Features • High-performance, Low-power 8/16-bit AVR XMEGA Microcontroller • Non-volatile Program and Data Memories • • • • • – 16 KB - 128 KB of In-System Self-Programmable Flash – 4 KB - 8 KB Boot Code Section with Independent Lock Bits – 1 KB - 2 KB EEPROM – 2 KB - 8 KB Internal SRAM Peripheral Features – Four-channel DMA Controller with support for external requests – Eight-channel Event System – Five 16-bit Timer/Counters Three Timer/Counters with 4 Output Compare or Input Capture channels Two Timer/Counters with 2 Output Compare or Input Capture channels High-Resolution Extensions on all Timer/Counters Advanced Waveform Extension on one Timer/Counter – Five USARTs IrDA Extension on one USART – Two Two-Wire Interfaces with dual address match (I2C and SMBus compatible) – Two SPIs (Serial Peripheral Interfaces) peripherals – AES and DES Crypto Engine – 16-bit Real Time Counter with Separate Oscillator – One Twelve-channel, 12-bit, 2 Msps Analog to Digital Converter – One Two-channel, 12-bit, 1 Msps Digital to Analog Converter – Two Analog Comparators with Window compare function – External Interrupts on all General Purpose I/O pins – Programmable Watchdog Timer with Separate On-chip Ultra Low Power Oscillator Special Microcontroller Features – Power-on Reset and Programmable Brown-out Detection – Internal and External Clock Options with PLL – Programmable Multi-level Interrupt Controller – Sleep Modes: Idle, Power-down, Standby, Power-save, Extended Standby – Advanced Programming, Test and Debugging Interfaces PDI (Program and Debug Interface) for programming, test and debugging I/O and Packages – 34 Programmable I/O Lines – 44 - lead TQFP – 44 - pad VQFN/QFN – 49 - ball VFBGA Operating Voltage – 1.6 – 3.6V Speed performance – 0 – 12 MHz @ 1.6 – 3.6V – 0 – 32 MHz @ 2.7 – 3.6V 8/16-bit XMEGA A4 Microcontroller ATxmega128A4 ATxmega64A4 ATxmega32A4 ATxmega16A4 Preliminary Typical Applications • • • • • Industrial control Factory automation Building control Board control White Goods • • • • • Climate control ZigBee Motor control Networking Optical • • • • • Hand-held battery applications Power tools HVAC Metering Medical Applications 8069L–AVR–11/09 XMEGA A4 1. Ordering Information Flash E2 SRAM Speed (MHz) Power Supply ATxmega128A4-AU 128 KB + 8 KB 2 KB 8 KB 32 1.6 - 3.6V ATxmega64A4-AU 64 KB + 4 KB 2 KB 4 KB 32 1.6 - 3.6V ATxmega32A4-AU 32 KB + 4 KB 1 KB 4 KB 32 1.6 - 3.6V ATxmega16A4-AU 16 KB + 4 KB 1 KB 2 KB 32 1.6 - 3.6V ATxmega128A4-MH 128 KB + 8 KB 2 KB 8 KB 32 1.6 - 3.6V ATxmega64A4-MH 64 KB + 4 KB 2 KB 4 KB 32 1.6 - 3.6V ATxmega32A4-MH 32 KB + 4 KB 1 KB 4 KB 32 1.6 - 3.6V ATxmega16A4-MH 16 KB + 4 KB 1 KB 2 KB 32 1.6 - 3.6V ATxmega32A4-CU 32 KB + 4K 1 KB 4 KB 32 1.6 - 3.6V ATxmega16A4-CU 16 KB + 4 KB 1 KB 2 KB 32 1.6 - 3.6V Ordering Code Notes: Package(1)(2)(3) Temp 44A -40°C - 85°C 44M1 49C2 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information. 2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green. 3. For packaging information see ”Packaging information” on page 58. Package Type 44A 44-Lead, 10 x 10 mm Body Size, 1.0 mm Body Thickness, 0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP) 44M1 44-Pad, 7x7x1 mm Body, Lead Pitch 0.50 mm, 5.20 mm Exposed Pad, Thermally Enhanced Plastic Very Thin Quad No Lead Package (VQFN) 49C2 49-Ball (7 x 7 Array), 0.65 mm Pitch, 5.0 x 5.0 x 1.0 mm, Very Thin, Fine-Pitch Ball Grid Array Package (VFBGA) 2 8069L–AVR–11/09 XMEGA A4 2. Pinout/Block Diagram PA6 2 PA7 3 PB0 AVCC GND PR1 PR0 RESET/PDI_CLK PDI_DATA 39 38 37 36 35 34 PA1 41 PA0 PA2 42 DATA BU S OSC/CLK Control ADC A 4 BOD VREF POR TEMP RTC OCD AC A0 Power Control AC A1 PB1 40 PA3 43 Port R FLASH 5 CPU Event System ctrl 8 T/C0:1 10 SPI 9 Port D Port C Note: PE2 31 VCC 30 GND 29 PE1 28 PE0 27 PD7 26 PD6 25 PD5 24 PD4 23 PD3 Port E 12 13 14 15 16 17 18 19 20 21 22 PC3 PC4 PC5 PC6 PC7 GND VCC PD0 PD1 PD2 11 PC2 PC1 32 DATA BU S EVENT ROUTING NETWORK TWI PC0 PE3 Watchdog T/C0:1 VCC DAC B USART0:1 GND E2PROM T/C0 7 DMA SPI PB3 33 RAM Interrupt Controller USART0:1 6 Port B PB2 Reset Control TWI 1 USART0 PA5 A Port A INDEX CORNER PA4 Bock Diagram and TQFP/QFN pinout 44 Figure 2-1. For full details on pinout and pin functions refer to ”Pinout and Pin Functions” on page 49. 3 8069L–AVR–11/09 XMEGA A4 Figure 2-2. VFBGA pinout Top view 1 Table 2-1. 2 3 4 5 Bottom view 6 7 7 6 5 4 3 2 1 A A B B C C D D E E F F G G VFBGA pinout 1 2 3 4 5 6 PA3 AVCC GND PR1 PR0 PDI_DATA PE3 PA4 PA1 PA0 GND RESET/ PDI_CLK PE2 VCC C PA5 PA2 PA6 PA7 GND PE1 GND D PB1 PB2 PB3 PB0 GND PD7 PE0 E GND GND PC3 GND PD4 PD5 PD6 F VCC PC0 PC4 PC6 PD0 PD1 PD3 G PC1 PC2 PC5 PC7 GND VCC PD2 A B 4 8069L–AVR–11/09 XMEGA A4 3. Overview The XMEGA™A4 is a family of low power, high performance and peripheral rich CMOS 8/16-bit microcontrollers based on the AVR ® enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the XMEGA A4 achieves throughputs approaching 1 Million Instructions Per Second (MIPS) per MHz allowing the system designer to optimize power consumption versus processing speed. The AVR CPU combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction, executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs many times faster than conventional single-accumulator or CISC based microcontrollers. The XMEGA A4 devices provide the following features: In-System Programmable Flash with Read-While-Write capabilities, Internal EEPROM and SRAM, four-channel DMA Controller, eight-channel Event System, Programmable Multi-level Interrupt Controller, 34 general purpose I/O lines, 16-bit Real Time Counter (RTC), five flexible 16-bit Timer/Counters with compare modes and PWM, five USARTs, two Two Wire Serial Interfaces (TWIs), two Serial Peripheral Interfaces (SPIs), AES and DES crypto engine, one Twelve-channel, 12-bit ADC with optional differential input with programmable gain, one Two-channel 12-bit DAC, two analog comparators with window mode, programmable Watchdog Timer with separate Internal Oscillator, accurate internal oscillators with PLL and prescaler and programmable Brown-Out Detection. The Program and Debug Interface (PDI), a fast 2-pin interface for programming and debugging, is available. The XMEGA A4 devices have five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, DMA Controller, Event System, Interrupt Controller and all peripherals to continue functioning. The Power-down mode saves the SRAM and register contents but stops the oscillators, disabling all other functions until the next TWI or pin-change interrupt, or Reset. In Power-save mode, the asynchronous Real Time Counter continues to run, allowing the application to maintain a timer base while the rest of the device is sleeping. In Standby mode, the Crystal/Resonator Oscillator is kept running while the rest of the device is sleeping. This allows very fast start-up from external crystal combined with low power consumption. In Extended Standby mode, both the main Oscillator and the Asynchronous Timer continue to run. To further reduce power consumption, the peripheral clock to each individual peripheral can optionally be stopped in Active mode and in Idle sleep mode. The device is manufactured using Atmel's high-density nonvolatile memory technology. The program Flash memory can be reprogrammed in-system through the PDI. A Bootloader running in the device can use any interface to download the application program to the Flash memory. The Bootloader software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8/16-bit RISC CPU with In-System Self-Programmable Flash, the Atmel XMEGA A4 is a powerful microcontroller family that provides a highly flexible and cost effective solution for many embedded applications. The XMEGA A4 devices are supported with a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators, programmers, and evaluation kits. 5 8069L–AVR–11/09 XMEGA A4 3.1 Block Diagram Figure 3-1. XMEGA A4 Block Diagram PR[0..1] XTAL1/ TOSC1 XTAL2/ TOSC2 Oscillator Circuits/ Clock Generation PORT R (2) Watchdog Oscillator Real Time Counter Watchdog Timer DATA BUS PA[0..7] PORT A (8) Event System Controller Oscillator Control SRAM ACA DMA Controller GND Sleep Controller RESET/ PDI_CLK PDI ADCA AREFA VCC Power Supervision POR/BOD & RESET BUS Controller PDI_DATA Prog/Debug Controller VCC/10 Int. Ref. DES OCD Tempref AREFB Interrupt Controller AES PORT B (4) NVM Controller DACB TWIE USARTE0 Flash IRCOM EEPROM TCE0 PORT E (4) PB[0..3] CPU PE[0..3] DATA BUS SPID TCD0:1 USARTD0:1 SPIC TWIC TCC0:1 USARTC0:1 EVENT ROUTING NETWORK PORT C (8) PORT D (8) PC[0..7] PD[0..7] 6 8069L–AVR–11/09 XMEGA A4 4. Resources A comprehensive set of development tools, application notes and datasheets are available for download on http://www.atmel.com/avr. 4.1 Recommended reading • XMEGA A Manual • XMEGA A Application Notes This device data sheet only contains part specific information and a short description of each peripheral and module. The XMEGA A Manual describes the modules and peripherals in depth. The XMEGA A application notes contain example code and show applied use of the modules and peripherals. The XMEGA A Manual and Application Notes are available from http://www.atmel.com/avr. 5. Disclaimer For devices that are not available yet, typical values contained in this datasheet are based on simulations and characterization of other AVR XMEGA microcontrollers manufactured on the same process technology. Min. and Max values will be available after the device is characterized. 7 8069L–AVR–11/09 XMEGA A4 6. AVR CPU 6.1 Features • 8/16-bit high performance AVR RISC Architecture • • • • • • • 6.2 – 138 instructions – Hardware multiplier 32x8-bit registers directly connected to the ALU Stack in RAM Stack Pointer accessible in I/O memory space Direct addressing of up to 16M Bytes of program and data memory True 16/24-bit access to 16/24-bit I/O registers Support for 8-, 16- and 32-bit Arithmetic Configuration Change Protection of system critical features Overview The XMEGA A4 uses the 8/16-bit AVR CPU. The main function of the CPU is program execution. The CPU must therefore be able to access memories, perform calculations and control peripherals. Interrupt handling is described in a separate section. Figure 6-1 on page 8 shows the CPU block diagram. Figure 6-1. CPU block diagram DATA BUS Flash Program Memory Program Counter OCD Instruction Register STATUS/ CONTROL Instruction Decode 32 x 8 General Purpose Registers ALU Multiplier/ DES DATA BUS Peripheral Module 1 Peripheral Module 2 SRAM EEPROM PMIC The AVR uses a Harvard architecture - with separate memories and buses for program and data. Instructions in the program memory are executed with a single level pipeline. While one instruction is being executed, the next instruction is pre-fetched from the program memory. This 8 8069L–AVR–11/09 XMEGA A4 concept enables instructions to be executed in every clock cycle. The program memory is InSystem Re-programmable Flash memory. 6.3 Register File The fast-access Register File contains 32 x 8-bit general purpose working registers with single clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALU cycle, the operation is performed on two Register File operands, and the result is stored back in the Register File. Six of the 32 registers can be used as three 16-bit address register pointers for data space addressing - enabling efficient address calculations. One of these address pointers can also be used as an address pointer for look up tables in Flash program memory. 6.4 ALU - Arithmetic Logic Unit The high performance Arithmetic Logic Unit (ALU) supports arithmetic and logic operations between registers or between a constant and a register. Single register operations can also be executed. Within a single clock cycle, arithmetic operations between general purpose registers or between a register and an immediate are executed. After an arithmetic or logic operation, the Status Register is updated to reflect information about the result of the operation. The ALU operations are divided into three main categories – arithmetic, logical, and bit-functions. Both 8- and 16-bit arithmetic is supported, and the instruction set allows for efficient implementation of 32-bit arithmetic. The ALU also provides a powerful multiplier supporting both signed and unsigned multiplication and fractional format. 6.5 Program Flow When the device is powered on, the CPU starts to execute instructions from the lowest address in the Flash Program Memory ‘0’. The Program Counter (PC) addresses the next instruction to be fetched. After a reset, the PC is set to location ‘0’. Program flow is provided by conditional and unconditional jump and call instructions, capable of addressing the whole address space directly. Most AVR instructions use a 16-bit word format, while a limited number uses a 32-bit format. During interrupts and subroutine calls, the return address PC is stored on the Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack size is only limited by the total SRAM size and the usage of the SRAM. After reset the Stack Pointer (SP) points to the highest address in the internal SRAM. The SP is read/write accessible in the I/O memory space, enabling easy implementation of multiple stacks or stack areas. The data SRAM can easily be accessed through the five different addressing modes supported in the AVR CPU. 9 8069L–AVR–11/09 XMEGA A4 7. Memories 7.1 Features • Flash Program Memory – One linear address space – In-System Programmable – Self-Programming and Bootloader support – Application Section for application code – Application Table Section for application code or data storage – Boot Section for application code or bootloader code – Separate lock bits and protection for all sections – Built in fast CRC check of a selectable flash program memory section • Data Memory – One linear address space – Single cycle access from CPU – SRAM – EEPROM Byte and page accessible Optional memory mapping for direct load and store – I/O Memory Configuration and Status registers for all peripherals and modules 16 bit-accessible General Purpose Register for global variables or flags – Bus arbitration Safe and deterministic handling of CPU and DMA Controller priority – Separate buses for SRAM, EEPROM, I/O Memory and External Memory access Simultaneous bus access for CPU and DMA Controller • Production Signature Row Memory for factory programmed data Device ID for each microcontroller device type Serial number for each device Oscillator calibration bytes ADC, DAC and temperature sensor calibration data • User Signature Row One flash page in size Can be read and written from software Content is kept after chip erase 7.2 Overview The AVR architecture has two main memory spaces, the Program Memory and the Data Memory. In addition, the XMEGA A4 features an EEPROM Memory for non-volatile data storage. All three memory spaces are linear and require no paging. The available memory size configurations are shown in ”Ordering Information” on page 2. In addition each device has a Flash memory signature row for calibration data, device identification, serial number etc. Non-volatile memory spaces can be locked for further write or read/write operations. This prevents unrestricted access to the application software. 10 8069L–AVR–11/09 XMEGA A4 7.3 In-System Programmable Flash Program Memory The XMEGA A4 devices contain On-chip In-System Programmable Flash memory for program storage, see Figure 7-1 on page 11. Since all AVR instructions are 16- or 32-bits wide, each Flash address location is 16 bits. The Program Flash memory space is divided into Application and Boot sections. Both sections have dedicated Lock Bits for setting restrictions on write or read/write operations. The Store Program Memory (SPM) instruction must reside in the Boot Section when used to write to the Flash memory. A third section inside the Application section is referred to as the Application Table section which has separate Lock bits for storage of write or read/write protection. The Application Table section can be used for storing non-volatile data or application software. Figure 7-1. Flash Program Memory (Hexadecimal address) Word Address 0 Application Section (128 KB/64 KB/32 KB/16 KB) ... EFFF / 77FF / 37FF / 17FF F000 / 7800 / 3800 / 1800 FFFF / 7FFF / 3FFF / 1FFF 10000 / 8000 / 4000 / 2000 10FFF / 87FF / 47FF / 27FF Application Table Section (4 KB/4 KB/4 KB/4 KB) Boot Section (8 KB/4 KB/4 KB/4 KB) The Application Table Section and Boot Section can also be used for general application software. 