HUF76009P3, HUF76009D3S Data Sheet December 2001 20A, 20V, 0.027 Ohm, N-Channel, Logic Level Power MOSFETs THE HUF76009 is an application-specific MOSFET optimized for switching when used as the upper switch in synchronous buck applications. The low gate charge and low input capacitance results in lower driver and lower switching losses thereby increasing the overall system efficiency. Symbol D Features • 20A, 20V - rDS(ON) = 0.027Ω, VGS = 10V - rDS(ON) = 0.039Ω, VGS = 5V • PWM optimized for synchronous buck applications • Fast Switching • Low Gate Charge - Qg Total 11nC (Typ) G S Packaging HUF76009D3S JEDEC TO-252AA HUFD76009P3 JEDEC TO-220AB Ordering Information SOURCE DRAIN GATE DRAIN (FLANGE) GATE SOURCE DRAIN (FLANGE) Absolute Maximum Ratings • Low Capacitance - CISS 470pF (Typ) - CRSS 50pF (Typ) PART NUMBER PACKAGE BRAND HUF76009P3 TO-220AB 76009P HUF76009D3S TO-252AA 76009D NOTE: When ordering, use the entire part number. Add the suffix T to obtain the HUF76009D3S in tape and reel, e.g., HUF76009D3ST. TC = 25oC, Unless Otherwise Specified SYMBOL PARAMETER HUF76009P3, HUF76009D3S UNITS 20 V VDSS Drain to Source Voltage (Note 1) VDGR Drain to Gate Voltage (RGS = 20kΩ) (Note 1) 20 V Gate to Source Voltage ±16 V 20 16 Figure 4 A A A 41 0.33 W W/oC -55 to 150 oC 300 260 oC oC 3.04 oC/W VGS ID ID IDM PD TJ, TSTG TL Tpkg Drain Current Continuous (TC = 25oC, VGS = 10V) (Figure 2) Continuous (TC = 100oC, VGS = 5V) Pulsed Drain Current Power Dissipation Derate Above 25oC Operating and Storage Temperature Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s Package Body for 10s, See Techbrief TB334 THERMAL SPECIFICATIONS RθJC Thermal Resistance Junction to Case, TO-220, TO-252 RθJA Thermal Resistance Junction to Ambient TO-220 62 oC/W Thermal Resistance Junction to Ambient TO-252 100 oC/W NOTE: 1. TJ = 25oC to 125oC. CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. ©2001 Fairchild Semiconductor Corporation HUF76009P3, HUF76009D3S Rev. B HUF76009P3, HUF76009D3S Electrical Specifications TC = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS 20 - - V VDS = 20V, VGS = 0V - - 1 µA VDS = 20V, VGS = 0V, TC = 150oC - - 250 µA VGS = ±16V - - ±100 nA OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current Gate to Source Leakage Current BVDSS IDSS IGSS ID = 250µA, VGS = 0V (Figure 11) ON STATE SPECIFICATIONS Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 10) 1 - 3 V Drain to Source On Resistance rDS(ON) ID = 20A, VGS = 10V (Figures 8, 9) - 0.022 0.027 Ω ID = 16A, VGS = 5V (Figure 8) - 0.032 0.039 Ω VDD = 10V, ID = 16A VGS = 5V, RGS = 27Ω, (Figures 14, 18, 19) - - 186 ns - 9 - ns tr - 115 - ns td(OFF) - 19 - ns tf - 34 - ns tOFF - - 80 ns - - 150 ns - 5.3 - ns - 95 - ns td(OFF) - 37 - ns tf - 33 - ns tOFF - - 105 ns - 10.7 13 nC - 5.7 6.9 nC - 0.5 0.6 