AD ADL5565 6 ghz ultrahigh dynamic range Datasheet

FEATURES
3 dB bandwidth of 6 GHz (AV = 6 dB)
Pin strappable gain adjust: 6 dB, 12 dB, and 15.5 dB
Gain range from 0 dB to 15.5 dB using two external resistors
Differential or single-ended input to differential output
Low noise input stage: NF = 8.7 dB at 15.5 dB gain
Low broadband distortion (AV = 6 dB)
10 MHz: −107 dBc (HD2), −110 dBc (HD3)
100 MHz: −108 dBc (HD2), −103 dBc (HD3)
200 MHz: −82 dBc (HD2), −87 dBc (HD3)
500 MHz: −68 dBc (HD2), −63 dBc (HD3)
IMD3 of −113 dBc at 100 MHz center
Slew rate: 11 V/ns
Fast settling and overdrive recovery of 2 ns
Single-supply operation: 2.8 V to 5.2 V
Power down
Fabricated using the high speed XFCB3 SiGe process
FUNCTIONAL BLOCK DIAGRAM
VCC
RF
ENBL
VIP2
VIP1
RG2
VON
RG1
VCOM
RG1
VIN1
VIN2
RG2
VOP
RF
GND
ADL5565
09959-001
Data Sheet
6 GHz Ultrahigh Dynamic Range
Differential Amplifier
ADL5565
Figure 1.
APPLICATIONS
Differential ADC drivers
Single-ended-to-differential conversion
RF/IF gain blocks
SAW filter interfacing
GENERAL DESCRIPTION
The ADL5565 is a high performance differential amplifier
optimized for RF and IF applications. The amplifier offers low
noise of 1.5 nV/√Hz and excellent distortion performance over
a wide frequency range making it an ideal driver for high speed
8-bit to 16-bit analog-to-digital converters (ADCs).
The ADL5565 provides three gain levels of 6 dB, 12 dB, and 15.5 dB
through a pin strappable configuration. For the single-ended
input configuration, the gains are reduced to 5.3 dB, 10.3 dB,
and 13 dB. Using two external series resistors expands the gain
flexibility of the amplifier and allows for any gain selection from
0 dB to 15.5 dB for a differential input and 0 dB to 13 dB for a
single-ended input.
The quiescent current of the ADL5565 is typically 70 mA, and
when disabled, consumes less than 5 mA with −25 dB of inputto-output isolation at 100 MHz.
The device is optimized for wideband, low distortion, and noise
performance, giving it unprecedented performance for overall
spurious-free dynamic range. These attributes, together with its
adjustable gain capability, make this device the amplifier of
choice for driving a wide variety of ADCs, mixers, pin diode
attenuators, SAW filters, and multielement discrete devices.
Fabricated on an Analog Devices, Inc., high speed SiGe process,
the ADL5565 is supplied in a compact 3 mm × 3 mm, 16-lead
LFCSP package and operates over the −40°C to +85°C
temperature range.
Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©2011–2012 Analog Devices, Inc. All rights reserved.
ADL5565
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
Basic Structure ............................................................................ 16
Applications ....................................................................................... 1
Applications Information .............................................................. 17
Functional Block Diagram .............................................................. 1
Basic Connections ...................................................................... 17
General Description ......................................................................... 1
Input and Output Interfacing ................................................... 18
Revision History ............................................................................... 2
Gain Adjustment and Interfacing ............................................ 19
Specifications..................................................................................... 3
ADC Interfacing ......................................................................... 20
3.3 V Specifications ...................................................................... 3
Layout Considerations ............................................................... 22
5 V Specifications ......................................................................... 6
Absolute Maximum Ratings............................................................ 9
Soldering Information and Recommended PCB Land
Pattern .......................................................................................... 23
ESD Caution .................................................................................. 9
Evaluation Board ........................................................................ 23
Pin Configuration and Function Descriptions ........................... 10
Outline Dimensions ....................................................................... 26
Typical Performance Characteristics ........................................... 11
Ordering Guide .......................................................................... 26
Circuit Description ......................................................................... 16
REVISION HISTORY
6/12—Rev. A to Rev. B
Changes to Ordering Guide .......................................................... 26
4/12—Rev. 0 to Rev. A
Changes to Table 3; Added Thermal Resistance Section and
Table 4, Renumbered Sequentially ................................................. 9
Deleted Soldering Information Section ....................................... 23
Added Soldering Information and Recommended PCB
Land Pattern Section and Figure 44, Renumbered
Sequentially ..................................................................................... 23
Updated Outline Dimensions ....................................................... 26
10/11— Revision 0: Initial Version
Rev. B | Page 2 of 28
Data Sheet
ADL5565
SPECIFICATIONS
3.3 V SPECIFICATIONS
VS = 3.3 V, VCM = 1.65 V, RL = 200 Ω differential, AV = 6 dB, CL = 1 pF differential, f = 100 MHz, TA = 25°C; parameters specified
ac-coupled differential input and differential output, unless otherwise noted.
Table 1.
Parameter
DYNAMIC PERFORMANCE
−3 dB Bandwidth
Bandwidth for 0.1 dB Flatness
Gain Accuracy
Gain Supply Sensitivity
Gain Temperature Sensitivity
Slew Rate
Settling Time
Overdrive Recovery Time
Reverse Isolation (S12)
INPUT/OUTPUT CHARACTERISTICS
Input Common-Mode Range
Output Common-Mode Range
Maximum Output Voltage Swing
Output Common-Mode Offset
Output Common-Mode Drift
Output Differential Offset Voltage
CMRR
Output Differential Offset Drift
Input Bias Current
Input Resistance (Differential)
Input Resistance (Single-Ended)