11 8069L–AVR–11/09 XMEGA A4 7.4 Data Memory The Data Memory consist of the I/O Memory, EEPROM and SRAM memories, all within one linear address space, see Figure 7-2 on page 12. To simplify development, the memory map for all devices in the family is identical and with empty, reserved memory space for smaller devices. Figure 7-2. Data Memory Map (Hexadecimal address) Byte Address 0 FFF ATxmega64A4 I/O Registers (4 KB) 1000 EEPROM (2 KB) 17FF Byte Address 0 FFF 1000 13FF RESERVED 2000 2FFF Internal SRAM (4 KB) ATxmega32A4 I/O Registers (4 KB) EEPROM (1 KB) Byte Address 0 FFF 1000 13FF RESERVED 2000 2FFF Internal SRAM (4 KB) ATxmega16A4 I/O Registers (4 KB) EEPROM (1 KB) RESERVED 2000 27FF Byte Address 0 FFF 1000 17FF Internal SRAM (2 KB) ATxmega128A4 I/O Registers (4 KB) EEPROM (2 KB) RESERVED 2000 3FFF 7.4.1 Internal SRAM (8 KB) I/O Memory All peripherals and modules are addressable through I/O memory locations in the data memory space. All I/O memory locations can be accessed by the Load (LD/LDS/LDD) and Store (ST/STS/STD) instructions, transferring data between the 32 general purpose registers in the CPU and the I/O Memory. The IN and OUT instructions can address I/O memory locations in the range 0x00 - 0x3F directly. I/O registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. The value of single bits can be checked by using the SBIS and SBIC instructions on these registers. The I/O memory address for all peripherals and modules in XMEGA A4 is shown in the ”Peripheral Module Address Map” on page 53. 7.4.2 SRAM Data Memory The XMEGA A4 devices have internal SRAM memory for data storage. 12 8069L–AVR–11/09 XMEGA A4 7.4.3 EEPROM Data Memory The XMEGA A4 devices have internal EEPROM memory for non-volatile data storage. It is addressable either in a separate data space or it can be memory mapped into the normal data memory space. The EEPROM memory supports both byte and page access. 7.5 Production Signature Row The Production Signature Row is a separate memory section for factory programmed data. It contains calibration data for functions such as oscillators and analog modules. The production signature row also contains a device ID that identify each microcontroller device type, and a serial number that is unique for each manufactured device. The device ID for the available XMEGA A4 devices is shown in Table 7-1 on page 13. The serial number consist of the production LOT number, wafer number, and wafer coordinates for the device. The production signature row can not be written or erased, but it can be read from both application software and external programming. Table 7-1. Device ID bytes for XMEGA A4 devices. Device 7.6 Device ID bytes Byte 2 Byte 1 Byte 0 ATxmega16A4 41 94 1E ATxmega32A4 41 95 1E ATxmega64A4 46 96 1E ATxmega128A4 46 97 1E User Signature Row The User Signature Row is a separate memory section that is fully accessible (read and write) from application software and external programming. The user signature row is one flash page in size, and is meant for static user parameter storage, such as calibration data, custom serial numbers or identification numbers, random number seeds etc. This section is not erased by Chip Erase commands that erase the Flash, and requires a dedicated erase command. This ensures parameter storage during multiple program/erase session and on-chip debug sessions. 13 8069L–AVR–11/09 XMEGA A4 7.7 Flash and EEPROM Page Size The Flash Program Memory and EEPROM data memory are organized in pages. The pages are word accessible for the Flash and byte accessible for the EEPROM. Table 7-2 on page 14 shows the Flash Program Memory organization. Flash write and erase operations are performed on one page at a time, while reading the Flash is done one byte at a time. For Flash access the Z-pointer (Z[m:n]) is used for addressing. The most significant bits in the address (FPAGE) give the page number and the least significant address bits (FWORD) give the word in the page. Table 7-2. Devices Number of words and Pages in the Flash. Flash Page Size Size (words) FWORD FPAGE ATxmega16A4 16 KB + 4 KB 128 Z[6:0] Z[13:7] ATxmega32A4 32 KB + 4 KB 128 Z[6:0] Z[14:7] ATxmega64A4 64 KB + 4 KB 128 Z[6:0] ATxmega128A4 128 KB + 8 KB 256 Z[7:0] Application Size Boot No of Pages Size No of Pages 16 KB 64 4 KB 16 32 KB 128 4 KB 16 Z[15:7] 64 KB 128 4 KB 16 Z[16:8] 128 KB 256 8 KB 16 Table 7-3 on page 14 shows EEPROM memory organization for the XMEGA A4 devices. EEPROM write and erase operations can be performed one page or one byte at a time, while reading the EEPROM is done one byte at a time. For EEPROM access the NVM Address Register (ADDR[m:n]) is used for addressing. The most significant bits in the address (E2PAGE) give the page number and the least significant address bits (E2BYTE) give the byte in the page. Table 7-3. Devices Number of Bytes and Pages in the EEPROM. EEPROM Page Size Size (Bytes) E2BYTE E2PAGE No of Pages ATxmega16A4 1 KB ATxmega32A4 1 KB 32 ADDR[4:0] ADDR[10:5] 32 32 ADDR[4:0] ADDR[10:5] 32 ATxmega64A4 ATxmega128A4 2 KB 32 ADDR[4:0] ADDR[10:5] 64 2 KB 32 ADDR[4:0] ADDR[10:5] 64 14 8069L–AVR–11/09 XMEGA A4 8. DMAC - Direct Memory Access Controller 8.1 Features • Allows High-speed data transfer • • • • • 8.2 – From memory to peripheral – From memory to memory – From peripheral to memory – From peripheral to peripheral 4 Channels From 1 byte and up to 16 M bytes transfers in a single transaction Multiple addressing modes for source and destination address – Increment – Decrement – Static 1, 2, 4, or 8 bytes Burst Transfers Programmable priority between channels Overview The XMEGA A4 has a Direct Memory Access (DMA) Controller to move data between memories and peripherals in the data space. The DMA controller uses the same data bus as the CPU to transfer data. It has 4 channels that can be configured independently. Each DMA channel can perform data transfers in blocks of configurable size from 1 to 64K bytes. A repeat counter can be used to repeat each block transfer for single transactions up to 16M bytes. Each DMA channel can be configured to access the source and destination memory address with incrementing, decrementing or static addressing. The addressing is independent for source and destination address. When the transaction is complete the original source and destination address can automatically be reloaded to be ready for the next transaction. The DMAC can access all the peripherals through their I/O memory registers, and the DMA may be used for automatic transfer of data to/from communication modules, as well as automatic data retrieval from ADC conversions, data transfer to DAC conversions, or data transfer to or from port pins. A wide range of transfer triggers is available from the peripherals, Event System and software. Each DMA channel has different transfer triggers. To allow for continuous transfer, two channels can be interlinked so that the second takes over the transfer when the first is finished and vice versa. The DMA controller can read from memory mapped EEPROM, but it cannot write to the EEPROM or access the Flash. 15 8069L–AVR–11/09 XMEGA A4 9. Event System 9.1 Features • • • • • • • • 9.2 Inter-peripheral communication and signalling with minimum latency CPU and DMA independent operation 8 Event Channels allow for up to 8 signals to be routed at the same time Events can be generated by – TImer/Counters (TCxn) – Real Time Counter (RTC) – Analog to Digital Converters (ADCx) – Analog Comparators (ACx) – Ports (PORTx) – System Clock (ClkSYS) – Software (CPU) Events can be used by – TImer/Counters (TCxn) – Analog to Digital Converters (ADCx) – Digital to Analog Converters (DACx) – Ports (PORTx) – DMA Controller (DMAC) – IR Communication Module (IRCOM) The same event can be used by multiple peripherals for synchronized timing Advanced Features – Manual Event Generation from software (CPU) – Quadrature Decoding – Digital Filtering Functions in Active and Idle mode Overview The Event System is a set of features for inter-peripheral communication. It enables the possibility for a change of state in one peripheral to automatically trigger actions in one or more peripherals. Whose changes in a peripheral that will trigger actions in other peripherals are configurable by software. It is a simple, but powerful system as it allows for autonomous control of peripherals without any use of interrupts, CPU or DMA resources. The indication of a change in a peripheral is referred to as an event, and is usually the same as the interrupt conditions for that peripheral. Events are passed between peripherals using a dedicated routing network called the Event Routing Network. Figure 9-1 on page 17 shows a basic block diagram of the Event System with the Event Routing Network and the peripherals to which it is connected. This highly flexible system can be used for simple routing of signals, pin functions or for sequencing of events. The maximum latency is two CPU clock cycles from when an event is generated in one peripheral, until the actions are triggered in one or more other peripherals. The Event System is functional in both Active and Idle modes. 16 8069L–AVR–11/09 XMEGA A4 Figure 9-1. Event System Block Diagram PORTx ClkSYS CPU ADCx RTC Event Routing Network DACx IRCOM ACx T/Cxn DMAC The Event Routing Network can directly connect together ADCs, DACs, Analog Comparators (ACx), I/O ports (PORTx), the Real-time Counter (RTC), Timer/Counters (T/C) and the IR Communication Module (IRCOM). Events can also be generated from software (CPU). All events from all peripherals are always routed into the Event Routing Network. This consist of eight multiplexers where each can be configured in software to select which event to be routed into that event channel. All eight event channels are connected to the peripherals that can use events, and each of these peripherals can be configured to use events from one or more event channels to automatically trigger a software selectable action. 17 8069L–AVR–11/09 XMEGA A4 10. System Clock and Clock options 10.1 Features • Fast start-up time • Safe run-time clock switching • Internal Oscillators: • • • • • • 10.2 – 32 MHz run-time calibrated RC oscillator – 2 MHz run-time calibrated RC oscillator – 32.768 kHz calibrated RC oscillator – 32 kHz Ultra Low Power (ULP) oscillator with 1 kHz ouput External clock options – 0.4 - 16 MHz Crystal Oscillator – 32 kHz Crystal Oscillator – External clock PLL with internal and external clock options with 1 to 31x multiplication Clock Prescalers with 1 to 2048x division Fast peripheral clock running at 2 and 4 times the CPU clock speed Automatic Run-Time Calibration of internal oscillators Crystal Oscillator failure detection Overview XMEGA A4 has an advanced clock system, supporting a large number of clock sources. It incorporates both integrated oscillators, external crystal oscillators and resonators. A high frequency Phase Locked Loop (PLL) and clock prescalers can be controlled from software to generate a wide range of clock frequencies from the clock source input. It is possible to switch between clock sources from software during run-time. After reset the device will always start up running from the 2 Mhz internal oscillator. A calibration feature is available, and can be used for automatic run-time calibration of the internal 2 MHz and 32 MHz oscillators. This reduce frequency drift over voltage and temperature. A Crystal Oscillator Failure Monitor can be enabled to issue a Non-Maskable Interrupt and switch to internal oscillator if the external oscillator fails. Figure 10-1 on page 19 shows the principal clock system in XMEGA A4. 18 8069L–AVR–11/09 XMEGA A4 Figure 10-1. Clock system overview clkULP 32 kHz ULP Internal Oscillator clkRTC 32.768 kHz Calibrated Internal Oscillator RTC PERIPHERALS ADC 2 MHz Run-Time Calibrated Internal Oscillator 32 MHz Run-time Calibrated Internal Oscillator WDT/BOD DAC CLOCK CONTROL clkPER UNIT with PLL and Prescaler PORTS ... DMA INTERRUPT 32.768 KHz Crystal Oscillator EVSYS RAM 0.4 - 16 MHz Crystal Oscillator CPU clkCPU NVM MEMORY External Clock Input FLASH EEPROM Each clock source is briefly described in the following sub-sections. 10.3 10.3.1 Clock Options 32 kHz Ultra Low Power Internal Oscillator The 32 kHz Ultra Low Power (ULP) Internal Oscillator is a very low power consumption clock source. It is used for the Watchdog Timer, Brown-Out Detection and as an asynchronous clock source for the Real Time Counter. This oscillator cannot be used as the system clock source, and it cannot be directly controlled from software. 10.3.2 32.768 kHz Calibrated Internal Oscillator The 32.768 kHz Calibrated Internal Oscillator is a high accuracy clock source that can be used as the system clock source or as an asynchronous clock source for the Real Time Counter. It is calibrated during production to provide a default frequency which is close to its nominal frequency. 19 8069L–AVR–11/09 XMEGA A4 10.3.3 32.768 kHz Crystal Oscillator The 32.768 kHz Crystal Oscillator is a low power driver for an external watch crystal. It can be used as system clock source or as asynchronous clock source for the Real Time Counter. 10.3.4 0.4 - 16 MHz Crystal Oscillator The 0.4 - 16 MHz Crystal Oscillator is a driver intended for driving both external resonators and crystals ranging from 400 kHz to 16 MHz. 10.3.5 2 MHz Run-time Calibrated Internal Oscillator The 2 MHz Run-time Calibrated Internal Oscillator is a high frequency oscillator. It is calibrated during production to provide a default frequency which is close to its nominal frequency. The oscillator can use the 32 kHz Calibrated Internal Oscillator or the 32 kHz Crystal Oscillator as a source for calibrating the frequency run-time to compensate for temperature and voltage drift hereby optimizing the accuracy of the oscillator. 10.3.6 32 MHz Run-time Calibrated Internal Oscillator The 32 MHz Run-time Calibrated Internal Oscillator is a high frequency oscillator. It is calibrated during production to provide a default frequency which is close to its nominal frequency. The oscillator can use the 32 kHz Calibrated Internal Oscillator or the 32 kHz Crystal Oscillator as a source for calibrating the frequency run-time to compensate for temperature and voltage drift hereby optimizing the accuracy of the oscillator. 10.3.7 External Clock input The external clock input gives the possibility to connect a clock from an external source. 10.3.8 PLL with Multiplication factor 1 - 31x The PLL provides the possibility of multiplying a frequency by any number from 1 to 31. In combination with the prescalers, this gives a wide range of output frequencies from all clock sources. 20 8069L–AVR–11/09 XMEGA A4 11. Power Management and Sleep Modes 11.1 Features • 5 sleep modes – Idle – Power-down – Power-save – Standby – Extended standby • Power Reduction registers to disable clocks to unused peripherals 11.2 Overview The XMEGA A4 provides various sleep modes tailored to reduce power consumption to a minimum. All sleep modes are available and can be entered from Active mode. In Active mode the CPU is executing application code. The application code decides when and what sleep mode to enter. Interrupts from enabled peripherals and all enabled reset sources can restore the microcontroller from sleep to Active mode. In addition, Power Reduction registers provide a method to stop the clock to individual peripherals from software. When this is done, the current state of the peripheral is frozen and there is no power consumption from that peripheral. This reduces the power consumption in Active mode and Idle sleep mode. 11.3 Sleep Modes 11.3.1 Idle Mode In Idle mode the CPU and Non-Volatile Memory are stopped, but all peripherals including the Interrupt Controller, Event System and DMA Controller are kept running. Interrupt requests from all enabled interrupts will wake the device. 11.3.2 Power-down Mode In Power-down mode all system clock sources, and the asynchronous Real Time Counter (RTC) clock source, are stopped. This allows operation of asynchronous modules only. The only interrupts that can wake up the MCU are the Two Wire Interface address match interrupts, and asynchronous port interrupts, e.g pin change. 11.3.3 Power-save Mode Power-save mode is identical to Power-down, with one exception: If the RTC is enabled, it will keep running during sleep and the device can also wake up from RTC interrupts. 