StrongIRFET™ IRFS7434-7PPbF Application Brushed Motor drive applications BLDC Motor drive applications Battery powered circuits Half-bridge and full-bridge topologies Synchronous rectifier applications Resonant mode power supplies OR-ing and redundant power switches DC/DC and AC/DC converters DC/AC Inverters HEXFET® Power MOSFET D VDSS 40V RDS(on) typ. 0.70m 1.0m max G S ID (Silicon Limited) 362A ID (Package Limited) 240A Benefits Improved Gate, Avalanche and Dynamic dV/dt Ruggedness Fully Characterized Capacitance and Avalanche SOA Enhanced body diode dV/dt and dI/dt Capability Lead-Free, RoHS Compliant G Gate Package Type IRFS7434-7PPbF D2Pak-7Pin Standard Pack Form Quantity Tube 50 Tape and Reel Left 800 ID = 100A 3.0 Orderable Part Number IRFS7434-7PPbF IRFS7434TRL7PP 2.0 TJ = 125°C 1.5 1.0 TJ = 25°C 0.5 Limited By Package 350 2.5 300 250 200 150 100 50 0 0.0 4 6 8 10 12 14 16 18 20 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage 1 S Source 400 3.5 ID, Drain Current (A) RDS(on), Drain-to -Source On Resistance (m) Base part number D Drain www.irf.com © 2013 International Rectifier 25 50 75 100 125 150 TC , Case Temperature (°C) Fig 2. Maximum Drain Current vs. Case Temperature April 11, 2013 IRFS7434-7PPbF Absolute Maximium Rating Symbol ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS TJ TSTG Parameter Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Wire Bond Limited) Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Avalanche Characteristics EAS (Thermally limited) Single Pulse Avalanche Energy EAS (tested) Single Pulse Avalanche Energy Tested Value Avalanche Current IAR EAR Repetitive Avalanche Energy Thermal Resistance Symbol Parameter Junction-to-Case RJC Junction-to-Ambient RJA Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter V(BR)DSS Drain-to-Source Breakdown Voltage V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage IDSS Drain-to-Source Leakage Current IGSS RG Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Gate Resistance Max. 362 229 240 1300 245 1.96 ± 20 A W W/°C V -55 to + 150 °C 300 384 835 mJ See Fig 15, 16, 23a, 23b A mJ Typ. ––– ––– Min. 40 ––– ––– ––– 2.2 ––– ––– ––– ––– ––– Units Max. 0.51 40 Units °C/W Typ. Max. Units Conditions ––– ––– V VGS = 0V, ID = 250µA 0.03 ––– V/°C Reference to 25°C, ID = 1mA 0.7 1.0 VGS = 10V, ID = 100A m 1.5 ––– VGS = 6V, ID = 50A 3.0 3.9 V VDS = VGS, ID = 250µA ––– 1.0 VDS =40 V, VGS = 0V µA ––– 150 VDS =40V,VGS = 0V,TJ =125°C ––– 100 VGS = 20V nA ––– -100 VGS = -20V 2.0 ––– Notes: Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 240A by source bonding technology. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140) Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.077mH, RG = 50, IAS = 100A, VGS =10V. ISD 100A, di/dt 969A/µs, VDD V(BR)DSS, TJ 150°C. Pulse width 400µs; duty cycle 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. R is measured at TJ approximately 90°C. This value determined from sample failure population, starting TJ =25°C, L=0.077mH, RG = 50, IAS =100A, VGS =10V. Pulse drain current is limited by source bonding technology. 