Input Capacitance (Single-Ended)
Output Resistance (Differential)
POWER INTERFACE
Supply Voltage
ENBL Threshold
ENBL Input Bias Current
Quiescent Current
Test Conditions/Comments
Min
AV = 6 dB, VOUT ≤ 1.0 V p-p
AV = 12 dB, VOUT ≤ 1.0 V p-p
AV = 15.5 dB, VOUT ≤ 1.0 V p-p
VOUT ≤ 1.0 V p-p
VS ± 5%
−40°C to +85°C
Rise, AV = 15.5 dB, RL = 200 Ω,
VOUT = 2 V step
Fall, AV = 15.5 dB, RL = 200 Ω,
VOUT = 2 V step
2 V step to 1%
VIN = 4 V to 0 V step, VOUT ≤ ±10 mV
AV = 6 dB, 12 dB, and 15.5 dB
1 dB compressed
Referenced to VCC/2
−40°C to +85°C
Typ
MHz
MHz
MHz
MHz
dB
mdB/V
mdB/°C
V/ns
11
V/ns
2
<3
70
ns
ns
dB
1.2 to 2
1.4 to 1.8
4
V
V
V p-p
mV
mV/°C
mV
dB
mV/°C
µA
Ω
Ω
Ω
Ω
Ω
Ω
pF
Ω
−100
+20
0.34
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 5.6 dB
AV = 11.1 dB
AV = 14.1 dB
2.8
Rev. B | Page 3 of 28
+20
60
1.5
±5
200
100
67
158
96
74
0.3
10
−40°C to +85°C
Unit
6750
6500
6250
1000
±1
1.9
0.35
11
−20
ENBL high
ENBL low
ENBL high
ENBL low
Max
3.3
1.5
500
−165
70
5
5.2
V
V
nA
µA
mA
mA
ADL5565
Parameter
NOISE/HARMONIC PERFORMANCE
10 MHz
Second/Third Harmonic Distortion (HD2/HD3)
Output IP3/Third-Order Intermodulation
Distortion (OIP3/IMD3)
Second-Order Intermodulation Distortion (IMD2)
Noise Spectral Density, RTI (NSD)
Noise Figure (NF)
1 dB Compression Point, RTO (OP1dB)
100 MHz
Second/Third Harmonic Distortion (HD2/HD3)
Output IP3/Third-Order Intermodulation
Distortion (OIP3/IMD3)
Second-Order Intermodulation Distortion (IMD2)
Noise Spectral Density, RTI (NSD)
Noise Figure (NF)
1 dB Compression Point, RTO (OP1dB)
Data Sheet
Test Conditions/Comments
AV = 6 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 12 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 6 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 12 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 15.5 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 6 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 12 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 15.5 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 12 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 6 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 12 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 15.5 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 6 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 12 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 15.5 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
Rev. B | Page 4 of 28
Min
Typ
Max
Unit
−107/−110
−101/−107
−106/−112
+48/−100
dBc
dBc
dBc
dBm/dBc
+52/−108
dBm/dBc
+50/−105
dBm/dBc
−86
dBc
−86
dBc
−86
dBc
2.24
1.52
1.53
10.24
8.66
8.78
13.1
12.8
13.1
nV/√Hz
nV/√Hz
nV/√Hz
dB
dB
dB
dBm
dBm
dBm
−108/−103
−91/−99
−89/−100
+54/−113
dBc
dBc
dBc
dBm/dBc
+53/−112
dBm/dBc
+52/−111
dBm/dBc
−85
dBc
−85
dBc
−86
dBc
2.25
1.53
1.52
10.27
8.69
8.7
13
12.8
12.8
nV/√Hz
nV/√Hz
nV/√Hz
dB
dB
dB
dBm
dBm
dBm
Data Sheet
Parameter
200 MHz
Second/Third Harmonic Distortion (HD2/HD3)
Output IP3/Third-Order Intermodulation
Distortion (OIP3/IMD3)
Second-Order Intermodulation Distortion (IMD2)
Noise Spectral Density, RTI (NSD)
Noise Figure (NF)
500 MHz
Second/Third Harmonic Distortion (HD2/HD3)
Output IP3/Third-Order Intermodulation
Distortion (OIP3/IMD3)
Second-Order Intermodulation Distortion (IMD2)
Noise Spectral Density, RTI (NSD)
Noise Figure (NF)
ADL5565
Test Conditions/Comments
AV = 6 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 12 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 6 dB, RL = 200 Ω, VOUT =
2 V p-p composite
AV = 12 dB, RL = 200 Ω, VOUT =
2 V p-p composite
AV = 15.5 dB, RL = 200 Ω, VOUT =
2 V p-p composite
AV = 6 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 12 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 15.5 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 12 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 6 dB, RL = 200 Ω, VOUT =
2 V p-p composite
AV = 12 dB, RL = 200 Ω, VOUT =
2 V p-p composite
AV = 15.5 dB, RL = 200 Ω, VOUT =
2 V p-p composite
AV = 6 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 12 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 15.5 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
Rev. B | Page 5 of 28
Min
Typ
Max
Unit
−82/−87
−72/−86
−71/−86
+46/−97
dBc
dBc
dBc
dBm/dBc
+46/−99
dBm/dBc
+46/−98
dBm/dBc
−85
dBc
−73
dBc
−70
dBc
2.36
1.64
1.51
10.65
9.25
8.49
nV/√Hz
nV/√Hz
nV/√Hz
dB
dB
dB
−68/−63
−56/−62
−57/−63
+34/−77
dBc
dBc
dBc
dBm/dBc
+36/−82
dBm/dBc
+39/−88
dBm/dBc
−75
dBc
−70
dBc
−70
dBc
2.62
1.57
1.47
11.47
8.93
8.07
nV/√Hz
nV/√Hz
nV/√Hz
dB
dB
dB
ADL5565
Data Sheet
5 V SPECIFICATIONS
VS = 5.0 V, VCM = 2.5 V, RL = 200 Ω differential, AV = 6 dB, CL = 1 pF differential, f = 100 MHz, TA = 25°C; parameters specified
ac-coupled differential input and differential output, unless otherwise noted.
Table 2.
Parameter
DYNAMIC PERFORMANCE
−3 dB Bandwidth
Bandwidth for 0.1 dB Flatness
Gain Accuracy
Gain Supply Sensitivity
Gain Temperature Sensitivity
Slew Rate
Settling Time
Overdrive Recovery Time
Reverse Isolation (S12)
INPUT/OUTPUT CHARACTERISTICS
Input Common-Mode Range
Output Common-Mode Range
Maximum Output Voltage Swing
Output Common-Mode Offset
Output Common-Mode Drift
Output Differential Offset Voltage
CMRR
Output Differential Offset Drift
Input Bias Current
Input Resistance (Differential)
Input Resistance (Single-Ended)
Input Capacitance (Single-Ended)
Output Resistance (Differential)
POWER INTERFACE
Supply Voltage
ENBL Threshold
ENBL Input Bias Current
Quiescent Current
Test Conditions/Comments
Min
AV = 6 dB, VOUT ≤ 1.0 V p-p
AV = 12 dB, VOUT ≤ 1.0 V p-p
AV = 15.5 dB, VOUT ≤ 1.0 V p-p
VOUT ≤ 1.0 V p-p
VS ± 5%
−40°C to +85°C
Rise, AV = 15.5 dB, RL = 200 Ω,
VOUT = 2 V step
Fall, AV = 15.5 dB, RL = 200 Ω,
VOUT = 2 V step
2 V step to 1%
VIN = 4 V to 0 V step, VOUT ≤ ±10 mV
AV = 6 dB, 12 dB, and 15.5 dB
1 dB compressed
Referenced to VCC/2
−40°C to +85°C
Typ
MHz
MHz
MHz
MHz
dB
mdB/V
mdB/°C
V/ns
11
V/ns
2
<3
70
ns
ns
dB
1.2 to 3.8
1.4 to 3
8
V
V
V p-p
mV
mV/°C
mV
dB
mV/°C
µA
Ω
Ω
Ω
Ω
Ω
Ω
pF
Ω
−100
+20
0.4
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 5.6 dB
AV = 11.1 dB
AV = 14.1 dB
2.8
Rev. B | Page 6 of 28
+20
60
1.5
±5
200
100
67
158
96
74
0.3
10
−40°C to +85°C
Unit
7000
6750
6500
1000
±1
1.6
0.37
11
−20
ENBL high
ENBL low
ENBL high
ENBL low
Max
5
1.5
1
−250
80
6
5.2
V
V
µA
µA
mA
mA
