IRF IRFS7434-7PPBF Brushed motor drive application Datasheet

StrongIRFET™
IRFS7434-7PPbF
Application
 Brushed Motor drive applications
 BLDC Motor drive applications
Battery powered circuits
 Half-bridge and full-bridge topologies
 Synchronous rectifier applications
 Resonant mode power supplies
 OR-ing and redundant power switches
 DC/DC and AC/DC converters
 DC/AC Inverters
HEXFET® Power MOSFET
D
VDSS
40V
RDS(on) typ.
0.70m
1.0m
max
G
S
ID (Silicon Limited)
362A
ID (Package Limited)
240A
Benefits
Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
Fully Characterized Capacitance and Avalanche SOA
Enhanced body diode dV/dt and dI/dt Capability
Lead-Free, RoHS Compliant




G
Gate
Package Type
IRFS7434-7PPbF
D2Pak-7Pin
Standard Pack
Form
Quantity
Tube
50
Tape and Reel Left
800
ID = 100A
3.0
Orderable Part Number
IRFS7434-7PPbF
IRFS7434TRL7PP
2.0
TJ = 125°C
1.5
1.0
TJ = 25°C
0.5
Limited By Package
350
2.5
300
250
200
150
100
50
0
0.0
4
6
8
10
12
14
16
18
20
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
1
S
Source
400
3.5
ID, Drain Current (A)
RDS(on), Drain-to -Source On Resistance (m)
Base part number
D
Drain
www.irf.com
© 2013 International Rectifier
25
50
75
100
125
150
TC , Case Temperature (°C)
Fig 2. Maximum Drain Current vs. Case Temperature
April 11, 2013
IRFS7434-7PPbF
Absolute Maximium Rating
Symbol
ID @ TC = 25°C
ID @ TC = 100°C
ID @ TC = 25°C
IDM
PD @TC = 25°C
VGS
TJ
TSTG
Parameter
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)
Pulsed Drain Current 
Maximum Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds (1.6mm from case)
Avalanche Characteristics
EAS (Thermally limited)
Single Pulse Avalanche Energy 
EAS (tested)
Single Pulse Avalanche Energy Tested Value 
Avalanche Current 
IAR
EAR
Repetitive Avalanche Energy 
Thermal Resistance
Symbol
Parameter
Junction-to-Case 
RJC
Junction-to-Ambient 
RJA
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
V(BR)DSS
Drain-to-Source Breakdown Voltage
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
Gate Threshold Voltage
IDSS
Drain-to-Source Leakage Current
IGSS
RG
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Gate Resistance
Max.
362
229
240
1300
245
1.96
± 20
A
W
W/°C
V
-55 to + 150
°C
300
384
835
mJ
See Fig 15, 16, 23a, 23b
A
mJ
Typ.
–––
–––
Min.
40
–––
–––
–––
2.2
–––
–––
–––
–––
–––
Units
Max.
0.51
40
Units
°C/W
Typ. Max. Units
Conditions
––– –––
V VGS = 0V, ID = 250µA
0.03 ––– V/°C Reference to 25°C, ID = 1mA 
0.7
1.0
VGS = 10V, ID = 100A 
m
1.5
–––
VGS = 6V, ID = 50A 
3.0
3.9
V VDS = VGS, ID = 250µA
–––
1.0
VDS =40 V, VGS = 0V
µA
––– 150
VDS =40V,VGS = 0V,TJ =125°C
––– 100
VGS = 20V
nA
––– -100
VGS = -20V
2.0
–––

Notes:
Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 240A by
source bonding technology. Note that current limitations arising from heating of the device leads may occur with
some lead mounting arrangements. (Refer to AN-1140)
Repetitive rating; pulse width limited by max. junction temperature.
 Limited by TJmax, starting TJ = 25°C, L = 0.077mH, RG = 50, IAS = 100A, VGS =10V.
ISD  100A, di/dt  969A/µs, VDD  V(BR)DSS, TJ 150°C.
Pulse width  400µs; duty cycle  2%.
 Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
 Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS.
 R is measured at TJ approximately 90°C.
 This value determined from sample failure population, starting TJ =25°C,
L=0.077mH, RG = 50, IAS =100A, VGS =10V.
 Pulse drain current is limited by source bonding technology.
2
www.irf.com
© 2013 International Rectifier
April 11, 2013
IRFS7434-7PPbF
Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Symbol
gfs
Qg
Qgs
Qgd
Qsync
td(on)
tr
Parameter
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain Charge
Total Gate Charge Sync. (Qg– Qgd)
Turn-On Delay Time
Rise Time
Min.