11.3.4 Standby Mode Standby mode is identical to Power-down with the exception that all enabled system clock sources are kept running, while the CPU, Peripheral and RTC clocks are stopped. This reduces the wake-up time when external crystals or resonators are used. 21 8069L–AVR–11/09 XMEGA A4 11.3.5 Extended Standby Mode Extended Standby mode is identical to Power-save mode with the exception that all enabled system clock sources are kept running while the CPU and Peripheral clocks are stopped. This reduces the wake-up time when external crystals or resonators are used. 22 8069L–AVR–11/09 XMEGA A4 12. System Control and Reset 12.1 Features • Multiple reset sources for safe operation and device reset – Power-On Reset – External Reset – Watchdog Reset The Watchdog Timer runs from separate, dedicated oscillator – Brown-Out Reset Accurate, programmable Brown-Out levels – PDI reset – Software reset • Asynchronous reset – No running clock in the device is required for reset • Reset status register 12.2 Resetting the AVR During reset, all I/O registers are set to their initial values. The SRAM content is not reset. Application execution starts from the Reset Vector. The instruction placed at the Reset Vector should be an Absolute Jump (JMP) instruction to the reset handling routine. By default the Reset Vector address is the lowest Flash program memory address, ‘0’, but it is possible to move the Reset Vector to the first address in the Boot Section. The I/O ports of the AVR are immediately tri-stated when a reset source goes active. The reset functionality is asynchronous, so no running clock is required to reset the device. After the device is reset, the reset source can be determined by the application by reading the Reset Status Register. 12.3 12.3.1 Reset Sources Power-On Reset The MCU is reset when the supply voltage VCC is below the Power-on Reset threshold voltage. 12.3.2 External Reset The MCU is reset when a low level is present on the RESET pin. 12.3.3 Watchdog Reset The MCU is reset when the Watchdog Timer period expires and the Watchdog Reset is enabled. The Watchdog Timer runs from a dedicated oscillator independent of the System Clock. For more details see ”WDT - Watchdog Timer” on page 24. 12.3.4 Brown-Out Reset The MCU is reset when the supply voltage VCC is below the Brown-Out Reset threshold voltage and the Brown-out Detector is enabled. The Brown-out threshold voltage is programmable. 23 8069L–AVR–11/09 XMEGA A4 12.3.5 PDI reset The MCU can be reset through the Program and Debug Interface (PDI). 12.3.6 Software reset The MCU can be reset by the CPU writing to a special I/O register through a timed sequence. 13. WDT - Watchdog Timer 13.1 Features • 11 selectable timeout periods, from 8 ms to 8s. • Two operation modes – Standard mode – Window mode • Runs from the 1 kHz output of the 32 kHz Ultra Low Power oscillator • Configuration lock to prevent unwanted changes 13.2 Overview The XMEGA A4 has a Watchdog Timer (WDT). The WDT will run continuously when turned on and if the Watchdog Timer is not reset within a software configurable time-out period, the microcontroller will be reset. The Watchdog Reset (WDR) instruction must be run by software to reset the WDT, and prevent microcontroller reset. The WDT has a Window mode. In this mode the WDR instruction must be run within a specified period called a window. Application software can set the minimum and maximum limits for this window. If the WDR instruction is not executed inside the window limits, the microcontroller will be reset. A protection mechanism using a timed write sequence is implemented in order to prevent unwanted enabling, disabling or change of WDT settings. For maximum safety, the WDT also has an Always-on mode. This mode is enabled by programming a fuse. In Always-on mode, application software can not disable the WDT. 24 8069L–AVR–11/09 XMEGA A4 14. PMIC - Programmable Multi-level Interrupt Controller 14.1 Features • Separate interrupt vector for each interrupt • Short, predictable interrupt response time • Programmable Multi-level Interrupt Controller – 3 programmable interrupt levels – Selectable priority scheme within low level interrupts (round-robin or fixed) – Non-Maskable Interrupts (NMI) • Interrupt vectors can be moved to the start of the Boot Section 14.2 Overview XMEGA A4 has a Programmable Multi-level Interrupt Controller (PMIC). All peripherals can define three different priority levels for interrupts; high, medium or low. Medium level interrupts may interrupt low level interrupt service routines. High level interrupts may interrupt both lowand medium level interrupt service routines. Low level interrupts have an optional round robin scheme to make sure all interrupts are serviced within a certain amount of time. The built in oscillator failure detection mechanism can issue a Non-Maskable Interrupt (NMI). 14.3 Interrupt vectors When an interrupt is serviced, the program counter will jump to the interrupt vector address. The interrupt vector is the sum of the peripheral’s base interrupt address and the offset address for specific interrupts in each peripheral. The base addresses for the XMEGA A4 devices are shown in Table 14-1. Offset addresses for each interrupt available in the peripheral are described for each peripheral in the XMEGA A manual. For peripherals or modules that have only one interrupt, the interrupt vector is shown in Table 14-1. The program address is the word address. Table 14-1. Reset and Interrupt Vectors Program Address (Base Address) Source 0x000 RESET 0x002 OSCF_INT_vect Crystal Oscillator Failure Interrupt vector (NMI) 0x004 PORTC_INT_base Port C Interrupt base 0x008 PORTR_INT_base Port R Interrupt base 0x00C DMA_INT_base DMA Controller Interrupt base 0x014 RTC_INT_base Real Time Counter Interrupt base 0x018 TWIC_INT_base Two-Wire Interface on Port C Interrupt base 0x01C TCC0_INT_base Timer/Counter 0 on port C Interrupt base 0x028 TCC1_INT_base Timer/Counter 1 on port C Interrupt base 0x030 SPIC_INT_vect SPI on port C Interrupt vector 0x032 USARTC0_INT_base USART 0 on port C Interrupt base 0x038 USARTC1_INT_base USART 1 on port C Interrupt base 0x03E AES_INT_vect AES Interrupt vector Interrupt Description 25 8069L–AVR–11/09 XMEGA A4 Table 14-1. Reset and Interrupt Vectors (Continued) Program Address (Base Address) Source Interrupt Description 0x040 NVM_INT_base Non-Volatile Memory Interrupt base 0x044 PORTB_INT_base Port B Interrupt base 0x056 PORTE_INT_base Port E Interrupt base 0x05A TWIE_INT_base Two-Wire Interface on Port E Interrupt base 0x05E TCE0_INT_base Timer/Counter 0 on port E Interrupt base 0x06A TCE1_INT_base Timer/Counter 1 on port E Interrupt base 0x074 USARTE0_INT_base USART 0 on port E Interrupt base 0x080 PORTD_INT_base Port D Interrupt base 0x084 PORTA_INT_base Port A Interrupt base 0x088 ACA_INT_base Analog Comparator on Port A Interrupt base 0x08E ADCA_INT_base Analog to Digital Converter on Port A Interrupt base 0x09A TCD0_INT_base Timer/Counter 0 on port D Interrupt base 0x0A6 TCD1_INT_base Timer/Counter 1 on port D Interrupt base 0x0AE SPID_INT_vector SPI on port D Interrupt vector 0x0B0 USARTD0_INT_base USART 0 on port D Interrupt base 0x0B6 USARTD1_INT_base USART 1 on port D Interrupt base 26 8069L–AVR–11/09 XMEGA A4 15. I/O Ports 15.1 Features • Selectable input and output configuration for each pin individually • Flexible pin configuration through dedicated Pin Configuration Register • Synchronous and/or asynchronous input sensing with port interrupts and events • • • • • • • • • • 15.2 – Sense both edges – Sense rising edges – Sense falling edges – Sense low level Asynchronous wake-up from all input sensing configurations Two port interrupts with flexible pin masking Highly configurable output driver and pull settings: – Totem-pole – Pull-up/-down – Wired-AND – Wired-OR – Bus-keeper – Inverted I/O Optional Slew rate control Configuration of multiple pins in a single operation Read-Modify-Write (RMW) support Toggle/clear/set registers for Output and Direction registers Clock output on port pin Event Channel 7 output on port pin Mapping of port registers (virtual ports) into bit accessible I/O memory space Overview The XMEGA A4 devices have flexible General Purpose I/O Ports. A port consists of up to 8 pins, ranging from pin 0 to pin 7. The ports implement several functions, including synchronous/asynchronous input sensing, pin change interrupts and configurable output settings. All functions are individual per pin, but several pins may be configured in a single operation. 15.3 I/O configuration All port pins (Pn) have programmable output configuration. In addition, all port pins have an inverted I/O function. For an input, this means inverting the signal between the port pin and the pin register. For an output, this means inverting the output signal between the port register and the port pin. The inverted I/O function can be used also when the pin is used for alternate functions. 27 8069L–AVR–11/09 XMEGA A4 15.3.1 Push-pull Figure 15-1. I/O configuration - Totem-pole DIRn OUTn Pn INn 15.3.2 Pull-down Figure 15-2. I/O configuration - Totem-pole with pull-down (on input) DIRn OUTn Pn INn 15.3.3 Pull-up Figure 15-3. I/O configuration - Totem-pole with pull-up (on input) DIRn OUTn Pn INn 15.3.4 Bus-keeper The bus-keeper’s weak output produces the same logical level as the last output level. It acts as a pull-up if the last level was ‘1’, and pull-down if the last level was ‘0’. 28 8069L–AVR–11/09 XMEGA A4 Figure 15-4. I/O configuration - Totem-pole with bus-keeper DIRn OUTn Pn INn 15.3.5 Others Figure 15-5. Output configuration - Wired-OR with optional pull-down OUTn Pn INn Figure 15-6. I/O configuration - Wired-AND with optional pull-up INn Pn OUTn 29 8069L–AVR–11/09 XMEGA A4 15.4 Input sensing • • • • Sense both edges Sense rising edges Sense falling edges Sense low level Input sensing is synchronous or asynchronous depending on the enabled clock for the ports, and the configuration is shown in Figure 15-7 on page 30. Figure 15-7. Input sensing system overview Asynchronous sensing EDGE DETECT Interrupt Control IREQ Synchronous sensing Pn Synchronizer INn Q D D INVERTED I/O R Q EDGE DETECT Event R When a pin is configured with inverted I/O, the pin value is inverted before the input sensing. 15.5 Port Interrupt Each port has two interrupts with separate priority and interrupt vector. All pins on the port can be individually selected as source for each of the interrupts. The interrupts are then triggered according to the input sense configuration for each pin configured as source for the interrupt. 15.6 Alternate Port Functions In addition to the input/output functions on all port pins, most pins have alternate functions. This means that other modules or peripherals connected to the port can use the port pins for their functions, such as communication or pulse-width modulation. ”Pinout and Pin Functions” on page 49 shows which modules on peripherals that enable alternate functions on a pin, and which alternate function is available on a pin. 30 8069L–AVR–11/09 XMEGA A4 16. T/C - 16-bit Timer/Counter 16.1 Features • Five 16-bit Timer/Counters • • • • • • • • • • • • 16.2 – Three Timer/Counters of type 0 – Two Timer/Counters of type 1 Three Compare or Capture (CC) Channels in Timer/Counter 0 Two Compare or Capture (CC) Channels in Timer/Counter 1 Double Buffered Timer Period Setting Double Buffered Compare or Capture Channels Waveform Generation: – Single Slope Pulse Width Modulation – Dual Slope Pulse Width Modulation – Frequency Generation Input Capture: – Input Capture with Noise Cancelling – Frequency capture – Pulse width capture – 32-bit input capture Event Counter with Direction Control Timer Overflow and Timer Error Interrupts and Events One Compare Match or Capture Interrupt and Event per CC Channel Supports DMA Operation Hi-Resolution Extension (Hi-Res) Advanced Waveform Extension (AWEX) Overview XMEGA A4 has five Timer/Counters, three Timer/Counter 0 and two Timer/Counter 1. The difference between them is that Timer/Counter 0 has four Compare/Capture channels, while Timer/Counter 1 has two Compare/Capture channels. The Timer/Counters (T/C) are 16-bit and can count any clock, event or external input in the microcontroller. A programmable prescaler is available to get a useful T/C resolution. Updates of Timer and Compare registers are double buffered to ensure glitch free operation. Single slope PWM, dual slope PWM and frequency generation waveforms can be generated using the Compare Channels. Through the Event System, any input pin or event in the microcontroller can be used to trigger input capture, hence no dedicated pins are required for this. The input capture has a noise canceller to avoid incorrect capture of the T/C, and can be used to do frequency and pulse width measurements. A wide range of interrupt or event sources are available, including T/C Overflow, Compare match and Capture for each Compare/Capture channel in the T/C. PORTC and PORTD each has one Timer/Counter 0 and one Timer/Counter1. PORTE has one Timer/Conter0. Notation of these are TCC0 (Time/Counter C0), TCC1, TCD0, TCD1 and TCE0, respectively. 31 8069L–AVR–11/09 XMEGA A4 Figure 16-1. Overview of a Timer/Counter and closely related peripherals Timer/Counter Base Counter Timer Period Counter Prescaler Control Logic clkPER Event System clkPER4 Buffer Capture Control Waveform Generation DTI Dead-Time Insertion Pattern Generation Fault Protection PORT Comparator AWeX Hi-Res Compare/Capture Channel D Compare/Capture Channel C Compare/Capture Channel B Compare/Capture Channel A The Hi-Resolution Extension can be enabled to increase the waveform generation resolution by 2 bits (4x). This is available for all Timer/Counters. See ”Hi-Res - High Resolution Extension” on page 34 for more details. The Advanced Waveform Extension can be enabled to provide extra and more advanced feature for the Timer/Counter. This is only available for Timer/Counter 0. See ”AWEX - Advanced Waveform Extension” on page 33 for more details. 32 8069L–AVR–11/09 XMEGA A4 17. AWEX - Advanced Waveform Extension 17.1 Features • • • • • • • • 17.2 Output with complementary output from each Capture channel Four Dead Time Insertion (DTI) Units, one for each Capture channel 8-bit DTI Resolution Separate High and Low Side Dead-Time Setting Double Buffered Dead-Time Event Controlled Fault Protection Single Channel Multiple Output Operation (for BLDC motor control) Double Buffered Pattern Generation Overview The Advanced Waveform Extension (AWEX) provides extra features to the Timer/Counter in Waveform Generation (WG) modes. The AWEX enables easy and safe implementation of for example, advanced motor control (AC, BLDC, SR, and Stepper) and power control applications. Any WG output from a Timer/Counter 0 is split into a complimentary pair of outputs when any AWEX feature is enabled. These output pairs go through a Dead-Time Insertion (DTI) unit that enables generation of the non-inverted Low Side (LS) and inverted High Side (HS) of the WG output with dead time insertion between LS and HS switching. The DTI output will override the normal port value according to the port override setting. Optionally the final output can be inverted by using the invert I/O setting for the port pin. The Pattern Generation unit can be used to generate a synchronized bit pattern on the port it is connected to. In addition, the waveform generator output from Compare Channel A can be distributed to, and override all port pins. When the Pattern Generator unit is enabled, the DTI unit is bypassed. The Fault Protection unit is connected to the Event System. This enables any event to trigger a fault condition that will disable the AWEX output. Several event channels can be used to trigger fault on several different conditions. The AWEX is available for TCC0. The notation of this is AWEXC. 33 8069L–AVR–11/09 XMEGA A4 18. Hi-Res - High Resolution Extension 18.1 Features • Increases Waveform Generator resolution by 2-bits (4x) • Supports Frequency, single- and dual-slope PWM operation • Supports the AWEX when this is enabled and used for the same Timer/Counter 18.2 Overview The Hi-Resolution (Hi-Res) Extension is able to increase the resolution of the waveform generation output by a factor of 4. When enabled for a Timer/Counter, the Fast Peripheral clock running at four times the CPU clock speed will be as input to the Timer/Counter. The High Resolution Extension can also be used when an AWEX is enabled and used with a Timer/Counter. XMEGA A4 devices have three Hi-Res Extensions that each can be enabled for each Timer/Counters pair on PORTC, PORTD and PORTE. The notation of these are HIRESC, HIRESD and HIRESE, respectively. 