Data Sheet
Parameter
NOISE/HARMONIC PERFORMANCE
10 MHz
Second/Third Harmonic Distortion (HD2/HD3)
Output IP3/Third-Order Intermodulation
Distortion (OIP3/IMD3)
Second-Order Intermodulation Distortion (IMD2)
Noise Spectral Density, RTI (NSD)
Noise Figure (NF)
1 dB Compression Point, RTO (OP1dB)
100 MHz
Second/Third Harmonic Distortion (HD2/HD3)
Output IP3/Third-Order Intermodulation
Distortion (OIP3/IMD3)
Second-Order Intermodulation Distortion (IMD2)
Noise Spectral Density, RTI (NSD)
Noise Figure (NF)
1 dB Compression Point, RTO (OP1dB)
ADL5565
Test Conditions/Comments
AV = 6 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 12 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 6 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 12 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 15.5 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 6 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 12 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 15.5 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 12 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 6 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 12 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 15.5 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 6 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 12 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 15.5 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
Rev. B | Page 7 of 28
Min
Typ
Max
Unit
−111/−116
−100/−104
−105/−106
+47/−99
dBc
dBc
dBc
dBm/dBc
+50/−105
dBm/dBc
+50/−105
dBm/dBc
−78
dBc
−86
dBc
−91
dBc
2.25
1.54
1.55
10.29
8.77
9.04
16.8
16.7
16.6
nV/√Hz
nV/√Hz
nV/√Hz
dB
dB
dB
dBm
dBm
dBm
−108/−109
−92/−103
−89.5/−105
+53/−112
dBc
dBc
dBc
dBm/dBc
+53/−112
dBm/dBc
+52/−110
dBm/dBc
−87
dBc
−91
dBc
−87
dBc
2.28
1.53
1.52
10.39
8.73
8.7
16.8
16.5
16.4
nV/√Hz
nV/√Hz
nV/√Hz
dB
dB
dB
dBm
dBm
dBm
ADL5565
Parameter
200 MHz
Second/Third Harmonic Distortion (HD2/HD3)
Output IP3/Third-Order Intermodulation
Distortion (OIP3/IMD3)
Second-Order Intermodulation Distortion (IMD2)
Noise Spectral Density, RTI (NSD)
Noise Figure (NF)
500 MHz
Second/Third Harmonic Distortion (HD2/HD3)
Output IP3/Third-Order Intermodulation
Distortion (OIP3/IMD3)
Second-Order Intermodulation Distortion (IMD2)
Noise Spectral Density, RTI (NSD)
Noise Figure (NF)
Data Sheet
Test Conditions/Comments
AV = 6 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 12 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 6 dB, RL = 200 Ω, VOUT =
2 V p-p composite
AV = 12 dB, RL = 200 Ω, VOUT =
2 V p-p composite
AV = 15.5 dB, RL = 200 Ω, VOUT =
2 V p-p composite
AV = 6 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 12 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 15.5 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 12 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 6 dB, RL = 200 Ω, VOUT =
2 V p-p composite
AV = 12 dB, RL = 200 Ω, VOUT =
2 V p-p composite
AV = 15.5 dB, RL = 200 Ω, VOUT =
2 V p-p composite
AV = 6 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 12 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 15.5 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
Rev. B | Page 8 of 28
Min
Typ
Max
Unit
−82/−87
−72/−86
−71/−86
+46/−97
dBc
dBc
dBc
dBm/dBc
+46/−99
dBm/dBc
+46/−98
dBm/dBc
−85
dBc
−74
dBc
−70
dBc
2.43
1.63
1.51
10.88
9.2
8.54
nV/√Hz
nV/√Hz
nV/√Hz
dB
dB
dB
−69/−66
−56/−65
−58/−66
+35/−78
dBc
dBc
dBc
dBm/dBc
+35/−81
dBm/dBc
+37/−85
dBm/dBc
−73
dBc
−75
dBc
−72
dBc
2.64
1.6
1.48
11.56
9.06
8.17
nV/√Hz
nV/√Hz
nV/√Hz
dB
dB
dB
Data Sheet
ADL5565
ABSOLUTE MAXIMUM RATINGS
THERMAL RESISTANCE
Table 3.
Parameter
Output Voltage Swing × Bandwidth Product
Supply Voltage, VCC
VIPx, VINx
±IOUT Maximum
Internal Power Dissipation
Maximum Junction Temperature
Operating Temperature Range
Storage Temperature Range
Rating
2000 V p-p MHz
5.25 V
VCC + 0.5 V
30 mA
525 mW
125°C
−40°C to +100°C
−65°C to +150°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
Table 4 lists the junction-to-air thermal resistance (θJA) and the
junction-to-paddle thermal resistance (θJC) for the ADL5565.
Table 4. Thermal Resistance
Package Type
16 LFCSP
θJA1
60
θJC2
12
Unit
°C/W
Measured on Analog Devices evaluation board. For more information about
board layout, see the Soldering Information and Recommended PCB Land
Pattern section.
2
Based on simulation with JEDEC standard JESD51.
1
ESD CAUTION
Rev. B | Page 9 of 28
ADL5565
Data Sheet
13 GND
14 GND
16 GND
15 GND
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
VIP2 1
12 ENBL
VIP1 2
ADL5565
11 VOP
VIN1 3
TOP
VIEW
10 VON
9
NOTES
1. EXPOSED PADDLE IS INTERNALLY
CONNECT TO GND AND MUST BE
SOLDERED TO A LOW IMPEDANCE
GROUND PLANE.
09959-002
VCC 7
VCOM
VCC 8
VCC 5
VCC 6
VIN2 4
Figure 2. Pin Configuration
Table 5. Pin Function Descriptions
Pin No.
1
Mnemonic
VIP2
2
VIP1
3
VIN1
4
VIN2
5, 6, 7, 8
9
VCC
VCOM
10
11
12
13, 14, 15, 16,
Exposed Paddle
VON
VOP
ENBL
GND
Description
Balanced Differential Input. Biased to VCOM, typically ac-coupled. Input for AV = 12 dB gain, strapped to
VIP1 for AV = 15.5 dB.
Balanced Differential Input. Biased to VCOM, typically ac-coupled. Input for AV = 6 dB gain, strapped to
VIP2 for AV = 15.5 dB.
Balanced Differential Input. Biased to VCOM, typically ac-coupled. Input for AV = 6 dB gain, strapped to
VIN2 for AV = 15.5 dB.
Balanced Differential Input. Biased to VCOM, typically ac-coupled. Input for AV = 12 dB gain, strapped to
VIN1 for AV = 15.5 dB.
Positive Supply.
Common-Mode Voltage. A voltage applied to this pin sets the common-mode voltage of the input and
output. Typically decoupled to ground with a 0.1 µF capacitor. With no reference applied, input and
output common mode floats to midsupply (VCC/2).
Balanced Differential Output. Biased to VCOM, typically ac-coupled.
Balanced Differential Output. Biased to VCOM, typically ac-coupled.
Enable. Apply positive voltage (1.3 V < ENBL < VCC) to activate device.
Ground. Exposed paddle is internally connected to GND and must be soldered to a low impedance
ground plane.
Rev. B | Page 10 of 28
Data Sheet
ADL5565
TYPICAL PERFORMANCE CHARACTERISTICS
VS = 3.3 V, VCM = 1.65 V, RL = 200 Ω differential, AV = 6 dB, CL = 1 pF differential, f = 100 MHz, TA = 25°C; parameters specified
ac-coupled differential input and differential output, unless otherwise noted.
