Freescale MCF5485 Integrated microprocessor electrical characteristic Datasheet

Freescale Semiconductor
Data Sheet: Technical Data
Document Number: MCF5485EC
Rev. 3, 03/2007
MCF5485
TEPBGA–388
MCF5485 Integrated
Microprocessor Electrical
Characteristics
This chapter contains electrical specification tables and
reference timing diagrams for the MCF5485 microprocessor.
This section contains detailed information on power
considerations, DC/AC electrical characteristics, and AC
timing specifications of the MCF5485.
MCF548X Family Features:
• ColdFire V4e Core
– Limited superscalar V4 ColdFire processor core
– Up to 200MHz peak internal core frequency (308 MIPS
(Dhrystone 2.1) @ 200 MHz)
– Harvard architecture
– 32-Kbyte instruction cache
– 32-Kbyte data cache
– Memory Management Unit (MMU)
– Floating point unit (FPU)
• Internal master bus (XLB) arbiter
• 32-bit double data rate (DDR) synchronous DRAM
(SDRAM) controller
– 66–133 MHz operation
• Version 2.2 peripheral component interconnect (PCI) bus
• Flexible multi-function external bus (FlexBus)
• Communications I/O subsystem
– Intelligent 16 channel DMA controller, with support for
– Dedicated DMA channels for receive and transmit on
all subsystem peripheral interfaces
– Up to two (2) 10/100 Mbps fast Ethernet controllers
(FECs)
– Universal serial bus (USB) version 2.0 device controller
– Up to four (4) programmable serial controllers (PSCs)
for UART, USART, modem, codec, and IrDA 1.1
interfaces
– I2C peripheral interface
– Two (2) controller area network 2.0B controllers
– DMA Serial Peripheral Interface (DSPI)
© Freescale Semiconductor, Inc., 2007. All rights reserved.
• Optional Cryptography accelerator module
– DES/3DES block cipher
– AES block cipher
– RC4 stream cipher
– MD5/SHA-1/SHA-256/HMAC hashing
– Random Number Generator
• 32-Kbyte system SRAM
• System integration unit (SIU)
– Interrupt controller
– Watchdog timer
– Two (2) 32-bit slice timers
– Up to four (4) 32-bit general-purpose timers
– General-purpose I/O ports multiplexed with peripheral
pins
• Debug and test features
– ColdFire background debug mode (BDM) port
– JTAG/ IEEE 1149.1 test access port
• PLL and clock generator
– 30 to 66.67 MHz input frequency range
ColdFire V4e Core
DDR SDRAM
FlexBus
Interface
Interface
PLL
FPU, MMU
EMAC
32K D-cache
32K I-Cache
XL Bus
Memory
FlexBus
Arbiter
Controller
Controller
XL
Interface
Watchdog
Cryptography
Accelerator***
Crypto
DMA
Bus
Slave
32K System
XL Bus
SRAM
Read/Write
FlexCAN
Multi-Channel DMA
PCI Interface
x2
Master Bus Interface & FIFOs
& FIFOs
CommBus
DSPI
I2C
PSC x 4
FEC1
FEC22
USB 2.0
Communications
I/O Subsystem
Perpheral I/O Interface & Ports
GP
Timers x 4
DMA
Slice
Timers x 2
PCI 2.2
Controller
Write
Timer
PCI I/O Interface & Ports
Master/Slave
R/W
Interrupt
Controller
Read
System
Integration Unit
Bus
DEVICE1
USB 2.0
Perpheral Communications I/O Interface & Ports
PHY1
Figure 1. MCF548X Block Diagram
1
Available in MCF5485, MCF5484, MCF5483 and MCF5482 devices.
Available in MCF5485, MCF5484, MCF5481 and MCF5480 devices.