34 8069L–AVR–11/09 XMEGA A4 19. RTC - 16-bit Real-Time Counter 19.1 Features • • • • • • 19.2 16-bit Timer Flexible Tick resolution ranging from 1 Hz to 32.768 kHz One Compare register One Period register Clear timer on Overflow or Compare Match Overflow or Compare Match event and interrupt generation Overview The XMEGA A4 includes a 16-bit Real-time Counter (RTC). The RTC can be clocked from an accurate 32.768 kHz Crystal Oscillator, the 32.768 kHz Calibrated Internal Oscillator, or from the 32 kHz Ultra Low Power Internal Oscillator. The RTC includes both a Period and a Compare register. For details, see Figure 19-1. A wide range of Resolution and Time-out periods can be configured using the RTC. With a maximum resolution of 30.5 µs, time-out periods range up to 2000 seconds. With a resolution of 1 second, the maximum time-out period is over 18 hours (65536 seconds). Figure 19-1. Real Time Counter overview Period 32 kHz = 10-bit prescaler 1 kHz Overflow Counter = Compare Match Compare 35 8069L–AVR–11/09 XMEGA A4 20. TWI - Two-Wire Interface 20.1 Features • • • • • • • • • • • • 20.2 Two Identical TWI peripherals Simple yet Powerful and Flexible Communication Interface Both Master and Slave Operation Supported Device can Operate as Transmitter or Receiver 7-bit Address Space Allows up to 128 Different Slave Addresses Multi-master Arbitration Support Up to 400 kHz Data Transfer Speed Slew-rate Limited Output Drivers Noise Suppression Circuitry Rejects Spikes on Bus Lines Fully Programmable Slave Address with General Call Support Address Recognition Causes Wake-up when in Sleep Mode I2C and System Management Bus (SMBus) compatible Overview The Two-Wire Interface (TWI) is a bi-directional wired-AND bus with only two lines, the clock (SCL) line and the data (SDA) line. The protocol makes it possible to interconnect up to 128 individually addressable devices. Since it is a multi-master bus, one or more devices capable of taking control of the bus can be connected. The only external hardware needed to implement the bus is a single pull-up resistor for each of the TWI bus lines. Mechanisms for resolving bus contention are inherent in the TWI protocol. PORTC and PORTE each has one TWI. Notation of these peripherals are TWIC and TWIE, respectively. 36 8069L–AVR–11/09 XMEGA A4 21. SPI - Serial Peripheral Interface 21.1 Features • • • • • • • • • 21.2 Two Identical SPI peripherals Full-duplex, Three-wire Synchronous Data Transfer Master or Slave Operation LSB First or MSB First Data Transfer Seven Programmable Bit Rates End of Transmission Interrupt Flag Write Collision Flag Protection Wake-up from Idle Mode Double Speed (CK/2) Master SPI Mode Overview The Serial Peripheral Interface (SPI) allows high-speed full-duplex, synchronous data transfer between different devices. Devices can communicate using a master-slave scheme, and data is transferred both to and from the devices simultaneously. PORTC and PORTD each has one SPI. Notation of these peripherals are SPIC and SPID, respectively. 37 8069L–AVR–11/09 XMEGA A4 22. USART 22.1 Features • • • • • • • • • • • • • • • 22.2 Five Identical USART peripherals Full Duplex Operation (Independent Serial Receive and Transmit Registers) Asynchronous or Synchronous Operation Master or Slave Clocked Synchronous Operation High-resolution Arithmetic Baud Rate Generator Supports Serial Frames with 5, 6, 7, 8, or 9 Data Bits and 1 or 2 Stop Bits Odd or Even Parity Generation and Parity Check Supported by Hardware Data OverRun Detection Framing Error Detection Noise Filtering Includes False Start Bit Detection and Digital Low Pass Filter Three Separate Interrupts on TX Complete, TX Data Register Empty and RX Complete Multi-processor Communication Mode Double Speed Asynchronous Communication Mode Master SPI mode for SPI communication IrDA support through the IRCOM module Overview The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) is a highly flexible serial communication module. The USART supports full duplex communication, and both asynchronous and clocked synchronous operation. The USART can also be set in Master SPI mode to be used for SPI communication. Communication is frame based, and the frame format can be customized to support a wide range of standards. The USART is buffered in both direction, enabling continued data transmission without any delay between frames. There are separate interrupt vectors for receive and transmit complete, enabling fully interrupt driven communication. Frame error and buffer overflow are detected in hardware and indicated with separate status flags. Even or odd parity generation and parity check can also be enabled. One USART can use the IRCOM module to support IrDA 1.4 physical compliant pulse modulation and demodulation for baud rates up to 115.2 kbps. PORTC and PORTD each has two USARTs. PORTE has one USART. Notation of these peripherals are USARTC0, USARTC1, USARTD0, USARTD1 and USARTE0, respectively. 38 8069L–AVR–11/09 XMEGA A4 23. IRCOM - IR Communication Module 23.1 Features • Pulse modulation/demodulation for infrared communication • Compatible to IrDA 1.4 physical for baud rates up to 115.2 kbps • Selectable pulse modulation scheme – 3/16 of baud rate period – Fixed pulse period, 8-bit programmable – Pulse modulation disabled • Built in filtering • Can be connected to and used by one USART at a time 23.2 Overview XMEGA contains an Infrared Communication Module (IRCOM) for IrDA communication with baud rates up to 115.2 kbps. This supports three modulation schemes: 3/16 of baud rate period, fixed programmable pulse time based on the Peripheral Clock speed, or pulse modulation disabled. There is one IRCOM available which can be connected to any USART to enable infrared pulse coding/decoding for that USART. 39 8069L–AVR–11/09 XMEGA A4 24. Crypto Engine 24.1 Features • Data Encryption Standard (DES) CPU instruction • Advanced Encryption Standard (AES) Crypto module • DES Instruction – Encryption and Decryption – Single-cycle DES instruction – Encryption/Decryption in 16 clock cycles per 8-byte block • AES Crypto Module – Encryption and Decryption – Support 128-bit keys – Support XOR data load mode to the State memory for Cipher Block Chaining – Encryption/Decryption in 375 clock cycles per 16-byte block 24.2 Overview The Advanced Encryption Standard (AES) and Data Encryption Standard (DES) are two commonly used encryption standards. These are supported through an AES peripheral module and a DES CPU instruction. All communication interfaces and the CPU can optionally use AES and DES encrypted communication and data storage. DES is supported by a DES instruction in the AVR XMEGA CPU. The 8-byte key and 8-byte data blocks must be loaded into the Register file, and then DES must be executed 16 times to encrypt/decrypt the data block. The AES Crypto Module encrypts and decrypts 128-bit data blocks with the use of a 128-bit key. The key and data must be loaded into the key and state memory in the module before encryption/decryption is started. It takes 375 peripheral clock cycles before the encryption/decryption is done and decrypted/encrypted data can be read out, and an optional interrupt can be generated. The AES Crypto Module also has DMA support with transfer triggers when encryption/decryption is done and optional auto-start of encryption/decryption when the state memory is fully loaded. 40 8069L–AVR–11/09 XMEGA A4 25. ADC - 12-bit Analog to Digital Converter 25.1 Features • • • • • • • • • • • • • 25.2 One ADC with 12-bit resolution 2 Msps sample rate Signed and Unsigned conversions 4 result registers with individual input channel control 12 single ended inputs 8x4 differential inputs 4 internal inputs: – Integrated Temperature Sensor – DAC Output – VCC voltage divided by 10 – Bandgap voltage Software selectable gain of 2, 4, 8, 16, 32 or 64 Selectable accuracy of 8- or 12-bit. Internal or External Reference selection Event triggered conversion for accurate timing DMA transfer of conversion results Interrupt/Event on compare result Overview XMEGA A4 devices have one Analog to Digital Converter (ADC), see Figure 25-1 on page 42. The ADC converts analog voltages to digital values. The ADC has 12-bit resolution and is capable of converting up to 2 million samples per second. The input selection is flexible, and both single-ended and differential measurements can be done. For differential measurements an optional gain stage is available to increase the dynamic range. In addition several internal signal inputs are available. The ADC can provide both signed and unsigned results. This is a pipeline ADC. A pipeline ADC consists of several consecutive stages, where each stage convert one part of the result. The pipeline design enables high sample rate at low clock speeds, and remove limitations on samples speed versus propagation delay. This also means that a new analog voltage can be sampled and a new ADC measurement started while other ADC measurements are ongoing. ADC measurements can either be started by application software or an incoming event from another peripheral in the device. Four different result registers with individual input selection (MUX selection) are provided to make it easier for the application to keep track of the data. Each result register and MUX selection pair is referred to as an ADC Channel. It is possible to use DMA to move ADC results directly to memory or peripherals when conversions are done. Both internal and external analog reference voltages can be used. An accurate internal 1.0V reference is available. An integrated temperature sensor is available and the output from this can be measured with the ADC. The output from the DAC, VCC/10 and the Bandgap voltage can also be measured by the ADC. 41 8069L–AVR–11/09 XMEGA A4 Figure 25-1. ADC overview Channel A MUX selection Channel D MUX selection Configuration Reference selection Channel A Register Pin inputs Channel B Register ADC Pin inputs Internal inputs Channel B MUX selection Channel C MUX selection Event Trigger Channel C Register 1-64 X Channel D Register Each ADC has four MUX selection registers with a corresponding result register. This means that four channels can be sampled within 1.5 µs without any intervention by the application other than starting the conversion. The results will be available in the result registers. The ADC may be configured for 8- or 12-bit resolution, reducing the minimum conversion time (propagation delay) from 3.5 µs for 12-bit to 2.5 µs for 8-bit resolution. ADC conversion results are provided left- or right adjusted with optional ‘1’ or ‘0’ padding. This eases calculation when the result is represented as a signed integer (signed 16-bit number). PORTA has one ADC. Notation of this peripheral is ADCA. 42 8069L–AVR–11/09 XMEGA A4 26. DAC - 12-bit Digital to Analog Converter 26.1 Features • • • • • • • • 26.2 One DAC with 12-bit resolution Up to 1 Msps conversion rate Flexible conversion range Multiple trigger sources 1 continuous output or 2 Sample and Hold (S/H) outputs Built-in offset and gain calibration High drive capabilities Low Power Mode Overview The XMEGA A4 devices feature one 12-bit, 1 Msps DAC with built-in offset and gain calibration, see Figure 26-1 on page 43. A DAC converts a digital value into an analog signal. The DAC may use an internal 1.1 voltage as the upper limit for conversion, but it is also possible to use the supply voltage or any applied voltage in-between. The external reference input is shared with the ADC reference input. Figure 26-1. DAC overview Configuration Reference selection Channel A Register Channel A DAC Channel B Channel B Register Event Trigger The DAC has one continuous output with high drive capabilities for both resistive and capacitive loads. It is also possible to split the continuous time channel into two Sample and Hold (S/H) channels, each with separate data conversion registers. A DAC conversion may be started from the application software by writing the data conversion registers. The DAC can also be configured to do conversions triggered by the Event System to have regular timing, independent of the application software. DMA may be used for transferring data from memory locations to DAC data registers. The DAC has a built-in calibration system to reduce offset and gain error when loading with a calibration value from software. PORTB has one DAC. Notation of this peripheral is DACB. 43 8069L–AVR–11/09 XMEGA A4 27. AC - Analog Comparator 27.1 Features • Two Analog Comparators • Selectable Power vs. Speed • Selectable hysteresis – 0, 20 mV, 50 mV • Analog Comparator output available on pin • Flexible Input Selection – All pins on the port – Output from the DAC – Bandgap reference voltage. – Voltage scaler that can perform a 64-level scaling of the internal VCC voltage. • Interrupt and event generation on – Rising edge – Falling edge – Toggle • Window function interrupt and event generation on – Signal above window – Signal inside window – Signal below window 27.2 Overview XMEGA A4 features two Analog Comparators (AC). An Analog Comparator compares two voltages, and the output indicates which input is largest. The Analog Comparator may be configured to give interrupt requests and/or events upon several different combinations of input change. Both hysteresis and propagation delays may be adjusted in order to find the optimal operation for each application. A wide range of input selection is available, both external pins and several internal signals can be used. The Analog Comparators are always grouped in pairs (AC0 and AC1) on each analog port. They have identical behavior but separate control registers. Optionally, the state of the comparator is directly available on a pin. PORTA has one AC pair. Notation of this peripheral is ACA. 44 8069L–AVR–11/09 XMEGA A4 Figure 27-1. Analog comparator overview Pin inputs Internal inputs + Pin 0 output AC0 Pin inputs - Internal inputs VCC scaled Interrupt sensitivity control Pin inputs Interrupts Events Internal inputs + AC1 Pin inputs Internal inputs - VCC scaled 45 8069L–AVR–11/09 XMEGA A4 27.3 Input Selection The Analog comparators have a very flexible input selection and the two comparators grouped in a pair may be used to realize a window function. One pair of analog comparators is shown in Figure 27-1 on page 45. • Input selection from pin – Pin 0, 1, 2, 3, 4, 5, 6 selectable to positive input of analog comparator – Pin 0, 1, 3, 5, 7 selectable to negative input of analog comparator • Internal signals available on positive analog comparator inputs – Output from 12-bit DAC • Internal signals available on negative analog comparator inputs – 64-level scaler of the VCC, available on negative analog comparator input – Bandgap voltage reference – Output from 12-bit DAC 27.4 Window Function The window function is realized by connecting the external inputs of the two analog comparators in a pair as shown in Figure 27-2. Figure 27-2. Analog comparator window function + AC0 Upper limit of window Interrupt sensitivity control Input signal Interrupts Events + AC1 Lower limit of window - 46 8069L–AVR–11/09 XMEGA A4 28. OCD - On-chip Debug 28.1 Features • Complete Program Flow Control – Go, Stop, Reset, Step into, Step over, Step out, Run-to-Cursor Debugging on C and high-level language source code level Debugging on Assembler and disassembler level 1 dedicated program address or source level breakpoint for AVR Studio / debugger 4 Hardware Breakpoints Unlimited Number of User Program Breakpoints Unlimited Number of User Data Breakpoints, with break on: – Data location read, write or both read and write – Data location content equal or not equal to a value – Data location content is greater or less than a value – Data location content is within or outside a range – Bits of a data location are equal or not equal to a value • Non-Intrusive Operation – No hardware or software resources in the device are used • High Speed Operation – No limitation on debug/programming clock frequency versus system clock frequency • • • • • • 28.2 Overview The XMEGA A4 has a powerful On-Chip Debug (OCD) system that - in combination with Atmel’s development tools - provides all the necessary functions to debug an application. It has support for program and data breakpoints, and can debug an application from C and high level language source code level, as well as assembler and disassembler level. It has full Non-Intrusive Operation and no hardware or software resources in the device are used. The ODC system is accessed through an external debugging tool which connects to the PDI physical interface. Refer to ”Program and Debug Interfaces” on page 48. 