25
25
AV = 15.5dB
AV = 12dB
AV = 6dB
20
20
10
OP1dB (dBm)
5
0
–5
15
10
–10
5
–15
–25
10
100
1000
10000
FREQUENCY (MHz)
0
09959-003
–20
AV = 15dB
AV = 12dB
AV = 6dB
0
100
150
200
250
FREQUENCY (MHz)
Figure 6. OP1dB vs. Frequency at Three Gains,
25°C, 200 Ω Differential Load, VPOS = 3.3 V
Figure 3. Gain vs. Frequency Response for 200 Ω Differential Load,
AV = 6 dB, AV = 12 dB, and AV = 15.5 dB, VPOS = 3.3 V and VPOS = 5 V, 25°C
25
20
15
50
09959-005
VOLTAGE GAIN (dB)
15
–40°C
+85°C
+25°C
+100°C
–40°C
+25°C
+85°C
+100°C
20
5
OP1dB (dBm)
VOLTAGE GAIN (dB)
10
0
–5
15
10
–10
5
100
1000
10000
FREQUENCY (MHz)
0
09959-004
0
18
20
–40°C
+25°C
+85°C
+100°C
16
NOISE FIGURE (dB)
5
0
–5
–10
200
250
AV = 6dB
AV = 12dB
AV = 15.5dB
12
10
8
6
–15
4
–20
2
100
1000
10000
FREQUENCY (MHz)
Figure 5. Gain vs. Frequency Response for 200 Ω Differential Load,
AV = 6 dB, Four Temperatures, VPOS = 5 V, 25°C
0
10
09959-105
VOLTAGE GAIN (dB)
150
14
10
–25
10
100
FREQUENCY (MHz)
Figure 7. OP1dB vs. Frequency for 200 Ω Differential Load, AV = 6 dB,
Four Temperatures, VPOS = 3.3 V
Figure 4. Gain vs. Frequency Response for 200 Ω Differential Load,
AV = 6 dB, Four Temperatures, VPOS = 3.3 V, 25°C
15
50
100
FREQUENCY (MHz)
1000
09959-007
–20
10
09959-006
–15
Figure 8. Noise Figure vs. Frequency at AV = 6 dB, AV = 12 dB, and AV = 15.5 dB,
VPOS = 3.3 V
Rev. B | Page 11 of 28
ADL5565
Data Sheet
60
18
AV = 6dB
AV = 12dB
AV = 15.5dB
16
50
40
10
8
30
5V, –40°C
5V, +25°C
5V, +85°C
5V, +100°C
3.3V, –40°C
3.3V, +25°C
3.3V, +85°C
3.3V, +100°C
20
6
4
10
2
100M
1G
FREQUENCY (Hz)
0
09959-008
0
10M
Figure 9. Noise Figure vs. Frequency at AV = 6 dB, AV = 12 dB, and
AV = 15.5 dB, VPOS = 5 V
0
100
150
200
250
300
350
400
450
500
FREQUENCY (MHz)
Figure 12. Output Third-Order Intercept (OIP3) vs. Frequency,
Over Temperature, Output Level at 2 V p-p Composite, RL = 200 Ω, Av = 6 dB,
VPOS = 3.3 V and VPOS = 5 V, Four Temperatures
70
5.0
AV = 6dB
AV = 12dB
AV = 15.5dB
AV = 6dB
AV = 12dB
AV = 15.5dB
4.0
60
50
3.5
OIP3 (dBm)
3.0
2.5
2.0
1.5
40
30
20
3.3V, AV = 6dB
3.3V, AV = 12dB
3.3V, AV = 15.5dB
5V, AV = 6dB
5V, AV = 12dB
5V, AV = 15.5dB
1.0
10
0.5
100
1000
FREQUENCY (MHz)
0
09959-009
0
10
0
2
3
4
5
6
7
8
9
10
POUT/TONE (dBm)
Figure 10. Noise Spectral Density vs. Frequency at AV = 6 dB, AV = 12 dB, and
AV = 15.5 dB, VPOS = 3.3 V and VPOS = 5 V
Figure 13. Output Third-Order Intercept (OIP3) vs. Power (POUT),
Frequency 100 MHz, AV = 15.5 dB, VPOS = 3.3 V and VPOS = 5 V
60
0
5V, AV = 6dB
5V, AV = 12dB
5V, AV = 15.5dB
3.3V, AV = 6dB
3.3V, AV = 12dB
3.3V, AV = 15.5dB
50
1
09959-012
4.5
NOISE SPECTRAL DENSITY (nV/√Hz)
50
09959-011
12
OIP3 (dBm)
NOISE FIGURE (dB)
14
3.3V, AV = 6dB
3.3V, AV = 12dB
3.3V, AV = 15.5dB
5V, AV = 6dB
5V, AV = 12dB
5V, AV = 15.5dB
–20
–40
IMD3 (dBc)
OIP3 (dBm)
40
30
–60
–80
20
–100
10
0
50
100
150
200
250
300
FREQUENCY (MHz)
350
400
450
500
–140
09959-010
0
Figure 11. Output Third-Order Intercept (OIP3) at Three Gains,
Output Level at 2 V p-p Composite, RL = 200 Ω, VPOS = 3.3 V and VPOS = 5 V
0
50
100
150
200
250
300
FREQUENCY (MHz)
350
400
450
500
09959-013
–120
Figure 14. Output IMD3 vs. Frequency, Output Level at 2 V p-p Composite,
RL = 200 Ω, VPOS = 3.3 V and VPOS = 5 V
Rev. B | Page 12 of 28
3.3V, –40°C
3.3V, +25°C
3.3V, +85°C
3.3V, +100°C
5V, –40°C
5V, +25°C
5V, +85°C
5V, +100°C
–20
HD2 (dBc)
–60
–80
0
–60
–20
–80
–40
–100
–60
–120
–80
–100
–140
–120
–160
–140
0
50
100
150
200
250
300
350
400
450
500
FREQUENCY (MHz)
HD2,
HD2,
HD2,
HD2,
HD2,
HD2,
HD2,
HD2,
0
HD3,
HD3,
HD3,
HD3,
HD3,
HD3,
HD3,
HD3,
5V, –40°C
5V, +25°C
5V, +85C
5V, +100°C
3.3V, –40°C
3.3V, +25°C
3.3V, +85°C
3.3V, +100°C
50
100
150
200
250
300
350
400
450
–100
–120
–140
500
FREQUENCY (MHz)
Figure 18. Harmonic Distortion (HD2/HD3) vs. Frequency, Over Temperature,
Output Level at 2 V p-p Composite, RL = 200 Ω, AV = 6 dB, VPOS = 3.3 V and
VPOS = 5 V, Four Temperatures
Figure 15. IMD3 vs. Frequency, Over Temperature, Output Level at
2 V p-p Composite, RL = 200 Ω, AV = 6 dB, VPOS = 3.3 V and VPOS = 5 V,
Four Temperatures
–60
55
AV = 5.3dB
AV = 10.3dB
AV = 13dB
50
5V, –40°C
5V, +25°C
5V, +85°C
5V, +100°C
3.3V, –40°C
3.3V, +25°C
3.3V, +85°C
3.3V, +100°C
–180
09959-014
IMD3 (dBm)
–40
–40
HD3 (dBc)
0
ADL5565
09959-017
Data Sheet
0
3.3V, HD2
5V, HD2
3.3V, HD3
5V, HD3
–80
–20
–100
–40
–120
–60
–140
–80
–160
–100
–180
–120
40
HD3 (dBc)
HD2 (dBc)
OIP3 (dBm)
45
35
50
100
150
200
250
FREQUENCY (MHz)
–200
–6
–80
–40
–100
–60
–120
–80
–140
–100
–180
0
50
100
150
200
250
300
FREQUENCY (MHz)
HD3,
HD3,
HD3,
HD3,
HD3,
HD3,
350
3.3V, AV = 6dB
3.3V, AV = 12dB
3.3V, AV = 15.5dB
5V, AV = 6dB
5V, AV = 12dB
5V, AV = 15.5dB
400
450
2
4
6
8
–140
10
5V
5V
3.3V
3.3V
–40
–60
–80
–100
–120
–140
500
HD2,
HD3,
HD2,
HD3,
–20
HD2 AND HD3 (dBc)
–20
HD3 (dBc)
–60
0
09959-016
HD2 (dBc)
0
3.3V, AV = 6dB
3.3V, AV = 12dB
3.3V, AV = 15.5dB
5V, AV = 6dB
5V, AV = 12dB
5V, AV = 15.5dB
0
Figure 19. Harmonic Distortion vs. Output Power per Tone,
Frequency = 100 MHz, RL = 200 Ω, VPOS = 3.3 V and VPOS = 5 V
–40
HD2,
HD2,
HD2,
HD2,
HD2,
HD2,
–2
POUT/TONE (dBm)
Figure 16. Single-Ended OIP3 vs. Frequency
–160
–4
Figure 17. Harmonic Distortion (HD2/HD3) vs. Frequency,
Output Level at 2 V p-p Composite, RL = 200 Ω, VPOS = 3.3 V and VPOS = 5 V
Rev. B | Page 13 of 28
–120
1.0
1.5
2.0
2.5
VCOM
Figure 20. Harmonic Distortion (HD2/HD3) vs. VCOM,
AV = 6 dB, VPOS = 3.3 V and VPOS = 5 V
3.0
09959-019
0
09959-015
25
09959-018
30
ADL5565
90
HD2 AV = 5.3dB
HD2 AV = 10.3dB
HD2 AV = 13dB
HD3 AV = 5.3dB
HD3 AV = 10.3dB
HD3 AV = 13dB
–65
–70
80
70
–75
60
–80
–85
50
40
–90
30
–95
20
–100
10
0
50
100
150
200
250
0
10
09959-020
–105
300
FREQUENCY (MHz)
100
09959-021
CMRR (dB)
1000
FREQUENCY (MHz)
Figure 21. Single-Ended Harmonic Distortion (HD2/HD3) vs. Frequency,
Figure 24. Common-Mode Rejection Ratio (CMRR) vs. Frequency
3.5
GROUP DELAY (ns)
3.0
3
2.5
2.0
1.5
1.0
1
50Ω
B
W
8:0G
25GS/s
2ns/DIV
A CH3
832mV
0
0
500
100
1500
2000
2500
3000
FREQUENCY (MHz)
Figure 22. ENBL Time Domain Response
09959-024
CH3 400mV/DIV
CH1 70.4mV
09959-022
0.5
Figure 25. Group Delay vs. Frequency
0
REVERSE ISOLATION (dB)
–10
1
–20
–30
