, BR
Input high level
VSWH
Input low level
VSWL
Input bias current
IBSW
VSW=2V
Input/output gain
GIOS
∆VSC
∆U
Output impedance
ZOS
2.0
V
0.6
V
25
100
µA
1.4
2.0
2.6
Times
12
18
24
kΩ
0.1
0.35
0.6
V
0.35
0.63
0.9
V
Motor Power Supply Control
Operation point (1)
VS – U (1)
Operation point (2)
VS – U (2)
VS–U for VSC=1.6V
when OUT1=Vref
VS–U for VSC=1.6V
when OUT1=Vref + 1
Power Supply Current
Operating power supply current
ICC (1)
STB : H
10
15
mA
STB power supply current
ICC (2)
STB : L
6
10
mA
Unregulated power supply current (1)
IBB (1)
VCC=0V
0.1
10
µA
Unregulated power supply current (2)
IBB (2)
VCC=3.3V, In2+=0V
0.3
1.5
mA
■ Electrical Characteristics [Reference Values] (Ta=25±2˚C)
This is design reference value, and not guaranted one.
Parameter
Symbol
Thermal protection circuit operation temperature
TSD
Condition
VCC=3.3V
Reference value
175
Unit
˚C
■ Pin Descriptions
Pin No.
Pin name
Standard waveform
Equivalent circuit
Description
CS
1
VB
1
Terminal driving the U-phase
of motor
U:
U-phase drive output
8kΩ
GND
GND2
GND
Vs
2
CS :
Drive power
supply output
Terminal outputting the drive
current of motor
Vcc
3
Terminal outputting the control
voltage of the switching power
supply
VSC :
Switching power
supply control output
100µA
18kΩ
3
150µA
1kΩ
GND
VB
8kΩ
4
WIN :
W-phase detection
W
1kΩ
Terminal detecting the W-phase
4
150µA
GND
GND
VB
8kΩ
5
VIN :
V-phase detection
V
1kΩ
Terminal detecting the V-phase
5
150µA
GND
GND
VB
8kΩ
6
UIN :
U-phase detection
U
1kΩ
Terminal detecting the U-phase
6
150µA
GND
GND
VCC
7
PCV :
Voltage feedback
system phase
compensation
Terminal attaching the capacitor for phase compensation of
the voltage feedback system
50Ω
GN
1kΩ
GND
8
SG :
Signal ground
Grounding terminal for signal
system
7
■ Pin Descriptions (cont.)
Pin No.
Pin name
Standard waveform
Equivalent circuit
Description
VCC
2I
9
SL3 :
Slope waveform
generation (3)
I
Terminal generating the waveform of the motor drive current
9
GND
VCC
2I
10
SL2 :
Slope waveform
generation (2)
I
Terminal generating the waveform of the motor drive current
10
GND
VCC
2I
11
SL1 :
Slope waveform
generation (1)
I
Terminal generating the waveform of the motor drive current
11
GND
VCC
12
Terminal determining the phase
switching frequency at motor
start
FC :
Oscillation
12
GND
VCC
13
BR :
Short brake control
VCC or GND
Terminal controlling the short
brake
13
50kΩ
GND2
GND
VCC
14
FR :
Forward/Reverse
switching terminal
VCC or GND
Terminal switching the normal/reverse rotation of motor
50kΩ
14
50kΩ
GND
GND2
VCC
15
HSL :
Slope current
control terminal
VCC or GND
Terminal controls the charging/discharging current of the
slope waveform generating terminal
50kΩ
15
50kΩ
GND
GND2
VCC
16
STB :
Stand-by input
VCC or GND
Terminal controls the operation/stand-by condition
50kΩ
16
50kΩ
GND
GND2
■ Pin Descriptions (cont.)
Pin No.
17
Pin name
Standard waveform
Equivalent circuit
Description
Terminal inputting the V CC
power supply
VCC :
Power supply
VB
125µA
18
IN2H :
Operational
amp. 2 input
Input terminal for operational
amp. 2
1kΩ
18
3kΩ
GND
GND2
VB
19
OUT2 :
Operational
amp. 2 output
Output terminal for operational
amp. 2
19
30kΩ
5kΩ
GND
VB
1.5kΩ
20
1kΩ
Terminal inputting the reverse
phase voltage of operational
amp. 1
IN1– :
Operational amp. 1
reverse phase input
20
25µA
GND
GND2
VB
1.5kΩ
21
Terminal inputting the normal
phase voltage of operational
amp. 1
IN1+ :
Operational amp. 1
normal phase input
1kΩ
21
25µA
GND
22
MM :
Motor neutral point
input terminal
Terminal inputting the motor
neutral point
22
VB
23
GND2
OUT1 :
Operational
amp. 1 output
VCC
Terminal outputting the output
voltage of operational amp. 1
23
VCC
24
Vref :
Servo reference
voltage input
Vref
Terminal inputting the servo
reference voltage
1kΩ
24
12kΩ
GND
100µA
GND
100µA
GND2
■ Pin Descriptions (cont.)