nC SWITCHING SPECIFICATIONS (VGS = 5V) Turn-On Time Turn-On Delay Time tON td(ON) Rise Time Turn-Off Delay Time Fall Time Turn-Off Time SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time Turn-On Delay Time Rise Time tON td(ON) tr Turn-Off Delay Time Fall Time Turn-Off Time VDD = 10V, ID = 20A VGS = 10V, RGS = 27Ω (Figures 15, 18, 19) GATE CHARGE SPECIFICATIONS Total Gate Charge at 10V Qg(TOT) VGS = 0V to 10V Total Gate Charge at 5V Qg(TOT) VGS = 0V to 5V Threshold Gate Charge Qg(TH) VGS = 0V to 1V VDD = 10V, ID = 16A, Ig(REF) = 1.0mA, (Figures 13, 16, 17) Gate to Source Gate Charge Qgs - 1.7 - nC Gate to Drain “Miller” Charge Qgd - 2.2 - nC - 470 - pF - 350 - pF - 50 - pF MIN TYP MAX UNITS ISD = 20A - - 1.25 V ISD = 10A - - 1.0 V trr ISD = 16A, dISD/dt = 100A/µs - - 33 ns QRR ISD = 16A, dISD/dt = 100A/µs - - 30 nC CAPACITANCE SPECIFICATIONS Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDS = 20V, VGS = 0V, f = 1MHz (Figure 12) Source to Drain Diode Specifications PARAMETER Source to Drain Diode Voltage Reverse Recovery Time Reverse Recovered Charge ©2001 Fairchild Semiconductor Corporation SYMBOL VSD TEST CONDITIONS HUF76009P3, HUF76009D3S Rev. B HUF76009P3, HUF76009D3S Typical Performance Curves POWER DISSIPATION MULTIPLIER 1.2 25 ID, DRAIN CURRENT (A) 1.0 0.8 0.6 0.4 0.2 0 0 25 50 75 125 100 20 VGS = 10V 15 VGS = 5V 10 5 0 25 150 50 TA , AMBIENT TEMPERATURE (oC) 75 100 125 150 TC, CASE TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 2 ZθJC, NORMALIZED THERMAL IMPEDANCE 1 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE IDM, PEAK CURRENT (A) 500 TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: 100 150 - TC I = I25 VGS = 10V 125 VGS = 5V TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 10 10-5 10-4 10-3 10-2 10-1 100 101 t, PULSE WIDTH (s) FIGURE 4. PEAK CURRENT CAPABILITY ©2001 Fairchild Semiconductor Corporation HUF76009P3, HUF76009D3S Rev. B HUF76009P3, HUF76009D3S Typical Performance Curves (Continued) 200 40 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V ID , DRAIN CURRENT (A) ID, DRAIN CURRENT (A) 100 100µs 10 1ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 10ms SINGLE PULSE TJ = MAX RATED TC = 25oC 30 20 TJ = 25oC 1 1 TJ = 150oC 10 0 50 10 2 3 VDS , DRAIN TO SOURCE VOLTAGE (V) 5 4 VGS , GATE TO SOURCE VOLTAGE (V) FIGURE 5. FORWARD BIAS SAFE OPERATING AREA FIGURE 6. TRANSFER CHARACTERISTICS 40 60 VGS = 10V rDS(ON) , DRAIN TO SOURCE ON RESISTANCE (mΩ) VGS = 5V VGS = 4.5V ID , DRAIN CURRENT (A) TJ = -55oC 30 TC = 25oC PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 20 VGS = 4V VGS = 3.5V 10 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC ID = 16A 50 ID = 5A ID = 10A 40 30 20 VGS = 3V 10 0 0 1 2 2 3 FIGURE 7. SATURATION CHARACTERISTICS 6 8 10 FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT 1.6 1.2 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = VDS, ID = 250µA 1.4 NORMALIZED GATE THRESHOLD VOLTAGE NORMALIZED DRAIN TO SOURCE ON RESISTANCE 4 VGS , GATE TO SOURCE VOLTAGE (V) VDS , DRAIN TO SOURCE VOLTAGE (V) 1.2 1.0 0.8 1.0 0.8 VGS = 10V, ID = 20A 0.6 -80 -40 0 40 80 120 TJ, JUNCTION TEMPERATURE (oC) FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE ©2001 Fairchild Semiconductor Corporation 160 0.6 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE HUF76009P3, HUF76009D3S Rev. B HUF76009P3, HUF76009D3S Typical Performance Curves (Continued) 1.2 2000 COSS ≅ CDS + CGD NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE ID = 250µA C, CAPACITANCE (pF) 1000 1.1 1.0 CISS = CGS + CGD CRSS = CGD 100 0.9 -80 VGS = 0V, f = 1MHz -40 0 40 80 120 50 0.1 160 1 TJ , JUNCTION TEMPERATURE (oC) 10 20 VDS , DRAIN TO SOURCE VOLTAGE (V) FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE 150 VDD = 10V VGS = 5V, VDD = 10V, ID = 16A 8 125 SWITCHING TIME (ns) VGS , GATE TO SOURCE VOLTAGE (V) 10 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 16A ID = 10A ID = 5A 2 0 0 3 6 9 tr 100 75 tf 50 td(OFF) 25 td(ON) 12 0 0 Qg, GATE CHARGE (nC) 10 20 30 40 50 RGS , GATE TO SOURCE RESISTANCE (Ω) NOTE: Refer to Fairchild Application Notes AN7254 and AN7260. FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT FIGURE 14. SWITCHING TIME vs GATE RESISTANCE 100 SWITCHING TIME (ns) tr 80 VGS = 10V, VDD = 10V, ID = 20A 60 td(OFF) 40 tf 20 td(ON) 0 0 10 20 30 40 50 RGS , GATE TO SOURCE RESISTANCE (Ω) FIGURE 15. SWITCHING TIME vs GATE RESISTANCE ©2001 Fairchild Semiconductor Corporation HUF76009P3, HUF76009D3S Rev. B HUF76009P3, HUF76009D3S Test Circuits and Waveforms VDS VDD RL Qg(TOT) VDS VGS = 10V VGS Qg(TOT) + - VDD VGS = 5V VGS DUT VGS = 1V Ig(REF) 0 Qg(TH) Qgs Qgd Ig(REF) 0 FIGURE 16. GATE CHARGE TEST CIRCUIT FIGURE 17. GATE CHARGE WAVEFORMS VDS tON tOFF td(ON) td(OFF) tr RL VDS tf 90% 90% + VGS - VDD 10% 0 10% DUT 90% RGS VGS VGS 0 FIGURE 18. SWITCHING TIME TEST CIRCUIT ©2001 Fairchild Semiconductor Corporation 10% 50% 50% PULSE WIDTH FIGURE 19. SWITCHING TIME WAVEFORM HUF76009P3, HUF76009D3S Rev. B HUF76009P3, HUF76009D3S PSPICE Electrical Model .SUBCKT HUF76009P3 2 1 3 ; rev 16 March 2000 CA 12 8 5.6e-10 CB 15 14 5.0e-10 CIN 6 8 4.5e-10 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD LDRAIN DPLCAP DRAIN 2 5 10 5 51 ESLC 11 - RDRAIN 6 8 EVTHRES + 19 8 + LGATE GATE 1 MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD + 50 - IT 8 17 1 EVTEMP RGATE + 18 22 9 20 21 EBREAK 17 18 DBODY - 16 MWEAK 6 MMED MSTRO RLGATE LSOURCE CIN 8 SOURCE 3 7 RSOURCE RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 1.0e-3 RGATE 9 20 4.0 RLDRAIN 2 5 10 RLGATE 1 9 46 RLSOURCE 3 7 47 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 1.4e-2 