–40
–50
–60
CH1 340mV
CH2 1.025V
25GS/s
2ns/DIV
A CH2
10mV
09959-023
–70
–80
10
100
1000
FREQUENCY (GHz)
Figure 23. Large Signal Pulse Response, AV = 15.5 dB
Figure 26. Reverse Isolation (S12) vs. Frequency AV = 6 dB
Rev. B | Page 14 of 28
09959-025
HARMONIC DISTORTION HD2, HD3 (dBc)
–60
Data Sheet
700
45
600
40
500
35
400
30
300
25
200
20
100
15
10
0
10
100
1000
FREQUENCY (MHz)
85
80
5V
8
105
7
90
6
75
5
60
4
45
3
30
2
1
RS
0
10
100
1000
FREQUENCY (MHz)
0
EQUIVALENT SERIES OUTPUT INDUCTANCE (nH)
120
09959-128
EQUIVALENT SERIES OUTPUT RESISTANCE (Ω)
9
LS
15
60
–40
–20
0
20
40
60
80
TEMPERATURE (°C)
Figure 29. ISUPPLY vs. Temperature, RL = 200 Ω, AV = 6 dB,
VPOS = 3.3 V and VPOS = 5 V
10
135
3.3V
70
65
Figure 27. S11 Equivalent RLC Parallel Network, AV = 6 dB
150
75
Figure 28. S22 Equivalent RLC Parallel Network, AV = 6 dB
Rev. B | Page 15 of 28
100
09959-027
50
ISUPPLY (mA)
800
EQUIVALENT PARALLEL INPUT CAPACITANCE (pF)
ADL5565
09959-026
EQUIVALENT PARALLEL INPUT RESISTANCE (Ω)
Data Sheet
ADL5565
Data Sheet
CIRCUIT DESCRIPTION
BASIC STRUCTURE
The ADL5565 is a low noise, fully differential amplifier/ADC
driver that can operate from 2.8 V to 5.2 V. It provides three
gain options, 6 dB, 12 dB, and 15.5 dB, without the need for
external resistors and has wide bandwidths of greater than 6
GHz for all gains. Differential input impedance is 200 Ω for 6
dB, 100 Ω for 12 dB, and 67 Ω for 15.5 dB. It has a differential
output impedance of 10 Ω.
0.1µF
200Ω
+
2
RS
AC
1/
2
VIP2
50Ω
VIP1
100Ω
5Ω
RL
VIN1 100Ω
VIN2
RS
50Ω
5Ω
200Ω
+
0.1µF
09959-032
1/
Figure 30. Basic Structure
The ADL5565 is composed of a fully differential amplifier with
on-chip feedback and feed forward resistors. The two feedforward
resistors on each input set this pin-strappable amplifier in three
different gain configurations of 6 dB, 12 dB, and 15.5 dB, and by
using two external resistors, any gain from 0 dB to 15.5 dB can be
realized. The amplifier is designed to provide high differential
open-loop gain and an output common-mode circuit that enables
the user to change the common-mode voltage from the VCOM
pin. The amplifier is designed to provide superior low distortion at
frequencies up to and beyond 300 MHz with low noise and low
power consumption from a 3.3 V power supply at 70 mA.
The ADL5565 is very flexible in terms of I/O coupling. It can be
ac-coupled or dc-coupled at the inputs and/or the outputs within
the specified input and output common-mode levels. The input
of the device can be configured as single-ended or differential
with similar third-order distortion performance. Due to the
internal connections between the inputs and outputs, an output
common-mode voltage between 1.4 V and 1.8 V at 3.3 V and
1.4 V to 3 V at 5 V must be maintained for the best distortion.
For a dc-coupled input, the input common mode should be
between 1.2 V and 2 V at the 3.3 V supply, and 1.2 V to 3.8 V at
the 5 V supply. The device has been characterized using 2 V p-p
into a 200 Ω ac-coupled output. If the inputs are ac-coupled, the
input and output common-mode voltages are set by VCC/2 when
no external circuitry is used. The ADL5565 provides an output
common-mode voltage set by VCOM, which allows driving an
ADC directly without external components. Although distortion is
similar over the specified frequency range at both 3.3 V and 5 V,
lower distortion results on the 5 V supply for signal swings larger
than 2 V p-p.
Rev. B | Page 16 of 28
Data Sheet
ADL5565
APPLICATIONS INFORMATION
is applied to VIN2, the gain is 12 dB (middle gain). When Input A
is applied to both VIP1 and VIP2 and Input B is applied to both
VIN1 and VIN2, the gain is 15.5 dB (maximum gain).
BASIC CONNECTIONS
Figure 31 shows the basic connections for operating the
ADL5565. Apply a voltage between 3 V and 5 V to the VCC pins,
and decouple each supply pin with at least one low inductance,
0.1 µF surface-mount ceramic capacitor, placed as close as
possible to the device. Also, decouple the VCOM pin (Pin 9)
using a 0.1 µF capacitor.
Pin 1 to Pin 4, Pin 10, and Pin 11 are biased at 1/2 VCC above
ground and can be dc-coupled (if within the specified input or
output common-mode voltage levels) or ac-coupled as shown in
Figure 31.
To enable the ADL5565, the ENBL pin must be pulled high.
Pulling the ENBL pin low puts the ADL5565 in sleep mode,
reducing the current consumption to 5 mA at ambient.
The gain of the part is determined by the pin-strappable input
configuration. When Input A is applied to VIP1 and Input B is
applied to VIN1, the gain is 6 dB (minimum gain, see Equation 1
and Equation 2). When Input A is applied to VIP2 and Input B
VCC
16
GND
1 VIP2
A
RS/2
15
GND
14
GND
13
GND
ENBL 12
0.1µF
2 VIP1
BALANCED
SOURCE
AC
VOP 11
RL
ADL5565
0.1µF B
BALANCED
LOAD
VON 10
3 VIN1
RS/2
VCOM 9
VCC
5
VCC
10µF
0.1µF
VCC
6
0.1µF
VCC
7
0.1µF
Figure 31. Basic Connections
Rev. B | Page 17 of 28
VCC
8
0.1µF
0.1µF
09959-033
4 VIN2
ADL5565
Data Sheet
INPUT AND OUTPUT INTERFACING
Single-Ended Input to Differential Output
The ADL5565 can be configured as a differential input to
differential output driver, as shown in Figure 32. The resistors,
R1 and R2, combined with the ETC1-1-13 balun transformer,
provide a 50 Ω input match for the three input impedances that
change with the variable gain strapping. The input and output
0.1 µF capacitors isolate the VCC/2 bias from the source and
balanced load. The load should equal 200 Ω to provide the
expected ac performance (see the Specifications section and the
Typical Performance Characteristics section).
The ADL5565 can also be configured in a single-ended input
to differential output driver, as shown in Figure 34. In this
configuration, the gain of the part is reduced due to the application
of the signal to only one side of the amplifier. The strappable
gain values are listed in Table 8 with the required terminations
to match to a 50 Ω source using R1 and R2. The input and output
0.1 µF capacitors isolate the VCC/2 bias from the source and the
balanced load. The performance for this configuration is shown
in Figure 16 and Figure 21.