Pin No.
Pin name
Standard waveform
Equivalent circuit
Description
VB
25
PCI :
Current feedback
system phase
compensation
Terminal attaching the capacitor for phase compensation of
current feedback system
50Ω
25
GND
1kΩ
GND
26
VS :
Motor drive
power supply
Terminal inputting the VS
motor drive power supply
27
VB :
Unregulated
power supply
Terminal inputting the VB
unregulated power supply
VB
Vs
28
CS :
Drive current output
CS
1.5kΩ
1kΩ
Terminal outputting the motor
drive current
28
GND
CS
29
29
Terminal driving the W-phase
of motor
W:
W-phase drive output
VB
8kΩ
GND
GND2
30
PG :
Power block
grounding
GND
Terminal connecting the power
transistor block to GND
CS
31
VB
31
Terminal driving the V-phase
of motor
V:
V-phase drive output
8kΩ
GND
GND2
32
PG :
Power block grounding
Terminal connecting the power
transistor block to GND
GND
■ Operation Descriptions
(1) STB terminal
The operating condition of the IC internal circuit is shown in the following table :
STB input
Condition of the IC internal circuit
L Note)
AMP2 and sensor-less block only operating
H
All circuit operating
Note) Since the sensor-less block operates, if the motor rotates, it detects the inductive voltage and synthesizes the energization
switching signal which is synchronized with the motor rotation phase.
(2) FR, BR terminal
FR terminal
H : Forward rotation
L : Reverse rotation
BR terminal
H : Short brake circuit operation
L : Short brake circuit stop
(3) Drive amplifier
The AN3861SA is an IC of current drive type, and the motor drive current Ia is determined by the voltage of OUT1 terminal,
as shown in Fig.1.
VS – CS
Ia =
Rcs
mV
Ia max = 140
Rcs
gm = Gio = 0.14
Rcs
Rcs
OUT1
Vref
Fig.1 Drive Characteristics
The collector voltage value is controlled as shown in Fig.2 since the sink-side output transistor is operated with non-saturation
voltage.
U, V, W
0.5V
0.2V
OUT1
Vref
Vref + 1.35V
Fig.2 OUT1 and VCE of Sink-side Output Transistor
(4) VCS terminal
For the AN3861SA, since the collector voltage of the sink-side output transistor is controlled to a certain value. Therefore,
when the VB is high enough, extra voltage is applied to the VCE of source side output transistor. This loss voltage of VCE can be
reduced by the VSC voltage through the circuit as shown in the following figure.
–
1.6V
VS
+
VSC
CS
AN3861
Fig.3 Switching Regulater System with VSC Terminal
VSC
OUT1=Vref
OUT1 > Vref + 1.0V
gm=–2
OUT1 increases
1.6V
0.35V
0.63V
Fig.4 VSC Characteristics
VS – U
VS – V
VS – W
(5) FC terminal
This is an oscillation terminal which determines the commutation frequency at operation start and the frequency femf of inductive voltage for switching over the charging/discharging current of the SL terminal (Refer to (6) below). Normally, fFC=16.3kHz
when CFC=560pF and the frequency at operation start is approx. 4Hz.
(6) SL1, SL2, SL3 terminal
The SL1, SL2 and SL3 are terminals producing the slope waveform for synthesizing the trapezoidal wave current. Since the
slope waveform is synthesized by charging/discharging the external capacitor with the constant current, the amplitude VSL
becomes as follows :
VSL =
VSL
Ich
6 femf × CSL
GND
Fig.5 Waveform of SL1, SL2 and SL3
Where, Ich : Charging/Discharging current
CSL : Capacitance value
femf : Frequency of motor inductive voltage
The value of Ich is changed according to the relationship between the frequency of the motor inductive voltage and the oscillation frequency of the FC terminal, as shown in Fig.6 in the next page. Therefore, the capacitance value of external capacitor CSL
should be selected so that the value of VSL could fall in the range from 0.5 to 1.5V during constant rotation.
Since the relative dispersion of three external capacitors may cause increase of motor noise, the capacitor with high accuracy
should be used.
(7) Capacitance value of Uin, Vin, Win
The capacitor of Uin, Vin and Win prevents the malfunction of the comparator due to spike-shaped voltage which is generated
in the motor coil at operation start. For this reason, it should be used as necessary for large motor of large L such as winding coil.
Similar pages