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B DBREAK + RSLC2 ESG LDRAIN 2 5 1.0e-9 LGATE 1 9 4.6e-9 LSOURCE 3 7 4.7e-9 RLDRAIN RSLC1 51 EBREAK 11 7 17 18 25.9 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 RLSOURCE S1A 12 S2A 14 13 13 8 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 CB 6 8 EGS - 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD 19 - IT 14 + + VBAT 5 8 EDS - + 8 22 RVTHRES VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*70),3))} .MODEL DBODYMOD D (IS = 3.4e-13 RS = 1.0e-2 TRS1 = 2e-3 TRS2 = 8e-7 CJO = 1.05e-9 TT = 1.18e-8 XTI = 5 M = 0.42) .MODEL DBREAKMOD D (RS = 1.3e- 1TRS1 = 0TRS2 = 0) .MODEL DPLCAPMOD D (CJO = 3.2e-1 0IS = 1e-3 0N = 10 M = 0.6) .MODEL MMEDMOD NMOS (VTO = 2.38 KP = 12 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RS = 0.03 RG = 4) .MODEL MSTROMOD NMOS (VTO = 2.87 KP = 28 LAMBDA = 0.02 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.95 KP = 0.08 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 40 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 9.7e- 4TC2 = 0) .MODEL RDRAINMOD RES (TC1 = 9.8e-3 TC2 = 2.85e-5) .MODEL RSLCMOD RES (TC1 = 5e-3 TC2 = 5.05e-6) .MODEL RSOURCEMOD RES (TC1 = 1.5e-3 TC2 = 1e-6) .MODEL RVTHRESMOD RES (TC1 = -1.48e-3 TC2 = -5e-6) .MODEL RVTEMPMOD RES (TC1 = -1.68e- 3TC2 = 8e-7) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -4.7 VOFF= -2.0) VON = -2.0 VOFF= -4.7) VON = -1.0 VOFF= 0.3) VON = 0.3 VOFF= -1.0) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. ©2001 Fairchild Semiconductor Corporation HUF76009P3, HUF76009D3S Rev. B HUF76009P3, HUF76009D3S SABER Electrical Model REV 16 March 2000 template huf76009p3 n2,n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (isl = 3.4e-13, rs = 1.0e-2, trs1 = 2e-3, trs2 = 8e-7, cjo = 1.05e-9, tt = 1.18e-8, xti = 5, m = 0.42) dp..model dbreakmod = (rs = 1.3e-1, trs1 = 0, trs2 = 0) dp..model dplcapmod = (cjo = 3.2e-10, isl = 10e-30, nl = 10, m = 0.6) m..model mmedmod = (type=_n, vto = 2.38, kp = 12, is = 1e-30, tox = 1, rs = 0.03) m..model mstrongmod = (type=_n, vto = 2.87, kp = 28, lambda = 0.02, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 1.95, kp = 0.08, is = 1e-30, tox = 1, rs = 0.1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -4.7, voff = -2.0) DPLCAP 5 sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -2.0, voff = -4.7) 10 sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -1.0, voff = 0.3) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.3, voff = -1.0) RSLC1 DRAIN 2 RLDRAIN 51 c.ca n12 n8 = 5.6e-10 c.cb n15 n14 = 5.0e-10 c.cin n6 n8 = 4.5e-10 RSLC2 ISCL RDRAIN 6 8 ESG EVTHRES + 19 8 + i.it n8 n17 = 1 LGATE GATE 1 EVTEMP RGATE + 18 22 9 20 21 11 DBODY 16 MWEAK 6 EBREAK + 17 18 MMED MSTRO RLGATE CIN - 8 m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u res.rbreak n17 n18 = 