47 8069L–AVR–11/09 XMEGA A4 29. Program and Debug Interfaces 29.1 Features • PDI - Program and Debug Interface (Atmel proprietary 2-pin interface) • Access to the OCD system • Programming of Flash, EEPROM, Fuses and Lock Bits 29.2 Overview The programming and debug facilities are accessed through PDI physical interface. The PDI physical interface uses one dedicated pin together with the Reset pin, and no general purpose pins are used. 29.3 PDI - Program and Debug Interface The PDI is an Atmel proprietary protocol for communication between the microcontroller and Atmel’s development tools. 48 8069L–AVR–11/09 XMEGA A4 30. Pinout and Pin Functions The pinout of XMEGA A4 is shown in ”Pinout/Block Diagram” on page 3. In addition to general I/O functionality, each pin may have several functions. This will depend on which peripheral is enabled and connected to the actual pin. Only one of the alternate pin functions can be used at time. 30.1 Alternate Pin Functions Description The tables below shows the notation for all pin functions available and describe their functions. 30.1.1 30.1.2 30.1.3 30.1.4 Operation/Power Supply VCC Digital supply voltage AVCC Analog supply voltage GND Ground Port Interrupt functions SYNC Port pin with full synchronous and limited asynchronous interrupt function ASYNC Port pin with full synchronous and full asynchronous interrupt function Analog functions ACn Analog Comparator input pin n AC0OUT Analog Comparator 0 Output ADCn Analog to Digital Converter input pin n DACn Digital to Analog Converter output pin n AREF Analog Reference input pin Timer/Counter and AWEX functions OCnx Output Compare Channel x for Timer/Counter n OCnx Inverted Output Compare Channel x for Timer/Counter n 49 8069L–AVR–11/09 XMEGA A4 30.1.5 30.1.6 30.1.7 Communication functions SCL Serial Clock for TWI SDA Serial Data for TWI XCKn Transfer Clock for USART n RXDn Receiver Data for USART n TXDn Transmitter Data for USART n SS Slave Select for SPI MOSI Master Out Slave In for SPI MISO Master In Slave Out for SPI SCK Serial Clock for SPI Oscillators, Clock and Event TOSCn Timer Oscillator pin n XTALn Input/Output for inverting Oscillator pin n Debug/System functions RESET Reset pin PDI_CLK Program and Debug Interface Clock pin PDI_DATA Program and Debug Interface Data pin 50 8069L–AVR–11/09 XMEGA A4 30.2 Alternate Pin Functions The tables below shows the main and alternate pin functions for all pins on each port. It also shows which peripheral which make use of or enable the alternate pin function. Table 30-1. PORTA Port A - Alternate functions PIN # INTERRUPT ADCA POS ADCA NEG ADCA GAINPOS ADCA GAINNEG ACA POS ACA NEG GND 38 AVCC 39 PA0 40 SYNC ADC0 ADC0 ADC0 AC0 AC0 PA1 41 SYNC ADC1 ADC1 ADC1 AC1 AC1 PA2 42 SYNC/ASYNC ADC2 ADC2 ADC2 AC2 PA3 43 SYNC ADC3 ADC3 ADC3 AC3 PA4 44 SYNC ADC4 ADC4 ADC4 AC4 PA5 1 SYNC ADC5 ADC5 ADC5 AC5 PA6 2 SYNC ADC6 ADC6 ADC6 AC6 PA7 3 SYNC ADC7 ADC7 ADC7 Table 30-2. PORTB INTERRUPT ADCA POS PB0 4 SYNC ADC8 PB1 5 SYNC ADC9 PB2 6 SYNC/ASYNC ADC10 DAC0 PB3 7 SYNC ADC11 DAC1 PORTC REF AREF AC3 AC5 AC7 AC0 OUT Port B - Alternate functions PIN # Table 30-3. ACA OUT DACB REF AREF Port C - Alternate functions PIN # INTERRUPT TCC0 AWEXC 10 SYNC OC0A OC0A PC1 11 SYNC OC0B OC0A XCK0 PC2 12 SYNC/ASYNC OC0C OC0B RXD0 PC3 13 SYNC OC0D OC0B PC4 14 SYNC OC0C OC1A PC5 15 SYNC OC0C OC1B XCK1 MOSI PC6 16 SYNC OC0D RXD1 MISO PC7 17 SYNC OC0D TXD1 SCK GND 8 VCC 9 PC0 TCC1 USARTC0 USARTC1 SPI TWIC CLOCKOUT EVENTOUT CLKOUT EVOUT SDA SCL TXD0 SS 51 8069L–AVR–11/09 XMEGA A4 Table 30-4. PORTD Port D - Alternate functions PIN # INTERRUPT TCD0 SYNC OC0A TCD1 USARTD0 USARTD1 SPID GND 18 VCC 19 PD0 20 PD1 21 SYNC OC0B XCK0 PD2 22 SYNC/ASYNC OC0C RXD0 PD3 23 SYNC OC0D TXD0 PD4 24 SYNC OC1A PD5 25 SYNC OC1B XCK1 MOSI PD6 26 SYNC RXD1 MISO PD7 27 SYNC TXD1 SCK Table 30-5. PORT E CLKOUT EVOUT Port E - Alternate functions PIN # INTERRUPT TCE0 28 SYNC OC0A PE1 29 SYNC OC0B XCK0 GND 30 VCC 31 PE2 32 SYNC/ASYNC OC0C RXD0 PE3 33 SYNC OC0D TXD0 PORTR EVENTOUT SS PE0 Table 30-6. CLOCKOUT USARTE0 TWIE SDA SCL Port R - Alternate functions PIN # XTAL PDI TOSC PDI 34 PDI_DATA RESET 35 PDI_CLK PR0 36 XTAL2 TOSC2 PR1 37 XTAL1 TOSC1 52 8069L–AVR–11/09 XMEGA A4 31. Peripheral Module Address Map The address maps show the base address for each peripheral and module in XMEGA A4. For complete register description and summary for each peripheral module, refer to the XMEGA A Manual. Base Address 0x0000 0x0010 0x0014 0x0018 0x001C 0x0030 0x0040 0x0048 0x0050 0x0060 0x0068 0x0070 0x0078 0x0080 0x0090 0x00A0 0x00B0 0x00C0 0x0100 0x0180 0x01C0 0x0200 0x0320 0x0380 0x0400 0x0480 0x04A0 0x0600 0x0620 0x0640 0x0660 0x0680 0x07E0 0x0800 0x0840 0x0880 0x0890 0x08A0 0x08B0 0x08C0 0x08F8 0x0900 0x0940 0x0990 0x09A0 0x09B0 0x09C0 0x0A00 0x0A90 0x0AA0 Name Description GPIO VPORT0 VPORT1 VPORT2 VPORT3 CPU CLK SLEEP OSC DFLLRC32M DFLLRC2M PR RST WDT MCU PMIC PORTCFG AES DMA EVSYS NVM ADCA DACB ACA RTC TWIC TWIE PORTA PORTB PORTC PORTD PORTE PORTR TCC0 TCC1 AWEXC HIRESC USARTC0 USARTC1 SPIC IRCOM TCD0 TCD1 HIRESD USARTD0 USARTD1 SPID TCE0 HIRESE USARTE0 General Purpose IO Registers Virtual Port 0 Virtual Port 1 Virtual Port 2 Virtual Port 2 CPU Clock Control Sleep Controller Oscillator Control DFLL for the 32 MHz Internal RC Oscillator DFLL for the 2 MHz RC Oscillator Power Reduction Reset Controller Watch-Dog Timer MCU Control Programmable MUltilevel Interrupt Controller Port Configuration AES Module DMA Controller Event System Non Volatile Memory (NVM) Controller Analog to Digital Converter on port A Digital to Analog Converter on port B Analog Comparator pair on port A Real Time Counter Two Wire Interface on port C Two Wire Interface on port E Port A Port B Port C Port D Port E Port R Timer/Counter 0 on port C Timer/Counter 1 on port C Advanced Waveform Extension on port C High Resolution Extension on port C USART 0 on port C USART 1 on port C Serial Peripheral Interface on port C Infrared Communication Module Timer/Counter 0 on port D Timer/Counter 1 on port D High Resolution Extension on port D USART 0 on port D USART 1 on port D Serial Peripheral Interface on port D Timer/Counter 0 on port E High Resolution Extension on port E USART 0 on port E 53 8069L–AVR–11/09 XMEGA A4 32. Instruction Set Summary Mnemonics Operands Description Operation Flags #Clocks Arithmetic and Logic Instructions Add without Carry Rd ← Rd + Rr Z,C,N,V,S,H 1 Rd, Rr Add with Carry Rd ← Rd + Rr + C Z,C,N,V,S,H 1 Rd, K Add Immediate to Word Rd ← Rd + 1:Rd + K Z,C,N,V,S 2 SUB Rd, Rr Subtract without Carry Rd ← Rd - Rr Z,C,N,V,S,H 1 SUBI Rd, K Subtract Immediate Rd ← Rd - K Z,C,N,V,S,H 1 SBC Rd, Rr Subtract with Carry Rd ← Rd - Rr - C Z,C,N,V,S,H 1 SBCI Rd, K Subtract Immediate with Carry Rd ← Rd - K - C Z,C,N,V,S,H 1 SBIW Rd, K Subtract Immediate from Word Rd + 1:Rd ← Rd + 1:Rd - K Z,C,N,V,S 2 ADD Rd, Rr ADC ADIW AND Rd, Rr Logical AND Rd ← Rd • Rr Z,N,V,S 1 ANDI Rd, K Logical AND with Immediate Rd ← Rd • K Z,N,V,S 1 OR Rd, Rr Logical OR Rd ← Rd v Rr Z,N,V,S 1 ORI Rd, K Logical OR with Immediate Rd ← Rd v K Z,N,V,S 1 EOR Rd, Rr Exclusive OR Rd ← Rd ⊕ Rr Z,N,V,S 1 COM Rd One’s Complement Rd ← $FF - Rd Z,C,N,V,S 1 NEG Rd Two’s Complement Rd ← $00 - Rd Z,C,N,V,S,H 1 SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V,S 1 CBR Rd,K Clear Bit(s) in Register Rd ← Rd • ($FFh - K) Z,N,V,S 1 INC Rd Increment Rd ← Rd + 1 Z,N,V,S 1 DEC Rd Decrement Rd ← Rd - 1 Z,N,V,S 1 TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V,S 1 CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V,S 1 SER Rd Set Register Rd ← $FF None 1 MUL Rd,Rr Multiply Unsigned R1:R0 ← Rd x Rr (UU) Z,C 2 MULS Rd,Rr Multiply Signed R1:R0 ← Rd x Rr (SS) Z,C 2 MULSU Rd,Rr Multiply Signed with Unsigned R1:R0 ← Rd x Rr (SU) Z,C 2 FMUL Rd,Rr Fractional Multiply Unsigned R1:R0 ← Rd x Rr<<1 (UU) Z,C 2 FMULS Rd,Rr Fractional Multiply Signed R1:R0 ← Rd x Rr<<1 (SS) Z,C 2 FMULSU Rd,Rr Fractional Multiply Signed with Unsigned R1:R0 ← Rd x Rr<<1 (SU) Z,C 2 DES K Data Encryption if (H = 0) then R15:R0 else if (H = 1) then R15:R0 ← ← Encrypt(R15:R0, K) Decrypt(R15:R0, K) PC ← PC + k + 1 None 2 1/2 Branch Instructions RJMP k Relative Jump IJMP Indirect Jump to (Z) PC(15:0) PC(21:16) ← ← Z, 0 None 2 EIJMP Extended Indirect Jump to (Z) PC(15:0) PC(21:16) ← ← Z, EIND None 2 JMP k Jump PC ← k None 3 RCALL k Relative Call Subroutine PC ← PC + k + 1 None 2 / 3(1) ICALL Indirect Call to (Z) PC(15:0) PC(21:16) ← ← Z, 0 None 2 / 3(1) EICALL Extended Indirect Call to (Z) PC(15:0) PC(21:16) ← ← Z, EIND None 3(1) 54 8069L–AVR–11/09 XMEGA A4 Mnemonics Operands Description CALL k call Subroutine PC ← RET Subroutine Return PC RETI Interrupt Return CPSE Rd,Rr Compare, Skip if Equal CP Rd,Rr Compare CPC Rd,Rr Compare with Carry CPI Rd,K Compare with Immediate Operation Flags #Clocks k None 3 / 4(1) ← STACK None 4 / 5(1) PC ← STACK I 4 / 5(1) if (Rd = Rr) PC ← PC + 2 or 3 None 1/2/3 Rd - Rr Z,C,N,V,S,H 1 Rd - Rr - C Z,C,N,V,S,H 1 Rd - K Z,C,N,V,S,H 1 SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b) = 0) PC ← PC + 2 or 3 None 1/2/3 SBRS Rr, b Skip if Bit in Register Set if (Rr(b) = 1) PC ← PC + 2 or 3 None 1/2/3 SBIC A, b Skip if Bit in I/O Register Cleared if (I/O(A,b) = 0) PC ← PC + 2 or 3 None 2/3/4 SBIS A, b Skip if Bit in I/O Register Set If (I/O(A,b) =1) PC ← PC + 2 or 3 None 2/3/4 BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC ← PC + k + 1 None 1/2 BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC ← PC + k + 1 None 1/2 BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1/2 BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1/2 BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1/2 BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1/2 BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1/2 BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1/2 BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1/2 BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1/2 BRGE k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1/2 BRLT k Branch if Less Than, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1/2 BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1/2 BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1/2 BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None 1/2 BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1/2 BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1/2 BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1/2 BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None 1/2 BRID k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None 1/2 MOV Rd, Rr Copy Register Rd ← Rr None 1 MOVW Rd, Rr Copy Register Pair Rd+1:Rd ← Rr+1:Rr None 1 LDI Rd, K Load Immediate Rd ← K None 1 LDS Rd, k Load Direct from data space Rd ← (k) None 2(1)(2) LD Rd, X Load Indirect Rd ← (X) None 1(1)(2) LD Rd, X+ Load Indirect and Post-Increment Rd X ← ← (X) X+1 None 1(1)(2) LD Rd, -X Load Indirect and Pre-Decrement X ← X - 1, Rd ← (X) ← ← X-1 (X) None 2(1)(2) LD Rd, Y Load Indirect Rd ← (Y) ← (Y) None 1(1)(2) LD Rd, Y+ Load Indirect and Post-Increment Rd Y ← ← (Y) Y+1 None 1(1)(2) Data Transfer Instructions 55 8069L–AVR–11/09 XMEGA A4 Mnemonics Operands Description Flags #Clocks LD Rd, -Y Load Indirect and Pre-Decrement Y Rd ← ← Y-1 (Y) None 2(1)(2) LDD Rd, Y+q Load Indirect with Displacement Rd ← (Y + q) None 2(1)(2) LD Rd, Z Load Indirect Rd ← (Z) None 1(1)(2) LD Rd, Z+ Load Indirect and Post-Increment Rd Z ← ← (Z), Z+1 None 1(1)(2) LD Rd, -Z Load Indirect and Pre-Decrement Z Rd ← ← Z - 1, (Z) None 2(1)(2) LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2(1)(2) STS k, Rr Store Direct to Data Space (k) ← Rd None 2(1) ST X, Rr Store Indirect (X) ← Rr None 1(1) ST X+, Rr Store Indirect and Post-Increment (X) X ← ← Rr, X+1 None 1(1) ST -X, Rr Store Indirect and Pre-Decrement X (X) ← ← X - 1, Rr None 2(1) ST Y, Rr Store Indirect (Y) ← Rr None 1(1) ST Y+, Rr Store Indirect and Post-Increment (Y) Y ← ← Rr, Y+1 None 1(1) ST -Y, Rr Store Indirect and Pre-Decrement Y (Y) ← ← Y - 1, Rr None 2(1) STD Y+q, Rr Store Indirect with Displacement (Y + q) ← Rr None 2(1) ST Z, Rr Store Indirect (Z) ← Rr None 1(1) ST Z+, Rr Store Indirect and Post-Increment (Z) Z ← ← Rr Z+1 None 1(1) ST -Z, Rr Store Indirect and Pre-Decrement Z ← Z-1 None 2(1) STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2(1) Load Program Memory R0 ← (Z) None 3 LPM Operation LPM Rd, Z Load Program Memory Rd ← (Z) None 3 LPM Rd, Z+ Load Program Memory and Post-Increment Rd Z ← ← (Z), Z+1 None 3 Extended Load Program Memory R0 ← (RAMPZ:Z) None 3 ELPM ELPM Rd, Z Extended Load Program Memory Rd ← (RAMPZ:Z) None 3 ELPM Rd, Z+ Extended Load Program Memory and PostIncrement Rd Z ← ← (RAMPZ:Z), Z+1 None 3 Store Program Memory (RAMPZ:Z) ← R1:R0 None - (RAMPZ:Z) Z ← ← R1:R0, Z+2 None - Rd ← I/O(A) None 1 I/O(A) ← Rr None 1 STACK ← Rr None 1(1) Rd ← STACK None 2(1) Rd(n+1) Rd(0) C ← ← ← Rd(n), 0, Rd(7) Z,C,N,V,H 1 Rd(n) Rd(7) C ← ← ← Rd(n+1), 0, Rd(0) Z,C,N,V 1 SPM SPM Z+ Store Program Memory and Post-Increment by 2 IN Rd, A In From I/O Location OUT A, Rr Out To I/O Location PUSH Rr Push Register on Stack POP Rd Pop Register from Stack Bit and Bit-test Instructions LSL Rd Logical Shift Left LSR Rd Logical Shift Right 56 8069L–AVR–11/09 XMEGA A4 Mnemonics Operands Description Operation ROL Rd Rotate Left Through Carry ROR Rd ASR Flags #Clocks Rd(0) Rd(n+1) C ← ← ← C, Rd(n), Rd(7) Z,C,N,V,H 1 Rotate Right Through Carry Rd(7) Rd(n) C ← ← ← C, Rd(n+1), Rd(0) Z,C,N,V 1 Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1 SWAP Rd Swap Nibbles Rd(3..0) ↔ Rd(7..4) None 1 BSET s Flag Set SREG(s) ← 1 SREG(s) 1 BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1 SBI A, b Set Bit in I/O Register I/O(A, b) ← 1 None 1 CBI A, b Clear Bit in I/O Register I/O(A, b) ← 0 None 1 BST Rr, b Bit Store from Register to T T ← Rr(b) T 1 BLD Rd, b Bit load from T to Register Rd(b) ← T None 1 SEC Set Carry C ← 1 C 1 CLC Clear Carry C ← 0 C 1 SEN Set Negative Flag N ← 1 N 1 CLN Clear Negative Flag N ← 0 N 1 SEZ Set Zero Flag Z ← 1 Z 1 CLZ Clear Zero Flag Z ← 0 Z 1 SEI Global Interrupt Enable I ← 1 I 1 CLI Global Interrupt Disable I ← 0 I 1 SES Set Signed Test Flag S ← 1 S 1 CLS Clear Signed Test Flag S ← 0 S 1 SEV Set Two’s Complement Overflow V ← 1 V 1 CLV Clear Two’s Complement Overflow V ← 0 V 1 SET Set T in SREG T ← 1 T 1 CLT Clear T in SREG T ← 0 T 1 SEH Set Half Carry Flag in SREG H ← 1 H 1 CLH Clear Half Carry Flag in SREG H ← 0 H 1 MCU Control Instructions BREAK Break NOP No Operation SLEEP Sleep WDR Watchdog Reset Notes: (See specific descr. for BREAK) None 1 None 1 (see specific descr. for Sleep) None 1 (see specific descr. for WDR) None 1 1. Cycle times for Data memory accesses assume internal memory accesses, and are not valid for accesses via the external RAM interface. 2. One extra cycle must be added when accessing Internal SRAM. 57 8069L–AVR–11/09 XMEGA A4 33. Packaging information 33.1 44A PIN 1 B PIN 1 IDENTIFIER E1 e E D1 D C 0˚~7˚ A1 A2 A L COMMON DIMENSIONS (Unit of Measure = mm) MIN NOM MAX A – – 1.20 A1 0.05 – 0.15 SYMBOL Notes: 1. This package conforms to JEDEC reference MS-026, Variation ACB. 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch. 3. Lead coplanarity is 0.10 mm maximum. A2 0.95 1.00 1.05 D 11.75 12.00 12.25 D1 9.90 10.00 10.10 E 11.75 12.00 12.25 E1 9.90 10.00 10.10 B 0.30 – 0.45 C 0.09 – 0.20 L 0.45 – 0.75 e NOTE Note 2 Note 2 0.80 TYP 10/5/2001 R 2325 Orchard Parkway San Jose, CA 95131 TITLE 44A, 44-lead, 10 x 10 mm Body Size, 1.0 mm Body Thickness, 0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP) DRAWING NO. REV. 44A B 58 8069L–AVR–11/09 XMEGA A4 33.2 44M1 D Marked Pin# 1 ID E SEATING PLANE A1 TOP VIEW A3 A K L Pin #1 Corner D2 1 2 3 Option A SIDE VIEW Pin #1 Triangle E2 Option B K Option C b e Pin #1 Chamfer (C 0.30) Pin #1 Notch (0.20 R) BOTTOM VIEW COMMON DIMENSIONS (Unit of Measure = mm) SYMBOL MIN NOM MAX A 0.80 0.90 1.00 A1 – 0.02 0.05 A3 0.20 REF b 0.18 0.23 0.30 D 6.90 7.00 7.10 D2 5.00 5.20 5.40 E 6.90 7.00 7.10 E2 5.00 5.20 5.40 e Note: JEDEC Standard MO-220, Fig. 1 (SAW Singulation) VKKD-3. NOTE 0.50 BSC L 0.59 0.64 0.69 K 0.20 0.26 0.41 9/26/08 Package Drawing Contact: [email protected] TITLE 44M1, 44-pad, 7 x 7 x 1.0 mm Body, Lead Pitch 0.50 mm, 5.20 mm Exposed Pad, Thermally Enhanced Plastic Very Thin Quad Flat No Lead Package (VQFN) GPC ZWS DRAWING NO. REV. 44M1 H 59 8069L–AVR–11/09 XMEGA A4 33.3 49C2 E A1 BALL ID 0.10 D A1 TOP VIEW A A2 SIDE VIEW E1 G e F E D D1 COMMON DIMENSIONS (Unit of Measure = mm) C B 1 1 BALL CORNER MIN NOM MAX A – – 1.00 A1 0.20 – – A2 0.65 – – D 4.90 5.00 5.10 SYMBOL A 2 3 4 5 b 6 7 e BOTTOM VIEW 49 - Ø0.35 ± 0.05 D1 E E1 NOTE 3.90 BSC 4.90 5.00 5.10 3.90 BSC 60 8069L–AVR–11/09 XMEGA A4 34. Electrical Characteristics 34.1 Absolute Maximum Ratings* Operating Temperature.................................. -55°C to +125°C *NOTICE: Storage Temperature ..................................... -65°C to +150°C Voltage on any Pin with respect to Ground..