2 www.irf.com © 2013 International Rectifier April 11, 2013 IRFS7434-7PPbF Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain Charge Total Gate Charge Sync. (Qg– Qgd) Turn-On Delay Time Rise Time Min. 156 ––– ––– ––– ––– ––– ––– Typ. ––– 210 55 66 144 23 125 107 Max. Units Conditions ––– S VDS = 10V, ID =100A 315 ID = 100A ––– VDS = 20V nC ––– VGS = 10V ––– ––– VDD = 26V ID = 100A ––– ns ––– RG= 2.6 VGS = 10V ––– td(off) Turn-Off Delay Time ––– tf Ciss Coss Crss Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance ––– 85 ––– 10250 ––– 1540 ––– 1060 Coss eff.(ER) Effective Output Capacitance (Energy Related) ––– 1880 ––– Coss eff.(TR) Output Capacitance (Time Related) ––– 2147 ––– Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Min. Typ. Max. Units ––– ––– 362 ––– ––– 1300 VSD Diode Forward Voltage ––– 0.9 1.3 dv/dt Peak Diode Recovery dv/dt trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Reverse Recovery Current ––– ––– ––– ––– ––– ––– 3.0 44 46 43 44 1.9 ––– ––– ––– ––– ––– ––– ––– ––– ––– VGS = 0V VDS = 25V ƒ = 1.0MHz, See Fig.7 pF VGS = 0V, VDS = 0V to 32V See Fig.11 VGS = 0V, VDS = 0V to 32V Diode Characteristics Symbol IS ISM 3 www.irf.com © 2013 International Rectifier A V Conditions MOSFET symbol showing the integral reverse p-n junction diode. D G S TJ = 25°C,IS = 100A,VGS = 0V V/ns TJ = 150°C,IS =100A,VDS = 40V VDD = 34V TJ = 25°C ns TJ = 125°C IF = 100A, TJ = 25°C di/dt = 100A/µs nC TJ = 125°C A TJ = 25°C April 11, 2013 IRFS7434-7PPbF 1000 1000 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP BOTTOM 100 10 4.5V 4.5V 60µs PULSE WIDTH 60µs PULSE WIDTH Tj = 25°C Tj = 150°C 1 10 0.1 1 10 100 0.1 VDS, Drain-to-Source Voltage (V) 100 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current(A) 10 Fig 4. Typical Output Characteristics 1000 100 TJ = 150°C TJ = 25°C 10 1 VDS = 10V 60µs PULSE WIDTH ID = 100A VGS = 10V 1.6 1.2 0.8 0.4 0.1 2 3 4 5 6 7 -60 -40 -20 0 8 Fig 5. Typical Transfer Characteristics 100000 Fig 6. Normalized On-Resistance vs. Temperature 14.0 VGS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd Ciss 10000 20 40 60 80 100 120 140 160 TJ , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Coss Crss 1000 100 ID = 100A 12.0 VDS = 32V VDS = 20V 10.0 8.0 6.0 4.0 2.0 0.0 0.1 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 7. Typical Capacitance vs. Drain-to-Source Voltage 4 1 VDS, Drain-to-Source Voltage (V) Fig 3. Typical Output Characteristics C, Capacitance (pF) VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V www.irf.com © 2013 International Rectifier 0 50 100 150 200 250 300 QG, Total Gate Charge (nC) Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage April 11, 2013 IRFS7434-7PPbF 10000 100 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 TJ = 150°C TJ = 25°C 10 1 OPERATION IN THIS AREA LIMITED BY RDS(on) 1000 100µsec 100 Limited by Package 10 10msec 1 Tc = 25°C Tj = 150°C Single Pulse VGS = 0V DC 0.1 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.1 1.6 1 10 100 VDS , Drain-to-Source Voltage (V) VSD , Source-to-Drain Voltage (V) Fig 10. Maximum Safe Operating Area Fig 9. Typical Source-Drain Diode Forward Voltage 1.6 48 Id = 1.0mA 47 1.4 46 1.2 45 1.0 Energy (µJ) V(BR)DSS, Drain-to-Source Breakdown Voltage (V) 1msec 44 43 0.8 0.6 42 0.4 41 0.2 0.0 40 -60 -20 20 60 100 140 -5 180 0 TJ , Temperature ( °C ) 10 15 20 25 30 35 40 45 VDS, Drain-to-Source Voltage (V) Fig 12. Typical Coss Stored Energy Fig 11. Drain-to–Source Breakdown Voltage