3 Available in MCF5485, MCF5483, and MCF5481 devices.
2
MCF5485 Integrated Microprocessor Electrical Characteristics, Rev. 3
2
Freescale Semiconductor
Table of Contents
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2.1 Operating Temperatures . . . . . . . . . . . . . . . . . . . . . . . . .4
2.2 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
DC Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Hardware Design Considerations . . . . . . . . . . . . . . . . . . . . . . .6
4.1 PLL Power Filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
4.2 Supply Voltage Sequencing and Separation Cautions . .6
4.3 General USB Layout Guidelines . . . . . . . . . . . . . . . . . . .8
4.4 USB Power Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Output Driver Capability and Loading. . . . . . . . . . . . . . . . . . .10
PLL Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Reset Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . .12
FlexBus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
8.1 FlexBus AC Timing Characteristics. . . . . . . . . . . . . . . .13
SDRAM Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
SDR SDRAM AC Timing Characteristics . . . . . . . . . . . . . . . .15
10.1 DDR SDRAM AC Timing Characteristics . . . . . . . . . . .18
PCI Bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Fast Ethernet AC Timing Specifications . . . . . . . . . . . . . . . . .23
12.1 MII/7-WIRE Interface Timing Specs . . . . . . . . . . . . . . .23
12.2 MII Transmit Signal Timing . . . . . . . . . . . . . . . . . . . . . .24
12.3 MII Async Inputs Signal Timing (CRS, COL) . . . . . . . .24
12.4 MII Serial Management Channel Timing (MDIO,MDC).24
General Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . .25
I2C Input/Output Timing Specifications. . . . . . . . . . . . . . . . . .25
JTAG and Boundary Scan Timing. . . . . . . . . . . . . . . . . . . . . .27
DSPI Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . .29
Timer Module AC Timing Specifications . . . . . . . . . . . . . . . . .30
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
List of Figures
Figure 1. MCF548X Block Diagram . . . . . . . . . . . . . . . . . . . . . . . 2
Figure 2. System PLL VDD Power Filter . . . . . . . . . . . . . . . . . . . . 6
Figure 3. Supply Voltage Sequencing and Separation Cautions . 7
Figure 4. Preferred VBUS Connections . . . . . . . . . . . . . . . . . . . . 8
Figure 5. Alternate VBUS Connections . . . . . . . . . . . . . . . . . . . . 8
Figure 6. USB VDD Power Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 7. USBRBIAS Connection. . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 8. Input Clock Timing Diagram . . . . . . . . . . . . . . . . . . . . 11
Figure 9. CLKIN, Internal Bus, and Core Clock Ratios . . . . . . . 11
Figure 10.Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 11.FlexBus Read Timing . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 12.FlexBus Write Timing . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 13.SDR Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 14.SDR Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 15.DDR Clock Timing Diagram . . . . . . . . . . . . . . . . . . . .
Figure 16.DDR Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 17.DDR Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 18.PCI Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 19.MII Receive Signal Timing Diagram. . . . . . . . . . . . . .
Figure 20.MII Transmit Signal Timing Diagram . . . . . . . . . . . . .
Figure 21.MII Async Inputs Timing Diagram . . . . . . . . . . . . . . .
Figure 22.MII Serial Management Channel TIming Diagram. . .
Figure 23.I2C Input/Output Timings . . . . . . . . . . . . . . . . . . . . . .
Figure 24.Test Clock Input Timing . . . . . . . . . . . . . . . . . . . . . . .
Figure 25.Boundary Scan (JTAG) Timing . . . . . . . . . . . . . . . . .
Figure 26.Test Access Port Timing . . . . . . . . . . . . . . . . . . . . . .
Figure 27.TRST Timing Debug AC Timing Specifications . . . . .
Figure 28.Real-Time Trace AC Timing . . . . . . . . . . . . . . . . . . . .
Figure 29.BDM Serial Port AC Timing . . . . . . . . . . . . . . . . . . . .