-0.5V to VCC+0.5V Maximum Operating Voltage ............................................ 3.6V DC Current per I/O Pin ............................................... 20.0 mA Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. DC Current VCC and GND Pins................................ 200.0 mA 34.2 DC Characteristics Current Consumption Symbol Parameter Condition VCC = 3.0V 75 VCC = 1.8V 260 VCC = 3.0V 570 VCC = 1.8V 510 690 VCC = 3.0V 1.1 1.49 VCC = 3.0V 11.4 13 VCC = 1.8V 2.8 VCC = 3.0V 4.8 VCC = 1.8V 80 VCC = 3.0V 150 VCC = 1.8V 160 225 VCC = 3.0V 295 390 VCC = 3.0V 4.8 6 All Functions Disabled VCC = 3.0V 0.1 All Functions Disabled, T = 85°C VCC = 3.0V 1.5 VCC = 1.8V 1.1 VCC = 3.0V 1.1 ULP, WDT, Sampled BOD, T=85°C VCC = 3.0V 2.6 RTC 1 kHz from Low Power 32 kHz TOSC VCC = 1.8V 0.52 VCC = 3.0V 0.61 RTC from Low Power 32 kHz TOSC VCC = 3.0V 1.16 without Reset pull-up resistor current VCC = 3.0V 505 Active 2 MHz, Ext. Clk 32 MHz, Ext. Clk (1) 32 kHz, Ext. Clk 1 MHz, Ext. Clk Idle 2 MHz, Ext. Clk 32 MHz, Ext. Clk Power-down mode ULP, WDT, Sampled BOD Power-save mode Reset Current Consumption Max. 30 1 MHz, Ext. Clk ICC Typ. VCC = 1.8V 32 kHz, Ext. Clk Power Supply Current Min. Units µA mA µA mA 5 10 µA 61 8069L–AVR–11/09 XMEGA A4 Current Consumption (Continued) Symbol Parameter Condition Min. Typ. Max. Units (2) Module current consumption RC32M RC32M w/DFLL 470 Internal 32.768 kHz oscillator as DFLL source RC2M RC2M w/DFLL 112 Internal 32.768 kHz oscillator as DFLL source RC32K PLL ICC 600 145 30 Multiplication factor = 10x 225 Watchdog normal mode 0.9 BOD Continuous mode 120 BOD Sampled mode 1 Internal 1.00 V ref 80 Temperature reference 80 RTC with int. 32 kHz RC as source No prescaling 30 RTC with ULP as source No prescaling 0.9 ADC 250 kS/s - Int. 1V Ref 2.9 DAC Normal Mode Single channel, Int. 1V Ref 2.4 DAC Low-Power Mode Single channel, Int. 1V Ref 1.1 AC High-speed 280 AC Low-power 110 USART Rx and Tx enabled, 9600 BAUD µA mA 5.3 µA DMA Timer/Counter 95 Prescaler DIV1 AES Note: 19 140 1. All Power Reduction Registers set. T = 25°C if not specified. 2. All parameters measured as the difference in current consumption between module enabled and disabled. All data at VCC = 3.0V, ClkSYS = 1 MHz External clock with no prescaling, T = 25°C. 62 8069L–AVR–11/09 XMEGA A4 34.3 Speed Table 34-1. Symbol ClkSYS Speed Parameter Condition System clock frequency Min Typ Max VCC = 1.6V 0 12 VCC = 1.8V 0 12 VCC = 2.7V 0 32 VCC = 3.6V 0 32 Units MHz The maximum System clock frequency of the XMEGA A4 devices is depending on VCC. As shown in Figure 34-1 on page 63 the Frequency vs. V C C curve is linear between 1.8V < VCC < 2.7V. Figure 34-1. Operating Frequency vs.Vcc MHz 32 Safe Operating Area 12 1.6 1.8 2.7 3.6 V 63 8069L–AVR–11/09 XMEGA A4 34.4 Flash and EEPROM Memory Characteristics Table 34-2. Symbol Endurance and Data Retention Parameter Condition Min 25°C 10K 85°C 10K 25°C 100 55°C 25 25°C 80K 85°C 30K 25°C 100 55°C 25 Typ Max Write/Erase cycles Units Cycle Flash Data retention Year Write/Erase cycles Cycle EEPROM Data retention Table 34-3. Symbol Programming time Parameter Chip Erase Flash EEPROM Notes: Year Condition Flash, EEPROM (2) and SRAM Erase Min Typ(1) Max Units 40 Page Erase 6 Page Write 6 Page WriteAutomatic Page Erase and Write 12 Page Erase 6 Page Write 6 Page WriteAutomatic Page Erase and Write 12 ms 1. Programming is timed from the internal 2 MHz oscillator. 2. EEPROM is not erased if the EESAVE fuse is programmed. 64 8069L–AVR–11/09 XMEGA A4 34.5 ADC Characteristics Table 34-4. ADC Characteristics Symbol Parameter Condition RES Resolution INL DNL ADCclk Min Typ Max Units Programmable: 8/12 8 12 12 Bits Integral Non-Linearity 500 ksps -5 ±2 5 LSB Differential Non-Linearity 500 ksps < ±1 LSB Gain Error < ±10 mV Offset Error < ±2 mV ADC Clock frequency Max is 1/4 of Peripheral Clock Conversion rate VREF Conversion time (propagation delay) (RES+2)/2+GAIN RES = 8 or 12, GAIN = 0 or 1 Sampling Time 1/2 ADCclk cycle 5 7 2000 kHz 2000 ksps 8 ADCclk cycles 0.25 uS Conversion range 0 VREF V Reference voltage 1.0 Vcc-0.6V V Input bandwidth INT1V kHz Internal 1.00V reference 1.00 V INTVCC Internal VCC/1.6 VCC/1.6 V SCALEDVCC Scaled internal VCC/10 input VCC/10 V Reference input resistance > 10 MΩ RAREF Start-up time Internal input sampling speed Table 34-5. Symbol µs ksps ADC Gain Stage Characteristics Parameter Gain error Condition 1 to 64 gain Noise level at input Clock rate Min Typ Max < ±1 Offset error Vrms 100 Temp. sensor, VCC/10, Bandgap Units % < ±1 VREF = Int. 1V 0.12 VREF = Ext. 2V 0.06 mV 64x gain Same as ADC 1000 kHz 65 8069L–AVR–11/09 XMEGA A4 34.6 DAC Characteristics Table 34-6. Symbol DAC Characteristics Parameter Condition INL Integral Non-Linearity VCC = 1.6-3.6V DNL Differential Non-Linearity VCC = 1.6-3.6V Fclk Min Typ VREF = Ext. ref ±5 VREF = Ext. ref <±1 External reference voltage 1.1 Reference input impedance LSB 1000 ksps AVCC-0.6 V >10 MΩ DC output impedance 34.7 kΩ Max output voltage Rload=100kΩ AVCC*0.98 Min output voltage Rload=100kΩ <0.030 Offset factory calibration accuracy Continues mode, VCC=3.0V, VREF = Int 1.00V, T=85°C Gain factory calibration accuracy Units VREF= AVCC Conversion rate AREF Max V ±0.5 LSB ±2.5 Analog Comparator Characteristics Table 34-7. Symbol Analog Comparator Characteristics Parameter Condition Input Offset Voltage VCC = 1.6 - 3.6V < ±10 mV Input Leakage Current VCC = 1.6 - 3.6V < 1000 pA Vhys1 Hysteresis, No VCC = 1.6 - 3.6V 0 mV Vhys2 Hysteresis, Small VCC = 1.6 - 3.6V mode = HS 20 Vhys3 Hysteresis, Large VCC = 1.6 - 3.6V mode = HS 40 90 Propagation delay VCC = 3.0V, T= 85°C mode = HS tdelay VCC = 1.6 - 3.6V mode = LP 175 Voff Ilk 34.8 Min Typ Max Units mV ns Bandgap Characteristics Table 34-8. Symbol Bandgap Voltage Characteristics Parameter Bandgap Startup Time Condition As reference to ADC or DAC Min Typ Max Units 1 Clk_PER + 2.5µs µs As input to AC or ADC 1.5 Bandgap voltage 1.1 T= 85°C, After calibration 0.99 1 1.01 V ADC/DAC ref 1 Variation over voltage and temperature VCC = 1.6 - 3.6V, TA = -40°C to 85°C ±5 % 66 8069L–AVR–11/09 XMEGA A4 34.9 Brownout Detection Characteristics Brownout Detection Characteristics(1) Table 34-9. Symbol Parameter Condition Min Typ BOD level 0 falling Vcc 1.62 BOD level 1 falling Vcc 1.9 BOD level 2 falling Vcc 2.17 BOD level 3 falling Vcc 2.43 BOD level 4 falling Vcc 2.68 BOD level 5 falling Vcc 2.96 BOD level 6 falling Vcc 3.22 BOD level 7 falling Vcc 3.49 Max Units V Hysteresis Note: BOD level 0-5 1 % 1. BOD is calibrated on BOD level 0 at 85°C. 34.10 PAD Characteristics Table 34-10. PAD Characteristics Symbol Parameter VIH Input High Voltage VIL Input Low Voltage VOL VOH Output Low Voltage GPIO Output High Voltage GPIO Condition Min Typ Max VCC = 2.4 - 3.6V 0.7*VCC VCC+0.5 VCC = 1.6 - 2.4V 0.8*VCC VCC+0.5 VCC = 2.4 - 3.6V -0.5 0.3*VCC VCC = 1.6 - 2.4V -0.5 0.2*VCC IOH = 15 mA, VCC = 3.3V 0.4 0.76 IOH = 10 mA, VCC = 3.0V 0.3 0.64 IOH = 5 mA, VCC = 1.8V 0.2 0.46 V IOH = -8 mA, VCC = 3.3V 2.6 3.0 IOH = -6 mA, VCC = 3.0V 2.1 2.7 IOH = -2 mA, VCC = 1.8V 1.4 1.6 IIL Input Leakage Current I/O pin <0.001 1 IIH Input Leakage Current I/O pin <0.001 1 RP I/O pin Pull/Buss keeper Resistor T= -40°C to 85°C 20 Reset pin Pull-up Resistor T= -40°C to 85°C 20 Input hysteresis VCC = 1.6 V - 3.6 V, T= -40°C to 85°C 0.5 RRST Units µA kΩ V 67 8069L–AVR–11/09 XMEGA A4 34.11 POR Characteristics Table 34-11. Power-on Reset Characteristics Symbol Parameter Condition Min Typ VPOT- POR threshold voltage falling Vcc 1 VPOT+ POR threshold voltage rising Vcc 1.3 Max Units V 34.12 Reset Characteristics Table 34-12. Reset Characteristics Symbol Parameter Condition Min Minimum reset pulse width Reset threshold voltage Typ Max 90 VCC = 2.7 - 3.6V 0.45*VCC VCC = 1.6 - 2.7V 0.42*VCC Units ns V 34.13 Oscillator Characteristics Table 34-13. Internal 32.768 kHz Oscillator Characteristics Symbol Parameter Accuracy Condition T = 85°C, VCC = 3V, After production calibration Min Typ -0.5 Max Units 0.5 % Max Units Table 34-14. Internal 2 MHz Oscillator Characteristics Symbol Parameter Accuracy DFLL Calibration step size Condition T = 85°C, VCC = 3V, After production calibration Min Typ -1.5 1.5 % T = 25°C, VCC = 3V 0.15 Table 34-15. Internal 32 MHz Oscillator Characteristics Symbol Parameter Accuracy DFLL Calibration stepsize Condition T = 85°C, VCC = 3V, After production calibration Min Typ -1.5 Max Units 1.5 % T = 25°C, VCC = 3V 0.2 Table 34-16. Internal 32 kHz, ULP Oscillator Characteristics Symbol Parameter Output frequency 32 kHz ULP OSC Condition T = 85°C, VCC = 3.0V Min Typ 26 Max Units kHz 68 8069L–AVR–11/09 XMEGA A4 35. Typical Characteristics 35.1 Active Supply Current Figure 35-1. Active Supply Current vs. Frequency fSYS = 0 - 1.0 MHz External clock, T = 25°C. 700 3.3 V 600 3.0 V ICC [uA] 500 2.7 V 400 2.2 V 300 1.8 V 200 100 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Frequency [MHz] Figure 35-2. Active Supply Current vs. Frequency fSYS = 1 - 32 MHz External clock, T = 25°C. 14 ICC [mA] 3.3 V 12 3.0 V 10 2.7 V 8 6 2.2 V 4 1.8 V 2 0 0 4 8 12 16 20 24 28 32 Frequency [MHz] 69 8069L–AVR–11/09 XMEGA A4 Figure 35-3. Active Supply Current vs. Vcc fSYS = 1.0 MHz External Clock. 800 85 °C 25 °C -40 °C 700 600 ICC [uA] 500 400 300 200 100 0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] Figure 35-4. Active Supply Current vs. VCC fSYS = 32.768 kHz internal RC. 160 -40 °C 85 °C 25 °C 140 120 ICC [uA] 100 80 60 40 20 0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] 70 8069L–AVR–11/09 XMEGA A4 Figure 35-5. Active Supply Current vs. Vcc fSYS = 2.0 MHz internal RC. 1600 85 °C 25 °C -40 °C 1400 1200 ICC [uA] 1000 800 600 400 200 0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] Figure 35-6. Active Supply Current vs. Vcc fSYS = 32 MHz internal RC prescaled to 8 MHz. 7 -40 °C 25 °C 85 °C 6 ICC [mA] 5 4 3 2 1 0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] 71 8069L–AVR–11/09 XMEGA A4 Figure 35-7. Active Supply Current vs. Vcc fSYS = 32 MHz internal RC. 16 -40 °C 25 °C 85 °C 14 12 ICC [mA] 10 8 6 4 2 0 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 VCC [V] 35.2 Idle Supply Current Figure 35-8. Idle Supply Current vs. Frequency fSYS = 0 - 1.0 MHz, T = 25°C. 180 3.3 V 160 3.0 V 140 2.7 V ICC [uA] 120 100 2.2 V 80 1.8 V 60 40 20 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Frequency [MHz] 72 8069L–AVR–11/09 XMEGA A4 Figure 35-9. Idle Supply Current vs. Frequency fSYS = 1 - 32 MHz, T = 25°C. 6 3.3 V 5 3.0 V 2.7 V ICC [mA] 4 3 2.2 V 2 1 1.8 V 0 0 4 8 12 16 20 24 28 32 Frequency [MHz] Figure 35-10. Idle Supply Current vs. Vcc fSYS = 1.0 MHz External Clock. 200 85 °C 25 °C -40 °C ICC [uA] 160 120 80 40 0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] 73 8069L–AVR–11/09 XMEGA A4 Figure 35-11. Idle Supply Current vs. Vcc fSYS = 32.768 kHz internal RC. 40 85 °C -40 °C 25 °C 35 30 ICC [uA] 25 20 15 10 5 0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] Figure 35-12. Idle Supply Current vs. Vcc fSYS = 2.0 MHz internal RC. 500 -40 °C 25 °C 85 °C ICC [uA] 400 300 200 100 0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] 74 8069L–AVR–11/09 XMEGA A4 Figure 35-13. Idle Supply Current vs. Vcc fSYS = 32 MHz internal RC prescaled to 8 MHz. 3000 -40 °C 25 °C 85 °C 2500 ICC [uA] 2000 1500 1000 500 0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] Figure 35-14. Idle Supply Current vs. Vcc fSYS = 32 MHz internal RC. 7 -40 °C 25 °C 85 °C 6 ICC [mA] 5 4 3 2 1 0 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 VCC [V] 75 8069L–AVR–11/09 XMEGA A4 35.3 Power-down Supply Current Figure 35-15. Power-down Supply Current vs. Temperature 1.8 3.3 V 3.0 V 2.7 V 2.2 V 1.8 V 1.6 1.4 ICC [uA] 1.2 1 0.8 0.6 0.4 0.2 0 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 Temperature [°C] Figure 35-16. Power-down Supply Current vs. Temperature With WDT and sampled BOD enabled. 3 3.3 V 3.0 V 2.7 V 2.2 V 1.8 V 2.5 ICC [uA] 2 1.5 1 0.5 0 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 Temperature [°C] 76 8069L–AVR–11/09 XMEGA A4 35.4 Power-save Supply Current Figure 35-17. Power-save Supply Current vs. Temperature With WDT, sampled BOD and RTC from ULP enabled. 3 3.3 V 3.0 V 2.7 V 2.2 V 1.8 V 2.5 ICC [uA] 2 1.5 1 0.5 0 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 Temperature [°C] 35.5 Pin Pull-up Figure 35-18. Reset Pull-up Resistor Current vs. Reset Pin Voltage VCC = 1.8V. 100 IRESET [uA] 80 60 40 20 -40 °C 25 °C 85 °C 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 VRESET [V] 77 8069L–AVR–11/09 XMEGA A4 Figure 35-19. Reset Pull-up Resistor Current vs. Reset Pin Voltage VCC = 3.0V. 160 140 IRESET [uA] 120 100 80 60 40 -40 °C 25 °C 85 °C 20 0 0 0.5 1 1.5 2 2.5 3 VRESET [V] Figure 35-20. Reset Pull-up Resistor Current vs. Reset Pin Voltage VCC = 3.3V. 180 160 140 IRESET [uA] 120 100 80 60 40 -40 °C 25 °C 85 °C 20 0 0 0.5 1 1.5 2 2.5 3 VRESET [V] 78 8069L–AVR–11/09 XMEGA A4 35.6 Pin Output Voltage vs. Sink/Source Current Figure 35-21. I/O Pin Output Voltage vs. Source Current Vcc = 1.8V. 2 -40 °C 25 °C 85 °C 1.8 1.6 VPIN [V] 1.4 1.2 1 0.8 0.6 0.4 0.2 0 -12 -10 -8 -6 -4 -2 0 IPIN [mA] Figure 35-22. I/O Pin Output Voltage vs. Source Current Vcc = 3.0V. 3.5 -40 °C 25 °C 85 °C 3 VPIN [V] 2.5 2 1.5 1 0.5 0 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 IPIN [mA] 79 8069L–AVR–11/09 XMEGA A4 Figure 35-23. I/O Pin Output Voltage vs. Source Current Vcc = 3.3V. 3.5 -40 °C 25 °C 85 °C 3 VPIN [V] 2.5 2 1.5 1 0.5 0 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 IPIN [mA] Figure 35-24. I/O Pin Output Voltage vs. Sink Current Vcc = 1.8V. 85°C 25°C 1.8 1.6 1.4 VPIN [V] 1.2 -40 °C 1 0.8 0.6 0.4 0.2 0 0 2 4 6 8 10 12 14 16 18 20 IPIN [mA] 80 8069L–AVR–11/09 XMEGA A4 Figure 35-25. I/O Pin Output Voltage vs. Sink Current Vcc = 3.0V. 0.7 85 °C 0.6 25 °C -40 °C VPIN [V] 0.5 0.4 0.3 0.2 0.1 0 0 2 4 6 8 10 12 14 16 18 20 IPIN [mA] Figure 35-26. I/O Pin Output Voltage vs. Sink Current Vcc = 3.3V. VPIN [V] 0.7 0.6 85 °C 0.5 25 °C -40 °C 0.4 0.3 0.2 0.1 0 0 2 4 6 8 10 12 14 16 18 20 IPIN [mA] 81 8069L–AVR–11/09 XMEGA A4 35.7 Pin Thresholds and Hysteresis Figure 35-27. I/O Pin Input Threshold Voltage vs. VCC VIH - I/O Pin Read as “1”. 2.5 -40 °C 25 °C 85 °C Vthreshold [V] 2 1.5 1 0.5 0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] Figure 35-28. I/O Pin Input Threshold Voltage vs. VCC VIL - I/O Pin Read as “0”. 1.8 85 °C 25 °C -40 °C 1.6 1.4 Vthreshold [V] 1.2 1 0.8 0.6 0.4 0.2 0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] 82 8069L–AVR–11/09 XMEGA A4 Figure 35-29. I/O Pin Input Hysteresis vs. VCC. 0.7 0.6 Vthreshold [V] 0.5 85 °C 25 °C -40 °C 0.4 0.3 0.2 0.1 0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] Figure 35-30. Reset Input Threshold Voltage vs. VCC VIH - I/O Pin Read as “1”. 1.8 -40 °C 25 °C 85 °C 1.6 VTHRESHOLD [V] 1.4 1.2 1 0.8 0.6 0.4 0.2 0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] 83 8069L–AVR–11/09 XMEGA A4 Figure 35-31. Reset Input Threshold Voltage vs. VCC VIL - I/O Pin Read as “0”. 1.8 -40 °C 25 °C 85 °C 1.6 VTHRESHOLD [V] 1.4 1.2 1 0.8 0.6 0.4 0.2 0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] 35.8 Bod Thresholds Figure 35-32. BOD Thresholds vs. Temperature BOD Level = 1.6V. 1.645 1.64 VBOT [V] 1.635 1.63 Rising Vcc 1.625 1.62 Falling Vcc 1.615 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 Temperature [°C] 84 8069L–AVR–11/09 XMEGA A4 Figure 35-33. BOD Thresholds vs. Temperature BOD Level = 2.9V. 3.03 3.02 3.01 Rising Vcc VBOT [V] 3 2.99 2.98 2.97 2.96 Falling Vcc 2.95 2.94 2.93 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 Temperature [°C] 35.9 Analog Comparator Figure 35-34. Analog Comparator Hysteresis vs. VCC High-speed, Small hysteresis. 20 85 °C 16 VHYST [mV] 25 °C -40 °C 12 8 4 0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] 85 8069L–AVR–11/09 XMEGA A4 Figure 35-35. Analog Comparator Hysteresis vs. VCC High-speed, Large hysteresis. 