3V TO 5V
3V TO 5V
0.1µF
0.1µF
VIP2
50Ω
0.1µF
0.1µF
VIN2
+
R2
VIN1
RL
2
B
+
0.1µF
VIN2
AC
+
R1
RL
2
VIP1
RL
2
+
AC
50Ω
VIN1
B
RL
2
0.1µF
VIP2
A
+
+
VIP1
R2
0.1µF
+
A
+
ETC1-1-13
0.1µF
R1
Figure 32. Differential Input to Differential Output Configuration
Table 6. Differential Termination Values for Figure 32
R1 (Ω)
29
33
40.2
Figure 34. Single-Ended Input to Differential Output Configuration
R2 (Ω)
29
33
40.2
Table 8. Single-Ended Termination Values for Figure 34
The differential gain of the ADL5565 is dependent on the source
impedance and load, as shown in Figure 33.
0.1µF
R1 (Ω)
30
30
30
+
5Ω
50Ω
200Ω
VIP1 100Ω
AC
R2 (Ω)
73
104
154
The single-ended gain configuration of the ADL5565 is dependent
on the source impedance and load, as shown in Figure 35.
200Ω
VIP2
1/ R
2 S
Gain (dB)
5.3
10.3
13
RL
VIN1 100Ω
VIP2
0.1µF
5Ω
50Ω
0.1µF
+
50Ω
5Ω
200Ω
RS
+
09959-035
0.1µF
In Equation 1, RG is the gain setting resistor (see Figure 1).
Table 7. Values of RG for Differential Gain
Gain (dB)
6
12
15.5
VIN2
RG (Ω)
100
50
33.5
Rev. B | Page 18 of 28
50Ω
5Ω
0.1µF
RL
2
+
(1)
RL
2
VIN1 100Ω
+
The differential gain can be determined using the following
formula. The values of RG for each gain configuration are shown
in Table 7.
RL
200
×
RG 10 + RL
R2
AC
Figure 33. Differential Input Loading Circuit
AV =
VIP1 100Ω
+
VIN2
1/ R
2 S
0.1µF
200Ω
R1
Figure 35. Single-Ended Input Loading Circuit
09959-037
Gain (dB)
6
12
15.5
09959-036
NOTES
1. FOR 5.3dB GAIN (AV = 1.84), CONNECT INPUT A TO VIP1
AND INPUT B TO VIN1.
2. FOR 10.3dB GAIN (AV = 3.3), CONNECT INPUT A TO VIP2
AND INPUT B TO VIN2.
3. FOR 13dB GAIN (AV = 4.5), CONNECT INPUT A TO BOTH
VIP1 AND VIP2 AND INPUT B TO BOTH VIN1 AND VIN2.
09959-034
NOTES
1. FOR 6dB GAIN (AV = 2), CONNECT INPUT A TO VIP1 AND INPUT B TO VIN1.
2. FOR 12dB GAIN (AV = 4), CONNECT INPUT A TO VIP2 AND INPUT B TO VIN2.
3. FOR 15.5dB GAIN (AV = 6), CONNECT INPUT A TO BOTH VIP1 AND VIP2
AND INPUT B TO BOTH VIN1 AND VIN2.
Data Sheet
ADL5565
The necessary shunt component, RSHUNT, to match to the source
impedance, RS, can be expressed as
The single-ended gain can be determined using the following
formula. The values of RG and RX for each gain configuration
are shown in Table 9.
R + RS
RL
R2
200
AV 1 =
×
× X
×
RX
10 + RL
 R S × R2  R S + R2

RG + 

 R S + R2 
(2)
1
2
RX (Ω)
R2 || 1582
R2 || 962
R2 || 742
RG is the gain setting resistor (see Figure 1).
These values are based on a 50 Ω input match.
Table 10. Differential Gain Adjustment Using Series Resistor
GAIN ADJUSTMENT AND INTERFACING
The effective gain of the ADL5565 can be reduced using a number
of techniques. A matched attenuator network can reduce the
effective gain; however, this requires the addition of a separate
component that can be prohibitive in size and cost. Instead, a
simple voltage divider can be implemented using the combination
of additional series resistors at the amplifier input and the input
impedance of the ADL5565, as shown in Figure 36. A pair of
resistors is used to match to the impedance of the previous stage.
0.1µF 1/2 RSERIES
RS
AC
1/
2
RS
1/
2
VIN2
RSHUNT
0.1µF 1/2 RSERIES
1/
2
VIN1
VIP1
ADL5565
VIP2
RSHUNT
09959-038
1/
2
Figure 36. Gain Adjustment Using a Series Resistor
Figure 36 shows a typical implementation of the divider concept
that effectively reduces the gain by adding attenuation at the
input. For frequencies less than 100 MHz, the input impedance
of the ADL5565 can be modeled as a real 66 Ω, 100 Ω, or 200 Ω
resistance (differential) for maximum, middle, and minimum
gains, respectively. Assuming that the frequency is low enough
to ignore the shunt reactance of the input and high enough so
that the reactance of moderately sized ac coupling capacitors
can be considered negligible, the insertion loss, Il, due to the
shunt divider can be expressed as

RG
Il(dB) = 20 log 
R
 SERIES + RG
(5)
The insertion loss and the resultant power gain for multiple
shunt resistor values are summarized in Table 10. The source
resistance and input impedance need careful attention when
using Equation 3, Equation 4, and Equation 5. The reactance
of the input impedance of the ADL5565 and the ac coupling
capacitors must be considered before assuming that they make
a negligible contribution.
Table 9. Values of RG and RX for Single-Ended Gain
RG (Ω)1
100
50
33.5
1
1
1
−
RS RSERIES + RG
In Equation 5, RG is the gain setting resistor (see Figure 1).
In Equation 2, RG is the gain setting resistor (see Figure 1).
Gain (dB)
5.3
10.3
13
RSHUNT =




Gain
(dB)
01
11
21
31
41
51
61
72
82
92
102
112
122
133
143
15.53
RS (Ω)
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
Differential
RSERIES (Ω)
200
154
118
84.5
52.3
24.9
0
78.7
59
42.2
26.7
12.7
0
23.7
13.7
0
Differential
RSHUNT (Ω)5
57.6
57.6
59
60.4
61.9
64.9
66.5
69.8
73.2
76.8
82.5
88.7
100
113
133
200
Amplifier is configured for 6 dB gain setting.
Amplifier is configured for 12 dB gain setting.
Amplifier is configured for 15.5 dB gain setting.
4
RG is the gain setting resistor (see Figure 1).
5
The resistor values are rounded to the nearest real resistor value.
1
2
3
(3)
In Equation 3, RG is the gain setting resistor (see Figure 1).
Adjusted Gain (dB) =
6 dB, 12 dB, or 15.5 dB Gain – Il (dB)
Differential
RG (Ω)4
200
200
200
200
200
200
200
100
100
100
100
100
100
66.7
66.7
66.7
(4)
Rev. B | Page 19 of 28
ADL5565
Data Sheet
ADC INTERFACING
Applying a full-scale, single-tone signal from the ADL5565, an
SFDR of 89.2 dBc is realized (see Figure 37). Applying two halfscale signals from the ADL5565 in a gain of 6 dB, an SFDR of
87.5 dBc is achieved at 100 MHz (see Figure 38). The bandwidth
of the circuit in Figure 40 is shown in Figure 39.
0
AMPLITUDE (dBFS)
–30
–75
–90
F1 – F2
–105
2F1 – F2
2F2 – F1
2F2 – 2F1
2F1 – 2F2
F2 – F1
0
15
30
45
60
75
90
105
120
FREQUENCY (MHz)
09959-041
–150
Figure 38. Measured Two-Tone Performance of the Circuit in Figure 40 for a
100 MHz Input Signal
0
–1
–45
–60
–2
–3
–4
–90
2
+
5
4
–105
–5
3
0
6
200
300
400
500
FREQUENCY (MHz)
Figure 39. Measured Frequency Response of the Wideband
ADC Interface Depicted in Figure 40
–120
–135
0
15
30
45
60
75
90
105
120
FREQUENCY (MHz)
The wideband frequency response is an advantage in broadband applications, such as predistortion receiver designs and
instrumentation applications. However, by designing for a wide
analog input frequency range, the cascaded SNR performance is
somewhat degraded due to high frequency noise aliasing into
the wanted Nyquist zone.