Figure 30.DSPI Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18
20
21
22
23
24
24
25
26
27
27
28
28
28
29
29
List of Tables
Table 1. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . 4
Table 2. Operating Temperatures . . . . . . . . . . . . . . . . . . . . . . . . 4
Table 3. Thermal Resistance. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 4. DC Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . 5
Table 5. USB Filter Circuit Values . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 6. I/O Driver Capability . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 7. Clock Timing Specification . . . . . . . . . . . . . . . . . . . . . 11
Table 8. MCF548X Divide Ratio Encodings . . . . . . . . . . . . . . . 11
Table 9. Reset Timing Specification . . . . . . . . . . . . . . . . . . . . . 12
Table 10.FlexBus AC Timing Specifications. . . . . . . . . . . . . . . . 13
Table 11.SDR Timing Specifications . . . . . . . . . . . . . . . . . . . . . 15
Table 12.DDR Clock Crossover Specifications . . . . . . . . . . . . . 18
Table 13.DDR Timing Specifications . . . . . . . . . . . . . . . . . . . . . 18
Table 14.PCI Timing Specifications . . . . . . . . . . . . . . . . . . . . . . 21
Table 15.MII Receive Signal Timing . . . . . . . . . . . . . . . . . . . . . . 23
Table 16.MII Transmit Signal Timing . . . . . . . . . . . . . . . . . . . . . 24
Table 17.MII Transmit Signal Timing . . . . . . . . . . . . . . . . . . . . . 24
Table 18.MII Serial Management Channel Signal Timing . . . . . 24
Table 19.General AC Timing Specifications . . . . . . . . . . . . . . . . 25
Table 20.I2C Input Timing Specifications
Between SCL and SDA . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 21. I2C Output Timing Specifications
Between SCL and SDA . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 22.JTAG and Boundary Scan Timing . . . . . . . . . . . . . . . . 27
Table 23.Debug AC Timing Specification . . . . . . . . . . . . . . . . . . 28
Table 24.DSPI Modules AC Timing Specifications. . . . . . . . . . . 29
Table 25.Timer Module AC Timing Specifications . . . . . . . . . . . 30
MCF5485 Integrated Microprocessor Electrical Characteristics, Rev. 3
3
Freescale Semiconductor
Maximum Ratings
1
Maximum Ratings
Table 1 lists maximum and minimum ratings for supply and operating voltages and storage temperature. Operating outside of
these ranges may cause erratic behavior or damage to the processor.
Table 1. Absolute Maximum Ratings
Rating
Symbol
Value
Units
External (I/O pads) supply voltage (3.3-V power pins)
EVDD
–0.3 to +4.0
V
Internal logic supply voltage
IVDD
–0.5 to +2.0
V
Memory (I/O pads) supply voltage (2.5-V power pins)
SD VDD
–0.3 to +4.0 SDR Memory
–0.3 to +2.8 DDR Memory
V
PLL supply voltage
PLL VDD
–0.5 to +2.0
V
Vin
–0.5 to +3.6
V
–55 to +150
°C
Internal logic supply voltage, input voltage level
Storage temperature range
Tstg
2
Thermal Characteristics
2.1
Operating Temperatures
Table 2 lists junction and ambient operating temperatures.
Table 2. Operating Temperatures
Characteristic
Symbol
Value
Units
Maximum operating junction temperature
Tj
105
°C
Maximum operating ambient temperature
TAmax
<851
°C
Minimum operating ambient temperature
TAmin
– 40
°C
1
This published maximum operating ambient temperature should be used only as a system design guideline. All device
operating parameters are guaranteed only when the junction temperature lies within the specified range.
MCF5485 Integrated Microprocessor Electrical Characteristics, Rev. 3
4
Freescale Semiconductor
DC Electrical Specifications
2.2
Thermal Resistance
Table 3 lists thermal resistance values.
Table 3. Thermal Resistance
Characteristic
Symbol
Value
Unit
388 pin TEPBGA — Junction to ambient, natural Four layer board (2s2p)
convection
θJMA
20–221,2
°C/W
Junction to ambient (@200 ft/min)
θJMA
231,2
°C/W
Four layer board (2s2p)
Junction to board
Junction to case
Junction to top of package
1
2
3
4
5
3
15
3
°C/W
4
°C/W
°C/W
—
θJB
—
θJC
10
Ψjt
21,5
Natural convection
Τhe θJA and Ψjt parameters are simulated in accordance with EIA/JESD Standard 51-2 for natural convection.
Freescale recommends the use of θJA and power dissipation specifications in the system design to prevent device
junction temperatures from exceeding the rated specification. System designers should be aware that device
junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the
device junction temperature specification can be verified by physical measurement in the customer’s system using
the Ψjt parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.
Per JEDEC JESD51-6 with the board horizontal.
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is
measured on the top surface of the board near the package.
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883
Method 1012.1).
Thermal characterization parameter indicating the temperature difference between package top and the junction
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is
written as Psi-JT.