60 50 85 °C 25 °C -40 °C VHYST [mV] 40 30 20 10 0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] Figure 35-36. Analog Comparator Propagation Delay vs. VCC High-speed. 180 162 144 126 tPD [ns] 108 85 °C 25 °C -40 °C 90 72 54 36 18 0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] 86 8069L–AVR–11/09 XMEGA A4 35.10 Internal Oscillator Speed 35.10.1 Internal 32.768 kHz Oscillator Figure 35-37. Internal 32.768 kHz Oscillator Calibration Step Size T = -40 to 85°C, VCC = 3V. 0.80 % Step size: f [kHz] 0.65 % 0.50 % 0.35 % 0.20 % 0.05 % 0 32 64 96 128 160 192 224 256 RC32KCAL[7..0] 35.10.2 Internal 2 MHz Oscillator Figure 35-38. Internal 2 MHz Oscillator CALA Calibration Step Size T = -40 to 85°C, VCC = 3V. 0.50 % 0.40 % Step size: f [MHz] 0.30 % 0.20 % 0.10 % 0.00 % -0.10 % -0.20 % -0.30 % 0 16 32 48 64 80 96 112 128 DFLLRC2MCALA 87 8069L–AVR–11/09 XMEGA A4 Figure 35-39. Internal 2 MHz Oscillator CALB Calibration Step Size T = -40 to 85°C, VCC = 3V. 3.00 % Step size: f [MHz] 2.50 % 2.00 % 1.50 % 1.00 % 0.50 % 0.00 % 0 8 16 24 32 40 48 56 64 112 128 DFLLRC2MCALB 35.10.3 Internal 32 MHZ Oscillator Figure 35-40. Internal 32 MHz Oscillator CALA Calibration Step Size T = -40 to 85°C, VCC = 3V. 0.60 % 0.50 % Step size: f [MHz] 0.40 % 0.30 % 0.20 % 0.10 % 0.00 % -0.10 % -0.20 % 0 16 32 48 64 80 96 DFLLRC32MCALA 88 8069L–AVR–11/09 XMEGA A4 Figure 35-41. Internal 32 MHz Oscillator CALB Calibration Step Size T = -40 to 85°C, VCC = 3V. 3.00 % Step size: f [MHz] 2.50 % 2.00 % 1.50 % 1.00 % 0.50 % 0.00 % 0 8 16 24 32 40 48 56 64 DFLLRC32MCALB 35.11 Module current consumption Figure 35-42. AC current consumption vs. Vcc Low-power Mode. Module current consumption [uA] 140 85 °C 25 °C -40 °C 120 100 80 60 40 20 0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] 89 8069L–AVR–11/09 XMEGA A4 Figure 35-43. Power-up current consumption vs. Vcc 25 °C 600 -40 °C 85 °C 500 ICC [uA] 400 300 200 100 0 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 VCC [V] 35.12 Reset Pulsewidth Figure 35-44. Minimum Reset Pulse Width vs. Vcc 100 tRST [ns] 80 85 °C 25 °C -40 °C 60 40 20 0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] 90 8069L–AVR–11/09 XMEGA A4 36. Errata 36.1 ATxmega32A4 rev. A • • • • • • • • Flash Power Reduction Mode can not be enabled when entering sleep mode Bandgap voltage input for the ACs cannot be changed when used for both ACs simultaneously ADC gain stage output range is limited to 2.4V Bandgap measurement with the ADC is non-functional when VCC is below 2.7V BOD will be enabled after any reset ADC has increased INL error for some operating conditions DAC has increased INL or noise for some operating conditions VCC voltage scaler for AC is non-linear 1. Flash Power Reduction Mode can not be enabled when entering sleep mode If Flash Power Reduction Mode is enabled when a deep sleep mode, the device will only wake up on every fourth wake-up request. If Flash Power Reduction Mode is enabled when entering Idle sleep mode, the wake-up time will vary with up to 16 CPU clock cycles. Problem fix/Workaround Disable Flash Power Reduction mode before entering sleep mode. 2. Bandgap voltage input for the ACs cannot be changed when used for both ACs simultaneously If the bandgap voltage is selected as input for one Analog Comparator (AC) and then selected/deselected as input for the another AC, the first comparator will be affected for up to 1 us and could potentially give a wrong comparison result. Problem fix/Workaround If the Bandgap is required for both ACs simultaneously, configure the input selection for both ACs before enabling any of them. 3. ADC gain stage output range is limited to 2.4 V The amplified output of the ADC gain stage will never go above 2.4 V, hence the differential input will only give correct output when below 2.4 V/gain. For the available gain settings, this gives a differential input range of: – 1x gain: 2.4 V – 2x gain: 1.2 V – 4x gain: 0.6 V – 8x gain: 300 mV – 16x gain: 150 mV – 32x gain: 75 mV – 64x gain: 38 mV Problem fix/Workaround Keep the amplified voltage output from the ADC gain stage below 2.4 V in order to get a correct result, or keep ADC voltage reference below 2.4 V. 91 8069L–AVR–11/09 XMEGA A4 4. Bandgap measurement with the ADC is non-functional when VCC is below 2.7V The ADC cannot be used to do bandgap measurements when VCC is below 2.7V. Problem fix/Workaround If internal voltages must be measured when VCC is below 2.7V, measure the internal 1.00V reference instead of the bandgap. 5. BOD will be enabled after any reset If any reset source goes active, the BOD will be enabled and keep the device in reset if the VCC voltage is below the programmed BOD level. During Power-On Reset, reset will not be released until VCC is above the programmed BOD level even if the BOD is disabled. Problem fix/Workaround Do not set the BOD level higher than VCC even if the BOD is not used. 6. ADC has increased INL error for some operating conditions Some ADC configurations or operating condition will result in increased INL error. In differential mode INL is increased to: – 6 LSB for sample rates above 1 Msps, and up to 8 LSB for 2 Msps sample rate. – 6 LSB for reference voltage below 1.1V when VCC is above 3.0V. – 20 LSB for ambient temperature below 0 degree C and reference voltage below 1.3V. In single ended mode, the INL is increased up to a factor of 3 for the conditions above. Problem fix/Workaround None, avoid using the ADC in the above configurations in order to prevent increased INL error. 7. DAC has increased INL or noise for some operating conditions Some DAC configurations or operating condition will result in increased output error. – INL error is increased up to 35 LSB when VCC < 2.0V – Enabling Sample and Hold, will increase noise and reduce resolution below 8 bit Problem fix/Workaround None, avoid using the DAC in the above configurations in order to prevent increased INL error. 8. VCC voltage scaler for AC is non-linear The 6-bit VCC voltage scaler in the Analog Comparators is non-linear. The typical voltage output versus the scale factor for different VCC voltages is shown below: 92 8069L–AVR–11/09 XMEGA A4 Figure 36-1. Analog Comparator Voltage Scaler vs. Scalefac T = 25°C 3.5 3.3 V 3 2.7 V VSCALE [V] 2.5 2 1.8 V 1.5 1 0.5 0 0 5 10 15 20 25 30 35 40 45 50 55 60 65 SCALEFAC Problem fix/Workaround Use external voltage input for the analog comparator if accurate voltage levels are needed 36.2 ATxmega16A4 rev. A • • • • • • • • Flash Power Reduction Mode can not be enabled when entering sleep mode Bandgap voltage input for the ACs cannot be changed when used for both ACs simultaneously ADC gain stage output range is limited to 2.4V Bandgap measurement with the ADC is non-functional when VCC is below 2.7V BOD will be enabled after any reset ADC has increased INL error for some operating conditions DAC has increased INL or noise for some operating conditions VCC voltage scaler for AC is non-linear 1. Flash Power Reduction Mode can not be enabled when entering sleep mode If Flash Power Reduction Mode is enabled when a deep sleep mode, the device will only wake up on every fourth wake-up request. If Flash Power Reduction Mode is enabled when entering Idle sleep mode, the wake-up time will vary with up to 16 CPU clock cycles. Problem fix/Workaround Disable Flash Power Reduction mode before entering sleep mode. 2. Bandgap voltage input for the ACs cannot be changed when used for both ACs simultaneously If the bandgap voltage is selected as input for one Analog Comparator (AC) and then selected/deselected as input for the another AC, the first comparator will be affected for up to 1 us and could potentially give a wrong comparison result. 93 8069L–AVR–11/09 XMEGA A4 Problem fix/Workaround If the Bandgap is required for both ACs simultaneously, configure the input selection for both ACs before enabling any of them. 3. ADC gain stage output range is limited to 2.4 V The amplified output of the ADC gain stage will never go above 2.4 V, hence the differential input will only give correct output when below 2.4 V/gain. For the available gain settings, this gives a differential input range of: – 1x gain: 2.4 V – 2x gain: 1.2 V – 4x gain: 0.6 V – 8x gain: 300 mV – 16x gain: 150 mV – 32x gain: 75 mV – 64x gain: 38 mV Problem fix/Workaround Keep the amplified voltage output from the ADC gain stage below 2.4 V in order to get a correct result, or keep ADC voltage reference below 2.4 V. 4. Bandgap measurement with the ADC is non-functional when VCC is below 2.7V The ADC cannot be used to do bandgap measurements when VCC is below 2.7V. Problem fix/Workaround If internal voltages must be measured when VCC is below 2.7V, measure the internal 1.00V reference instead of the bandgap. 5. BOD will be enabled after any reset If any reset source goes active, the BOD will be enabled and keep the device in reset if the VCC voltage is below the programmed BOD level. During Power-On Reset, reset will not be released until VCC is above the programmed BOD level even if the BOD is disabled. Problem fix/Workaround Do not set the BOD level higher than VCC even if the BOD is not used. 6. ADC has increased INL error for some operating conditions Some ADC configurations or operating condition will result in increased INL error. In differential mode INL is increased to: – 6 LSB for sample rates above 1 Msps, and up to 8 LSB for 2 Msps sample rate. – 6 LSB for reference voltage below 1.1V when VCC is above 3.0V. – 20 LSB for ambient temperature below 0 degree C and reference voltage below 1.3V. In single ended mode, the INL is increased up to a factor of 3 for the conditions above. Problem fix/Workaround None, avoid using the ADC in the above configurations in order to prevent increased INL error. 94 8069L–AVR–11/09 XMEGA A4 7. DAC has increased INL or noise for some operating conditions Some DAC configurations or operating condition will result in increased output error. – INL error is increased up to 35 LSB when VCC < 2.0V – Enabling Sample and Hold, will increase noise and reduce resolution below 8 bit Problem fix/Workaround None, avoid using the DAC in the above configurations in order to prevent increased INL error. 8. VCC voltage scaler for AC is non-linear The 6-bit VCC voltage scaler in the Analog Comparators is non-linear. The typical voltage output versus the scale factor for different VCC voltages is shown below: Figure 36-2. Analog Comparator Voltage Scaler vs. Scalefac T = 25°C 3.5 3.3 V 3 2.7 V VSCALE [V] 2.5 2 1.8 V 1.5 1 0.5 0 0 5 10 15 20 25 30 35 40 45 50 55 60 65 SCALEFAC Problem fix/Workaround Use external voltage input for the analog comparator if accurate voltage levels are needed 95 8069L–AVR–11/09 XMEGA A4 37. Datasheet Revision History Please note that the referring page numbers in this section are referred to this document. The referring revisions in this section are referring to the document revision. 37.1 37.2 37.3 37.4 37.5 8069L – 11/09 1. Updated ”Flash and EEPROM Page Size” on page 14. 2. Updated ”Electrical Characteristics” on page 61with Max/Min numbers. 3. Added ”Flash and EEPROM Memory Characteristics” on page 64. 4. Updated Table 34-10 on page 67, Input hysteresis is in V and not in mV. 1. Updated ”Ordering Information” on page 2. 2. Updated ”Errata” on page 91 1. Updated ”Electrical Characteristics” on page 61. 2. Updated ”Typical Characteristics” on page 69. 3. Editorial updates. 1. Updated ”Electrical Characteristics” on page 61. 2. Updated ”Typical Characteristics” on page 69. 1. Updated ”Ordering Information” on page 2. 2. Added VFBGA to ”Pinout/Block Diagram” on page 3. 3. Updated ”Block Diagram” on page 6. 4. Updated feature list in ”Memories” on page 10. 5. Added 49-balls VFBGA to ”Packaging information” on page 58. 8069K – 06/09 8069J – 04/09 8069I – 03/09 8069H – 11/08 96 8069L–AVR–11/09 XMEGA A4 37.6 37.7 37.8 37.9 8069G – 10/08 1. Updated ”Features” on page 1. 2. Updated ”Ordering Information” on page 2. 3. Replaced the package drawing ”44M1” on page 59 by a rev H update. 1. Updated ”Features” on page 1. 2. Updated ”Ordering Information” on page 2. 3. Updated ”Features” on page 10 by removing “External Memory...”. 4. Updated Figure 7-1 on page 11 and Figure 7-2 on page 12. 5. Updated Table 7-2 on page 14 and Table 7-3 on page 14. 6. Updated ADC ”Features” on page 41 and ”Overview” on page 41. 7. Removed “Interrupt Vector Summary” section from datasheet. 1. Changed Figure 2-1’s title to “Bock Diagram and TQFP/QFN pinout” . 2. Updated Table 30-6 on page 52. 1. Updated ”Features” on page 1 and ”Overview” on page 5. 2. Inserted ”Interrupt Vector Summary.” on page 52. 1. Updated Figure 2-1 on page 3 and ”Pinout and Pin Functions” on page 49. 2. Updated ”Overview” on page 5. 3. Updated XMEGA A4 Block Diagram, Figure 3-1 on page 6 by removing JTAG from the block diagram. 4. Removed the sections related to JTAG: JTAG Reset and JTAG Interface. 5. Updated Table 14-1 on page 25. 6. Updated all tables in section ”Alternate Pin Functions” on page 51. 8069F – 09/08 8069E – 08/08 8069D – 08/08 37.10 8069C – 06/08 97 8069L–AVR–11/09 XMEGA A4 37.11 8069B – 06/08 1. Updated ”Features” on page 1. 2. Updated ”Pinout/Block Diagram” on page 3 and ”Pinout and Pin Functions” on page 49. 3. Updated ”Ordering Information” on page 2. 4. Updated ”Overview” on page 5, included the XMEGA A4 explanation text on page 6. 5. Added XMEGA A4 Block Diagram, Figure 3-1 on page 6. 6. Updated AVR CPU ”Features” on page 8 and Updated Figure 6-1 on page 8. 7. Updated Event System block diagram, Figure 9-1 on page 17. 8. Updated ”PMIC - Programmable Multi-level Interrupt Controller” on page 25. 9. Updated ”AC - Analog Comparator” on page 44. 10. Updated ”I/O configuration” on page 27. 11. Inserted a new Figure 16-1 on page 32. 12. Updated ”Peripheral Module Address Map” on page 53. 13. Inserted ”Instruction Set Summary” on page 54. 14. Added Speed grades in ”Speed” on page 63. 1. Initial revision. 37.12 8069A – 02/08 98 8069L–AVR–11/09 XMEGA A4 Table of Contents Features ..................................................................................................... 1 Typical Applications ................................................................................ 1 1 Ordering Information ............................................................................... 2 2 Pinout/Block Diagram .............................................................................. 3 3 Overview ................................................................................................... 5 3.1Block Diagram ...........................................................................................................6 4 Resources ................................................................................................. 7 4.1Recommended reading .............................................................................................7 5 Disclaimer ................................................................................................. 7 6 AVR CPU ................................................................................................... 8 6.1Features ....................................................................................................................8 6.2Overview ...................................................................................................................8 6.3Register File ..............................................................................................................9 6.4ALU - Arithmetic Logic Unit .......................................................................................9 6.5Program Flow ............................................................................................................9 7 Memories ................................................................................................ 10 7.1Features ..................................................................................................................10 7.2Overview .................................................................................................................10 7.3In-System Programmable Flash Program Memory .................................................11 7.4Data Memory ...........................................................................................................12 7.5Production Signature Row .......................................................................................13 7.6User Signature Row ................................................................................................13 7.7Flash and EEPROM Page Size ...............................................................................14 8 DMAC - Direct Memory Access Controller .......................................... 