RDS (on), Drain-to -Source On Resistance (m) 5 10.0 VGS = 5.5V VGS = 6.0V VGS = 7.0V VGS = 8.0V VGS = 10V 8.0 6.0 4.0 2.0 0.0 0 100 200 300 400 500 ID, Drain Current (A) Fig 13. Typical On-Resistance vs. Drain Current 5 www.irf.com © 2013 International Rectifier April 11, 2013 IRFS7434-7PPbF Thermal Response ( Z thJC ) °C/W 1 D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Avalanche Current (A) Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 125°C and Tstart =25°C (Single Pulse) 0.01 100 0.05 0.10 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming j = 25°C and Tstart = 125°C. 1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs. Pulse width 400 TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 100A EAR , Avalanche Energy (mJ) 350 300 250 200 150 100 50 0 25 50 75 100 125 150 Starting TJ , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy vs. Temperature 6 www.irf.com © 2013 International Rectifier Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1.Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 23a, 23b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC Iav = 2T/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav April 11, 2013 IRFS7434-7PPbF 12 4.0 IF = 60A VR = 34V 10 3.5 TJ = 25°C TJ = 125°C 8 IRRM (A) VGS(th), Gate threshold Voltage (V) 4.5 3.0 2.5 ID = 250µA ID = 1.0mA ID = 1.0A 2.0 6 4 2 1.5 0 1.0 -75 -50 -25 0 25 50 0 75 100 125 150 200 600 800 1000 diF /dt (A/µs) TJ , Temperature ( °C ) Fig 17. Threshold Voltage vs. Temperature Fig 18. Typical Recovery Current vs. dif/dt 12 350 IF = 100A VR = 34V 10 TJ = 25°C TJ = 125°C 8 QRR (nC) IRRM (A) 400 6 300 IF = 60A VR = 34V 250 TJ = 25°C TJ = 125°C 200 150 4 100 2 50 0 200 400 600 800 1000 0 200 diF /dt (A/µs) 400 600 800 1000 diF /dt (A/µs) Fig 20. Typical Stored Charge vs. dif/dt Fig 19. Typical Recovery Current vs. dif/dt QRR (nC) 300 250 IF = 100A VR = 34V 200 TJ = 25°C TJ = 125°C 150 100 50 0 0 200 400 600 800 1000 diF /dt (A/µs) Fig 21. Typical Stored Charge vs. dif/dt 7 www.irf.com © 2013 International Rectifier April 11, 2013 IRFS7434-7PPbF Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS tp 15V L VDS D.U.T RG IAS 20V tp DRIVER + V - DD A I AS 0.01 Fig 23a. Unclamped Inductive Test Circuit Fig 23b. Unclamped Inductive Waveforms Fig 24a. Switching Time Test Circuit Fig 24b. Switching Time Waveforms Id Vds Vgs Vgs(th) Qgs1 Qgs2 Fig 25a. Gate Charge Test Circuit 8 www.irf.com © 2013 International Rectifier Qgd Qgodr Fig 25b. Gate Charge Waveform April 11, 2013 IRFS7434-7PPbF D2Pak-7Pin Package Outline (Dimensions are shown in millimeters (inches)) Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 9 www.irf.com © 2013 International Rectifier April 11, 2013 IRFS7434-7PPbF D2Pak-7Pin Part Marking Information D2Pak-7Pin Tape and Reel Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com © 2013 International Rectifier April 11, 2013 IRFS7434-7PPbF Qualification Information† Industrial Qualification Level (per JEDEC JESD47F) †† Moisture Sensitivity Level D2Pak-7Pin MSL1 Yes RoHS Compliant † Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/ †† Applicable version of JEDEC standard at the time of product release. IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/ 11 www.irf.com © 2013 International Rectifier April 11, 2013