1, tc1 = 9.7e-4, tc2 = 0 res.rdrain n50 n16 = 1.0e-3, tc1 = 9.8e-3, tc2 = 2.85e-5 res.rgate n9 n20 = 4.0 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 46 res.rlsource n3 n7 = 47 res.rslc1 n5 n51= 1e-6, tc1 = 5e-3, tc2 = 5.05e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 1.4e-2, tc1 = 1.5e-3, tc2 =1e-6 res.rvtemp n18 n19 = 1, tc1 = -1.68e-3, tc2 = 8e-7 res.rvthres n22 n8 = 1, tc1 = -1.48e-3, tc2 = -5e-6 DBREAK 50 - dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod l.ldrain n2 n5 = 1.0e-9 l.lgate n1 n9 = 4.6e-9 l.lsource n3 n7 = 4.7e-9 LDRAIN LSOURCE 7 SOURCE 3 RSOURCE RLSOURCE S1A 12 S2A 13 8 14 13 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 19 CB 6 8 EGS - - IT 14 + + VBAT 5 8 EDS - + 8 22 RVTHRES spe.ebreak n11 n7 n17 n18 = 25.9 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/70))** 3)) } } ©2001 Fairchild Semiconductor Corporation HUF76009P3, HUF76009D3S Rev. B HUF76009P3, HUF76009D3S SPICE Thermal Model th REV 16 March 2000 JUNCTION T76009 CTHERM1 th 6 9.5e-4 CTHERM2 6 5 2.4e-3 CTHERM3 5 4 3.9e-3 CTHERM4 4 3 4.3e-3 CTHERM5 3 2 5.9e-3 CTHERM6 2 tl 3.0e-2 RTHERM1 th 6 2.0e-2 RTHERM2 6 5 1.1e-1 RTHERM3 5 4 2.75e-1 RTHERM4 4 3 5.3e-1 RTHERM5 3 2 7.1e-1 RTHERM6 2 tl 7.8e-1 SABER Thermal Model CTHERM1 RTHERM1 6 CTHERM2 RTHERM2 5 CTHERM3 RTHERM3 SABER thermal model T76009 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 9.5e-4 ctherm.ctherm2 6 5 = 2.4e-3 ctherm.ctherm3 5 4 = 3.9e-3 ctherm.ctherm4 4 3 = 4.3e-3 ctherm.ctherm5 3 2 = 5.9e-3 ctherm.ctherm6 2 tl = 3.0e-2 rtherm.rtherm1 th 6 = 2.0e-2 rtherm.rtherm2 6 5 = 1.1e-1 rtherm.rtherm3 5 4 = 2.75e-1 rtherm.rtherm4 4 3 = 5.3e-1 rtherm.rtherm5 3 2 = 7.1e-1 rtherm.rtherm6 2 tl = 7.8e-1 } 4 CTHERM4 RTHERM4 3 CTHERM5 RTHERM5 2 CTHERM6 RTHERM6 tl ©2001 Fairchild Semiconductor Corporation CASE HUF76009P3, HUF76009D3S Rev. B HUF76009P3, HUF76009D3S TO-252AA SURFACE MOUNT JEDEC TO-252AA PLASTIC PACKAGE E H1 A b2 INCHES A1 SEATING PLANE D L2 1 L 3 b1 b L1 e e1 MAX MIN MAX A 0.086 0.094 2.19 2.38 - A1 0.018 0.022 0.46 0.55 4, 5 0.265 (6.7) L3 0.265 (6.7) b3 0.070 (1.8) 0.118 (3.0) BACK VIEW 0.063 (1.6) TYP 0.090 (2.3) TYP MINIMUM PAD SIZE RECOMMENDED FOR SURFACE-MOUNTED APPLICATIONS 1.5mm DIA. HOLE NOTES 4, 5 b 0.028 0.032 0.72 0.81 b1 0.033 0.045 0.84 1.14 4 b2 0.205 0.215 5.21 5.46 4, 5 b3 0.190 - 4.83 - 2 c 0.018 0.022 0.46 0.55 4, 5 - D 0.270 0.295 6.86 7.49 E 0.250 0.265 6.35 6.73 e1 J1 TERM. 4 MIN e c MILLIMETERS SYMBOL 0.090 TYP 0.180 BSC - 2.28 TYP 7 4.57 BSC 7 H1 0.035 0.045 0.89 1.14 - J1 0.040 0.045 1.02 1.14 - L 0.100 0.115 2.54 2.92 - L1 0.020 - 0.51 - 4, 6 L2 0.025 0.040 0.64 1.01 3 L3 0.170 - 4.32 - 2 NOTES: 1. These dimensions are within allowable dimensions of Rev. B of JEDEC TO-252AA outline dated 9-88. 2. L3 and b3 dimensions establish a minimum mounting surface for terminal 4. 