15 8.1Features ..................................................................................................................15 8.2Overview .................................................................................................................15 9 Event System ......................................................................................... 16 9.1Features ..................................................................................................................16 9.2Overview .................................................................................................................16 10 System Clock and Clock options ......................................................... 18 10.1Features ................................................................................................................18 i 8069L–AVR–11/09 XMEGA A4 10.2Overview ...............................................................................................................18 10.3Clock Options ........................................................................................................19 11 Power Management and Sleep Modes ................................................. 21 11.1Features ................................................................................................................21 11.2Overview ...............................................................................................................21 11.3Sleep Modes .........................................................................................................21 12 System Control and Reset .................................................................... 23 12.1Features ................................................................................................................23 12.2Resetting the AVR .................................................................................................23 12.3Reset Sources .......................................................................................................23 13 WDT - Watchdog Timer ......................................................................... 24 13.1Features ................................................................................................................24 13.2Overview ...............................................................................................................24 14 PMIC - Programmable Multi-level Interrupt Controller ....................... 25 14.1Features ................................................................................................................25 14.2Overview ...............................................................................................................25 14.3Interrupt vectors ....................................................................................................25 15 I/O Ports .................................................................................................. 27 15.1Features ................................................................................................................27 15.2Overview ...............................................................................................................27 15.3I/O configuration ....................................................................................................27 15.4Input sensing .........................................................................................................30 15.5Port Interrupt .........................................................................................................30 15.6Alternate Port Functions ........................................................................................30 16 T/C - 16-bit Timer/Counter ..................................................................... 31 16.1Features ................................................................................................................31 16.2Overview ...............................................................................................................31 17 AWEX - Advanced Waveform Extension ............................................. 33 17.1Features ................................................................................................................33 17.2Overview ...............................................................................................................33 18 Hi-Res - High Resolution Extension ..................................................... 34 18.1Features ................................................................................................................34 18.2Overview ...............................................................................................................34 ii 8069L–AVR–11/09 XMEGA A4 19 RTC - 16-bit Real-Time Counter ............................................................ 35 19.1Features ................................................................................................................35 19.2Overview ...............................................................................................................35 20 TWI - Two-Wire Interface ....................................................................... 36 20.1Features ................................................................................................................36 20.2Overview ...............................................................................................................36 21 SPI - Serial Peripheral Interface ............................................................ 37 21.1Features ................................................................................................................37 21.2Overview ...............................................................................................................37 22 USART ..................................................................................................... 38 22.1Features ................................................................................................................38 22.2Overview ...............................................................................................................38 23 IRCOM - IR Communication Module .................................................... 39 23.1Features ................................................................................................................39 23.2Overview ...............................................................................................................39 24 Crypto Engine ........................................................................................ 40 24.1Features ................................................................................................................40 24.2Overview ...............................................................................................................40 25 ADC - 12-bit Analog to Digital Converter ............................................. 41 25.1Features ................................................................................................................41 25.2Overview ...............................................................................................................41 26 DAC - 12-bit Digital to Analog Converter ............................................. 43 26.1Features ................................................................................................................43 26.2Overview ...............................................................................................................43 27 AC - Analog Comparator ....................................................................... 44 27.1Features ................................................................................................................44 27.2Overview ...............................................................................................................44 27.3Input Selection .......................................................................................................46 27.4Window Function ...................................................................................................46 28 OCD - On-chip Debug ............................................................................ 47 28.1Features ................................................................................................................47 28.2Overview ...............................................................................................................47 29 Program and Debug Interfaces ............................................................. 48 iii 8069L–AVR–11/09 XMEGA A4 29.1Features ................................................................................................................48 29.2Overview ...............................................................................................................48 29.3PDI - Program and Debug Interface ......................................................................48 30 Pinout and Pin Functions ...................................................................... 49 30.1Alternate Pin Functions Description ......................................................................49 30.2Alternate Pin Functions .........................................................................................51 31 Peripheral Module Address Map .......................................................... 53 32 Instruction Set Summary ...................................................................... 54 33 Packaging information .......................................................................... 58 33.144A ........................................................................................................................58 33.244M1 .....................................................................................................................59 33.349C2 ......................................................................................................................60 34 Electrical Characteristics ...................................................................... 61 34.1Absolute Maximum Ratings* .................................................................................61 34.2DC Characteristics ...............................................................................................61 34.3Speed ....................................................................................................................63 34.4Flash and EEPROM Memory Characteristics .......................................................64 34.5ADC Characteristics ..............................................................................................65 34.6DAC Characteristics ..............................................................................................66 34.7Analog Comparator Characteristics .......................................................................66 34.8Bandgap Characteristics .......................................................................................66 34.9Brownout Detection Characteristics ......................................................................67 34.10PAD Characteristics ............................................................................................67 34.11POR Characteristics ............................................................................................68 34.12Reset Characteristics ..........................................................................................68 34.13Oscillator Characteristics .....................................................................................68 35 Typical Characteristics .......................................................................... 69 35.1Active Supply Current ............................................................................................69 35.2Idle Supply Current ................................................................................................72 35.3Power-down Supply Current .................................................................................76 35.4Power-save Supply Current ..................................................................................77 35.5Pin Pull-up .............................................................................................................77 35.6Pin Output Voltage vs. Sink/Source Current .........................................................79 35.7Pin Thresholds and Hysteresis ..............................................................................82 iv 8069L–AVR–11/09 35.8Bod Thresholds .....................................................................................................84 35.9Analog Comparator ...............................................................................................85 35.10Internal Oscillator Speed .....................................................................................87 35.11Module current consumption ...............................................................................89 35.12Reset Pulsewidth .................................................................................................90 36 Errata ....................................................................................................... 91 36.1ATxmega32A4 rev. A ............................................................................................91 36.2ATxmega16A4 rev. A ............................................................................................93 37 Datasheet Revision History .................................................................. 96 37.18069L – 11/09 .......................................................................................................96 37.28069K – 06/09 .......................................................................................................96 37.38069J – 04/09 ........................................................................................................96 37.48069I – 03/09 ........................................................................................................96 37.58069H – 11/08 .......................................................................................................96 37.68069G – 10/08 .......................................................................................................97 37.78069F – 09/08 .......................................................................................................97 37.88069E – 08/08 .......................................................................................................97 37.98069D – 08/08 .......................................................................................................97 37.108069C – 06/08 .....................................................................................................97 37.118069B – 06/08 .....................................................................................................98 37.128069A – 02/08 .....................................................................................................98 Table of Contents....................................................................................... i Headquarters International Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600 Atmel Asia Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon Hong Kong Tel: (852) 2245-6100 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-enYvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11 Atmel Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581 Technical Support [email protected] Sales Contact www.atmel.com/contacts Product Contact Web Site www.atmel.com Literature Requests www.atmel.com/literature Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. © 2009 Atmel Corporation. All rights reserved. Atmel ®, Atmel logo and combinations thereof, AVR®, AVR® logo and others are registered trademarks, XMEGATM and others are trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. 8069L–AVR–11/09