156
–––
–––
–––
–––
–––
–––
Typ.
–––
210
55
66
144
23
125
107
Max. Units
Conditions
–––
S VDS = 10V, ID =100A
315
ID = 100A
–––
VDS = 20V
nC
–––
VGS = 10V
–––
–––
VDD = 26V
ID = 100A
–––
ns
–––
RG= 2.6
VGS = 10V
–––
td(off)
Turn-Off Delay Time
–––
tf
Ciss
Coss
Crss
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
––– 85
––– 10250
––– 1540
––– 1060
Coss eff.(ER)
Effective Output Capacitance (Energy Related)
––– 1880
–––
Coss eff.(TR)
Output Capacitance (Time Related)
––– 2147
–––
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Min. Typ.
Max. Units
–––
–––
362
–––
––– 1300
VSD
Diode Forward Voltage
–––
0.9
1.3
dv/dt
Peak Diode Recovery dv/dt
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
Reverse Recovery Current
–––
–––
–––
–––
–––
–––
3.0
44
46
43
44
1.9
–––
–––
–––
–––
–––
–––
–––
–––
–––
VGS = 0V
VDS = 25V
ƒ = 1.0MHz, See Fig.7
pF
VGS = 0V, VDS = 0V to 32V
See Fig.11
VGS = 0V, VDS = 0V to 32V
Diode Characteristics
Symbol
IS
ISM
3
www.irf.com
© 2013 International Rectifier
A
V
Conditions
MOSFET symbol
showing the
integral reverse
p-n junction diode.
D
G
S
TJ = 25°C,IS = 100A,VGS = 0V 
V/ns TJ = 150°C,IS =100A,VDS = 40V
VDD = 34V
TJ = 25°C
ns
TJ = 125°C
IF = 100A,
TJ = 25°C di/dt = 100A/µs 
nC
TJ = 125°C
A TJ = 25°C 
April 11, 2013
IRFS7434-7PPbF
1000
1000
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
BOTTOM
100
10
4.5V
4.5V
60µs PULSE WIDTH
60µs PULSE WIDTH
Tj = 25°C
Tj = 150°C
1
10
0.1
1
10
100
0.1
VDS, Drain-to-Source Voltage (V)
100
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current(A)
10
Fig 4. Typical Output Characteristics
1000
100
TJ = 150°C
TJ = 25°C
10
1
VDS = 10V
60µs PULSE WIDTH
ID = 100A
VGS = 10V
1.6
1.2
0.8
0.4
0.1
2
3
4
5
6
7
-60 -40 -20 0
8
Fig 5. Typical Transfer Characteristics
100000
Fig 6. Normalized On-Resistance vs. Temperature
14.0
VGS, Gate-to-Source Voltage (V)
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Ciss
10000
20 40 60 80 100 120 140 160
TJ , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Coss
Crss
1000
100
ID = 100A
12.0
VDS = 32V
VDS = 20V
10.0
8.0
6.0
4.0
2.0
0.0
0.1
1
10
100
VDS , Drain-to-Source Voltage (V)
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage
4
1
VDS, Drain-to-Source Voltage (V)
Fig 3. Typical Output Characteristics
C, Capacitance (pF)
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
www.irf.com
© 2013 International Rectifier
0
50
100
150
200
250
300
QG, Total Gate Charge (nC)
Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage
April 11, 2013
IRFS7434-7PPbF
10000
100
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
TJ = 150°C
TJ = 25°C
10
1
OPERATION IN THIS AREA
LIMITED BY RDS(on)
1000
100µsec
100
Limited by Package
10
10msec
1
Tc = 25°C
Tj = 150°C
Single Pulse
VGS = 0V
DC
0.1
0.1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
0.1
1.6
1
10
100
VDS , Drain-to-Source Voltage (V)
VSD , Source-to-Drain Voltage (V)
Fig 10. Maximum Safe Operating Area
Fig 9. Typical Source-Drain Diode Forward Voltage
1.6
48
Id = 1.0mA
47
1.4
46
1.2
45
1.0
Energy (µJ)
V(BR)DSS, Drain-to-Source Breakdown Voltage (V)
1msec
44
43
0.8
0.6
42
0.4
41
0.2
0.0
40
-60
-20
20
60
100
140
-5
180
0
TJ , Temperature ( °C )
10 15 20 25 30 35 40 45
VDS, Drain-to-Source Voltage (V)
Fig 12. Typical Coss Stored Energy
Fig 11. Drain-to–Source Breakdown Voltage
RDS (on), Drain-to -Source On Resistance (m)
5
10.0
VGS = 5.5V
VGS = 6.0V
VGS = 7.0V
VGS = 8.0V
VGS = 10V
8.0
6.0
4.0
2.0
0.0
0
100
200
300
400
500
ID, Drain Current (A)
Fig 13. Typical On-Resistance vs. Drain Current
5
www.irf.com
© 2013 International Rectifier
April 11, 2013
IRFS7434-7PPbF
Thermal Response ( Z thJC ) °C/W
1
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
0.01
SINGLE PULSE
( THERMAL RESPONSE )
0.001
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Tj = 125°C and
Tstart =25°C (Single Pulse)
0.01
100
0.05
0.10
10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming  j = 25°C and
Tstart = 125°C.