3. Solder finish uncontrolled in this area. 4. Dimension (without solder). 5. Add typically 0.002 inches (0.05mm) for solder plating. 6. L1 is the terminal length for soldering. 7. Position of lead to be measured 0.090 inches (2.28mm) from bottom of dimension D. 8. Controlling dimension: Inch. 9. Revision 11 dated 1-00. 4.0mm USER DIRECTION OF FEED 2.0mm TO-252AA 1.75mm C L 16mm TAPE AND REEL 16mm 8.0mm 22.4mm COVER TAPE 13mm 330mm 50mm GENERAL INFORMATION 1. 2500 PIECES PER REEL. 2. ORDER IN MULTIPLES OF FULL REELS ONLY. 3. MEETS EIA-481 REVISION "A" SPECIFICATIONS. ©2001 Fairchild Semiconductor Corporation 16.4mm HUF76009P3, HUF76009D3S Rev. B HUF76009P3, HUF76009D3S TO-220AB 3 LEAD JEDEC TO-220AB PLASTIC PACKAGE A INCHES E ØP A1 Q H1 TERM. 4 D 45o E1 D1 L1 b1 L b c MIN MAX MIN MAX NOTES A 0.170 0.180 4.32 4.57 - A1 0.048 0.052 1.22 1.32 - b 0.030 0.034 0.77 0.86 3, 4 b1 0.045 0.055 1.15 1.39 2, 3 c 0.014 0.019 0.36 0.48 2, 3, 4 D 0.590 0.610 14.99 15.49 - D1 - 0.160 E 0.395 0.410 E1 - 0.030 e 60o 1 2 e1 3 e e1 J1 MILLIMETERS SYMBOL 10.04 - 0.100 TYP 0.200 BSC H1 0.235 0.255 J1 0.100 0.110 L 0.530 0.550 4.06 - 10.41 - 0.76 - 2.54 TYP 5 5.08 BSC 5 5.97 6.47 - 2.54 2.79 6 13.47 13.97 - L1 0.130 0.150 3.31 3.81 2 ØP 0.149 0.153 3.79 3.88 - Q 0.102 0.112 2.60 2.84 - NOTES: 1. These dimensions are within allowable dimensions of Rev. J of JEDEC TO-220AB outline dated 3-24-87. 2. Lead dimension and finish uncontrolled in L1. 3. Lead dimension (without solder). 4. Add typically 0.002 inches (0.05mm) for solder coating. 5. Position of lead to be measured 0.250 inches (6.35mm) from bottom of dimension D. 6. Position of lead to be measured 0.100 inches (2.54mm) from bottom of dimension D. 7. Controlling dimensio n :Inch. 8. Revision 2 dated 7-97. ©2001 Fairchild Semiconductor Corporation HUF76009P3, HUF76009D3S Rev. B TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DenseTrench™ DOME™ EcoSPARK™ E2CMOSTM EnSignaTM FACT™ FACT Quiet Series™ FAST FASTr™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™ OPTOLOGIC™ OPTOPLANAR™ PACMAN™ POP™ Power247™ PowerTrench QFET™ QS™ QT Optoelectronics™ Quiet Series™ SILENT SWITCHER SMART START™ STAR*POWER™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ TruTranslation™ UHC™ UltraFET VCX™ STAR*POWER is used under license DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or 2. A critical component is any component of a life systems which, (a) are intended for surgical implant into support device or system whose failure to perform can the body, or (b) support or sustain life, or (c) whose be reasonably expected to cause the failure of the life failure to perform when properly used in accordance support device or system, or to affect its safety or with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. Rev. H4