Figure 37. Measured Single-Tone Performance of the
Circuit in Figure 40 for a 100 MHz Input Signal
0.1µF B
VIN1
VIN2
0.1µF
33Ω
ADL5565
VON
VIN+
AD9467
0.1µF
+
40Ω
VOP
VIP1
+
40Ω
VIP2
+
AC
0.1µF A
ETC1-1-13
+
50Ω
33Ω
VIN–
Figure 40. Wideband ADC Interfacing Example Featuring the AD9467
Rev. B | Page 20 of 28
16
16-BIT ADC
09959-039
–150
100
09959-042
–75
09959-049
AMPLITUDE (dBFS)
–60
–135
GAIN = 6dB
SNR = 69.44dBc
SFDR = 89.2dBc
SECOND = –85.1dBc
THIRD = –89.3dBc
NOISE FLOOR = –115.7dB
–30
–45
–120
0
–15
FUNDAMENTAL1 = –7.078dBFS
FUNDAMENTAL2 = –7.169dBFS
IMD (2f1 – f2) = –88.237dBc
IMD (2f2 + f1) = –91.37dBc
NOISE FLOOR = –115.96dB
–15
NORMALIZED (dBFS)
The ADL5565 is a high output linearity amplifier that is optimized
for ADC interfacing. There are several options available to the
designer when using the ADL5565. Figure 40 uses a wideband
1:1 transmission line balun followed by two 40 Ω resistors in
parallel with the three input impedances (which change with
the gain selection of the ADL5565) to provide a 50 Ω differential
impedance and provides a wideband match to a 50 Ω source.
The ADL5565 is ac-coupled from the AD9467 to avoid commonmode dc loading. The 33 Ω resistors improve the isolation between
the ADL5565 and any switching currents present at the analogto-digital, sample-and-hold circuitry. The AD9467 input presents a
530 Ω differential load impedance and requires a 2 V to 2.5 V
differential input swing to reach full scale (VREF = 1 V to 1.25 V).
This circuit provides variable gain, isolation, and source
matching for the AD9467.
Data Sheet
ADL5565
capacitance and a portion of the capacitance presented by C4 to
form a resonant tank circuit. The resonant tank helps to ensure
that the ADC input looks like a real resistance at the target center
frequency. The inductor, L5, shorts the ADC inputs at dc, which
introduces a zero into the transfer function. In addition, the ac
coupling capacitors introduce additional zeros into the transfer
function. The final overall frequency response takes on a bandpass characteristic, helping to reject noise outside of the intended
Nyquist zone. Table 11 provides initial suggestions for prototyping purposes. Some empirical optimization may be needed
to help compensate for actual PCB parasitics.
By designing a narrow band-pass antialiasing filter between the
ADL5565 and the target ADC, the output noise of the ADL5565
outside of the intended Nyquist zone can be attenuated, helping
to preserve the available SNR of the ADC. In general, the SNR
improves several decibels when including a reasonable order antialiasing filter. In this example, a low loss 1:1 input transformer is
used to match the ADL5565 balanced input to a 50 Ω unbalanced
source, resulting in minimum insertion loss at the input.
Figure 41 is optimized for driving some of Analog Devices popular
ADCs, such as the AD9467. Table 11 includes antialiasing filter
component recommendations for popular IF sampling frequencies.
Inductor L5 works in parallel with the on-chip ADC input
1nF 4Ω
L1
L3
105Ω
C2
1nF 4Ω
L1
C4
L3
CML
L5
AD9467
105Ω
09959-043
ADL5565
Figure 41. Narrow-Band IF Sampling Solution for an ADC Application
Table 11. Interface Filter Recommendations for Various IF Sampling Frequencies
Center Frequency (MHz)
96
140
170
211
1 dB Bandwidth (MHz)
30
40
32
33
L1 (nH)
3.3
3.3
3.3
3.3
Rev. B | Page 21 of 28
C2 (pF)
47
47
56
47
L3 (nH)
27
27
27
27
C4 (pF)
75
27
18
15
L5 (nH)
82
150
120
51
ADL5565
Data Sheet
LAYOUT CONSIDERATIONS
many board designs, the signal trace widths should be minimal
where the driver/receiver is no more than one-eighth of the
wave-length from the amplifier. This nontransmission line
configuration requires that underlying and adjacent ground and
low impedance planes be dropped from the signal lines.
High-Q inductive drives and loads, as well as stray transmission
line capacitance in combination with package parasitics, can
potentially form a resonant circuit at high frequencies, resulting
in excessive gain peaking or possible oscillation. If RF transmission
lines connecting the input or output are used, design them such
that stray capacitance at the input/output pins is minimized. In
R3
R1
VIP2
0.1µF
R4
ETC1-1-13
0.1µF
VIP1
VOP
R9
R7
ETC1-1-13
ADL5565
VIN1
R2
0.1µF
SPECTRUM
ANALYZER
R8
R5
VON
0.1µF
R6
R10
09959-044
VIN2
Figure 42. General-Purpose Characterization Circuit
Table 12. Gain Setting and Input Termination Components for Figure 42
AV (dB)
6
12
15.5
R1 (Ω)
29
33
40.2
R2 (Ω)
29
33
40.2
R3 (Ω)
Open
0
0
R4 (Ω)
0
Open
0
R9 (Ω)
34.8
R10 (Ω)
34.8
R5 (Ω)
0
Open
0
R6 (Ω)
Open
0
0
Table 13. Output Matching Network for Figure 42
RL (Ω)
200
R7 (Ω)
84.5
R8 (Ω)
84.5
R3
VIP2
R1
R4
PORT 1
VIP1
R9
VOP
R7
PORT 2
ADL5565
R8
R5
PORT 3
VIN1
R2
PORT 4
VON
R10
R6
09959-045
VIN2
Figure 43. Differential Characterization Circuit Using Agilent E8357A Four-Port PNA
Table 14. Gain Setting and Input Termination Components for Figure 43
AV (dB)
6
12
15.5
R1 (Ω)
100
Open
Open
R2 (Ω)
100
Open
Open
R3 (Ω)
Open
0
0
R4 (Ω)
0
Open
0
R9 (Ω)
Open
R10 (Ω)
Open
Table 15. Output Matching Network for Figure 43
RL (Ω)
200
R7 (Ω)
50
R8 (Ω)
50
Rev. B | Page 22 of 28
R5 (Ω)
0
Open
0
R6 (Ω)
Open
0
0
Data Sheet
ADL5565
SOLDERING INFORMATION AND RECOMMENDED
PCB LAND PATTERN
Figure 44 show s the recommended land pattern for the ADL5565.
The ADL5565 is contained in a 3 × 3 mm LFCSP package, which
has an exposed ground paddle (EPAD). This paddle is internally
connected to the ground of the chip. To minimize thermal
impedance and ensure electrical performance, solder the paddle
to the low impedance ground plane on the PCB. To further
reduce thermal impedance, it is recommended that the ground
planes on all layers under the paddle be stitched together with vias.
For more information on land pattern design and layout, refer
to the AN-772 Application Note, A Design and Manufacturing
Guide for the Lead Frame Chip Scale Package (LFCSP).
This land pattern, on the ADL5565 evaluation board, provides
a measured thermal resistance (θJA) of 60°C/W. To measure θJA,
the temperature at the top of the LFCSP package is found with
an IR temperature gun. Thermal simulation suggests a junction
temperature 1.5°C higher than the top of package temperature.
With additional ambient temperature and I/O power measurements, θJA could be determined.
36mils
Figure 44. Recommended Land Pattern
09959-050
10mils
19.7mils
Figure 45 shows the schematic of the ADL5565 evaluation board.
The board is powered by a single supply in the 3 V to 5 V range.
The power supply is decoupled by 10 µF and 0.1 µF capacitors.
Table 16 details the various configuration options of the evaluation
board. Figure 46 and Figure 47 show the component and circuit
side layouts of the evaluation board.