1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current vs. Pulse width
400
TOP
Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 100A
EAR , Avalanche Energy (mJ)
350
300
250
200
150
100
50
0
25
50
75
100
125
150
Starting TJ , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy vs. Temperature
6
www.irf.com
© 2013 International Rectifier
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1.Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for every
part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not
exceeded.
3. Equation below based on circuit and waveforms shown in Figures
23a, 23b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage
increase during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed Tjmax
(assumed as 25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC
Iav = 2T/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
April 11, 2013
IRFS7434-7PPbF
12
4.0
IF = 60A
VR = 34V
10
3.5
TJ = 25°C
TJ = 125°C
8
IRRM (A)
VGS(th), Gate threshold Voltage (V)
4.5
3.0
2.5
ID = 250µA
ID = 1.0mA
ID = 1.0A
2.0
6
4
2
1.5
0
1.0
-75 -50 -25
0
25
50
0
75 100 125 150
200
600
800
1000
diF /dt (A/µs)
TJ , Temperature ( °C )
Fig 17. Threshold Voltage vs. Temperature
Fig 18. Typical Recovery Current vs. dif/dt
12
350
IF = 100A
VR = 34V
10
TJ = 25°C
TJ = 125°C
8
QRR (nC)
IRRM (A)
400
6
300
IF = 60A
VR = 34V
250
TJ = 25°C
TJ = 125°C
200
150
4
100
2
50
0
200
400
600
800
1000
0
200
diF /dt (A/µs)
400
600
800
1000
diF /dt (A/µs)
Fig 20. Typical Stored Charge vs. dif/dt
Fig 19. Typical Recovery Current vs. dif/dt
QRR (nC)
300
250
IF = 100A
VR = 34V
200
TJ = 25°C
TJ = 125°C
150
100
50
0
0
200
400
600
800
1000
diF /dt (A/µs)
Fig 21. Typical Stored Charge vs. dif/dt
7
www.irf.com
© 2013 International Rectifier
April 11, 2013
IRFS7434-7PPbF
Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
V(BR)DSS
tp
15V
L
VDS
D.U.T
RG
IAS
20V
tp
DRIVER
+
V
- DD
A
I AS
0.01
Fig 23a. Unclamped Inductive Test Circuit
Fig 23b. Unclamped Inductive Waveforms
Fig 24a. Switching Time Test Circuit
Fig 24b. Switching Time Waveforms
Id
Vds
Vgs
Vgs(th)
Qgs1 Qgs2
Fig 25a. Gate Charge Test Circuit
8
www.irf.com
© 2013 International Rectifier
Qgd
Qgodr
Fig 25b. Gate Charge Waveform
April 11, 2013
IRFS7434-7PPbF
D2Pak-7Pin Package Outline (Dimensions are shown in millimeters (inches))
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
9
www.irf.com
© 2013 International Rectifier
April 11, 2013
IRFS7434-7PPbF
D2Pak-7Pin Part Marking Information
D2Pak-7Pin Tape and Reel
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
10
www.irf.com
© 2013 International Rectifier
April 11, 2013
IRFS7434-7PPbF
Qualification Information†
Industrial
Qualification Level
(per JEDEC JESD47F) ††
Moisture Sensitivity Level
D2Pak-7Pin
MSL1
Yes
RoHS Compliant
†
Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/
††
Applicable version of JEDEC standard at the time of product release.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
11
www.irf.com
© 2013 International Rectifier
April 11, 2013
Similar pages