To realize the minimum gain (6 dB into a 200 Ω load), Input 1
(VIN1 and VIP1) must be used by installing 0 Ω resistors at R3
and R4, leaving R5 and R6 open. R1 and R2 must be 33.2 Ω for
a 50 Ω input impedance.
Likewise, driving Input 2 (VIN2 and VIP2) realizes the middle
gain (12 dB into a 200 Ω load) by installing 0 Ω at R5 and R6
and leaving R3 and R4 open. R1 and R2 must be 50 Ω for a
50 Ω input impedance.
For the maximum gain (15.5 dB into a 200 Ω load), both inputs
are driven by installing 0 Ω resistors at R3, R4, R5, and R6. R1
and R2 are open for a 50 Ω input impedance.
The balanced input and output interfaces are converted to
single ended with a pair of baluns (M/A-COM ETC1-1-13).
The balun at the input, T1, provides a 50 Ω single-ended-todifferential transformation. The output balun, T2, and the
matching components are configured to provide a 200 Ω to 50 Ω
impedance transformation with an insertion loss of about 11 dB.
As an alternative, the input transformer, T1, can be replaced with
one of the following transformers to provide a low loss balanced
input to the ADL5565.
122mils
59mils
59mils
12mils
59mils
EVALUATION BOARD
•
6 dB gain configuration, Mini-Circuits TC4-1W+
•
12 dB gain configuration, Mini-Circuits, TC2-1T+
•
15.5 dB gain configuration, Mini-Circuits TC1.5-52T
When using these alternative transformers, R1 and R2 are left
open. Replace C1 and C2 with 0 Ω jumpers and add a 0.1 µF
capacitor to C12.
Rev. B | Page 23 of 28
ADL5565
Data Sheet
GND
1
C1
0.01µF
T1
J1
R1
OPEN
C12
OPEN
R12
OPEN
C2
0.01µF
R2
OPEN
R5
0Ω
R3
0Ω
R4
0Ω
15
14
13
GND
GND
GND
GND
2
VIP1
3
VIN1
ENBL
VPOS
P1
ENBL 12
VIP2
VOP 11
ADL5565
4
C9
0.01µF
VON 10
VIN2
VCC
5
VCC
VCC
VCOM
VCC
6
7
8
C8
0.1µF
AGND
C10
0.01µF
R6
0Ω
J2
OPEN
16
T2
R7
84.5Ω
R9
34.8Ω
R8
84.5Ω
R10
34.8Ω
R11
OPEN
C13
OPEN
R15
OPEN
9
C11
0.1µF
VCOM
J3
J4
OPEN
R14
0Ω
C3
10µF
C4
0.1µF
C5
0.1µF
C6
0.1µF
09959-046
VPOS
R13
0Ω
C7
0.1µF
Figure 45. Evaluation Board Schematic
Table 16. Evaluation Board Configuration Options
Component
VPOS, GND
C3, C4, C5,
C6, C7, C11
J1, J2, R1, R2,
R3, R4, R5, R6,
R12, R13, C1,
C2, C12, T1
J3, J4, R7, R8,
R9, R10, R11,
R14, R15 C9,
C10, C13, T2
ENBL, P1, C8
Description
Ground and supply vector pins.
Power supply decoupling. The supply decoupling consists of a 10 µF capacitor (C3) to
ground. C4 to C7 are bypass capacitors. C11 ac couples VREF to ground.
Input interface. The SMA labeled J1 is the input. T1 is a 1-to-1 impedance ratio balun
to transform a single-ended input into a balanced differential signal. Removing R13,
installing R12 (0 Ω), and installing an SMA connector (J2) allows driving from a
differential source. C1 and C2 provide ac coupling. C12 is a bypass capacitor. R1 and
R2 provide a differential 50 Ω input termination. R3 to R6 are used to select the input
for the pin-strappable gain. The maximum gain is R3, R4, R5, R6 = 0 Ω and R1 and R2 =
open. The middle gain is R5 and R6 = 0 Ω, R3 and R4 = open, and R1 and R2 = 50 Ω. The
minimum gain is R3 and R4 = 0 Ω, R5 and R6 = open, and R1 and R2 = 33.2 Ω.
Output interface. The SMA labeled J3 is the output. T2 is a 1-to-1 impedance ratio balun
to transform a balanced differential signal to a single-ended signal. Removing R14,
installing R15 (0 Ω), and installing an SMA connector (J4) allows differential loading. C13 is
a bypass capacitor. R7, R8, R9, and R10 are provided for generic placement of matching
components. The evaluation board is configured to provide a 200 Ω to 50 Ω impedance
transformation with an insertion loss of 17 dB. C9 and C10 provide ac coupling.
Device enabled. C8 is a bypass capacitor. When the P1 jumper is set toward the VPOS label,
the ENBL pin is connected to the supply, enabling the device. In the opposite direction,
toward the GND label, the ENBL pin is grounded, putting the device in power-down mode.
Default Condition
VPOS, GND = installed
C3 = 10 µF (Size D),
C4, C5, C6, C7, C11 = 0.1 µF (Size 0402)
J1 = installed, J2 = not installed,
R1, R2 = open,
R3, R4, R5, R6, R13 = 0 Ω (Size 0402),
R12, = open,
C1, C2 = 0.01 µF (Size 0402),
C12 = open,
T1 = ETC1-1-13 (M/A-COM)
J3 = installed, J4 = not installed,
R7, R8 = 84.5 Ω (Size 0402),
R9, R10 = 34.8 Ω (Size 0402),
R11, R15 = open (Size 0402),
R14 = 0 Ω (Size 0402)
C9, C10 = 0.01 µF (Size 0402),
C13 = open
T2 = ETC1-1-13 (M/A-COM)
ENBL, P1 = installed,
C8 = 0.1 µF (Size 0402)
Table 17. Differential Values for Figure 45
Gain (dB)
6
12
15.5
R1 (Ω)
29
33
Open
R2 (Ω)
29
33
Open
Table 18. Alternative Differential Input Configuration for Figure 45
Gain (dB)
6
12
15.5
R1 and R2 (Ω)
Open
Open
Open
C12 (µF)
0.1
0.1
0.1
C1 and C2 (Ω)
0
0
0
Rev. B | Page 24 of 28
T1
Mini Circuits TC4-1W+
Mini Circuits TC2-1T+
Mini Circuits TC1.5-52T+
ADL5565
Figure 46. Layout of Evaluation Board, Component Side
09959-048
09959-047
Data Sheet
Figure 47. Layout of Evaluation Board, Circuit Side
Rev. B | Page 25 of 28
ADL5565
Data Sheet
OUTLINE DIMENSIONS
0.30
0.25
0.20
0.50
BSC
PIN 1
INDICATOR
16
13
1
12
EXPOSED
PAD
1.65
1.50 SQ
1.45
9
TOP VIEW
0.80
0.75
0.70
SEATING
PLANE
0.50
0.40
0.30
4
8
5
0.20 MIN
BOTTOM VIEW
0.05 MAX
0.02 NOM
COPLANARITY
0.08
0.20 REF
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
COMPLIANT TO JEDEC STANDARDS MO-220-WEED-6.
01-26-2012-A
PIN 1
INDICATOR
3.10
3.00 SQ
2.90
Figure 48. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]
3 mm × 3 mm Body, Very Very Thin Quad
(CP-16-27)
Dimensions shown in millimeters
ORDERING GUIDE
Model1
ADL5565ACPZ-R7
ADL5565-EVALZ
1
Temperature
Range
−40°C to + 85°C
Package Description
16-Lead Lead Frame Chip Scale Package [LFCSP_WQ], 7” Tape and Reel
Evaluation Board
Z = RoHS Compliant Part
Rev. B | Page 26 of 28
Package
Option
CP-16-27
Branding
Q1Z
Data Sheet
ADL5565
NOTES
Rev. B | Page 27 of 28
ADL5565
Data Sheet
NOTES
©2011–2012 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D09959-0-6/12(B)
Rev. B | Page 28 of 28
Similar pages