DC Electrical Specifications
Table 4 lists DC electrical operating temperatures. This table is based on an operating voltage of EVDD = 3.3 VDC ± 0.3 VDC
and IVDD of 1.5 ± 0.07 VDC.
Table 4. DC Electrical Specifications
Characteristic
External (I/O pads) operation voltage range
Memory (I/O pads) operation voltage range (DDR Memory)
Internal logic operation voltage range
1
PLL Analog operation voltage range1
USB oscillator operation voltage range
USB digital logic operation voltage range
USB PHY operation voltage range
USB oscillator analog operation voltage range
USB PLL operation voltage range
2
Input high voltage SSTL 3.3V/2.5V
Symbol
Min
Max
Units
EVDD
3.0
3.6
V
SD VDD
2.30
2.70
V
IVDD
1.43
1.58
V
PLL VDD
1.43
1.58
V
USB_OSVDD
3.0
3.6
V
USBVDD
3.0
3.6
V
USB_PHYVDD
3.0
3.6
V
USB_OSCAVDD
1.43
1.58
V
USB_PLLVDD
1.43
1.58
V
VIH
VREF + 0.3
SD VDD + 0.3
V
MCF5485 Integrated Microprocessor Electrical Characteristics, Rev. 3
Freescale Semiconductor
5
Hardware Design Considerations
Table 4. DC Electrical Specifications (continued)
Characteristic
Symbol
Min
Max
Units
Input low voltage SSTL 3.3V/2.5V2
VIL
VSS − 0.3
VREF − 0.3
V
Input high voltage 3.3V I/O pins
VIH
0.7 × EVDD
EVDD + 0.3
V
Input low voltage 3.3V I/O pins
VIL
VSS − 0.3
0.35 × EVDD
V
Output high voltage IOH = 8 mA, 16 mA,24 mA
VOH
2.4
—
V
5
VOL
—
0.5
V
CIN
—
TBD
pF
Output low voltage IOL = 8 mA, 16 mA,24 mA
3
Capacitance , Vin = 0 V, f = 1 MHz
1
IVDD and PLL VDD should be at the same voltage. PLL VDD should have a filtered input. Please see Figure 2 for an
example circuit. There are three PLL VDD inputs. A filter circuit should used on each PLL VDD input.
2
This specification is guaranteed by design and is not 100% tested.
3
Capacitance CIN is periodically sampled rather than 100% tested.
4
Hardware Design Considerations
4.1
PLL Power Filtering
To further enhance noise isolation, an external filter is strongly recommended for PLL analog VDD pins. The filter shown in
Figure 2 should be connected between the board VDD and the PLL VDD pins. The resistor and capacitors should be placed as
close to the dedicated PLL VDD pin as possible.
10 W
Board VDD
PLL VDD Pin
10 µF
0.1 µF
GND
Figure 2. System PLL VDD Power Filter
4.2
Supply Voltage Sequencing and Separation Cautions
Figure 3 shows situations in sequencing the I/O VDD (EVDD), SDRAM VDD (SD VDD), PLL VDD (PLL VDD), and Core VDD
(IVDD).
MCF5485 Integrated Microprocessor Electrical Characteristics, Rev. 3
6
Freescale Semiconductor
DC Power Supply Voltage
Hardware Design Considerations
EVDD, SD VDD (3.3V)
3.3V
Supplies Stable
2.5V
1.5V
SD VDD (2.5V)
IVDD, PLL VDD
1
2
0
NOTES:
1. IVDD should not exceed EVDD, SD VDD or PLL VDD by more than
Time
0.4V at any time, including power-up.
2. Recommended that IVDD/PLL VDD should track EVDD/SD VDD up to
0.9V, then separate for completion of ramps.
3. Input voltage must not be greater than the supply voltage (EVDD, SD VDD,
IVDD, or PLL VDD) by more than 0.5V at any time, including during power-up.
4. Use 1 microsecond or slower rise time for all supplies.
Figure 3. Supply Voltage Sequencing and Separation Cautions
The relationship between SD VDD and EVDD is non-critical during power-up and power-down sequences. SD VDD (2.5V or
3.3V) and EVDD are specified relative to IVDD.
4.2.1
Power Up Sequence
If EVDD/SD VDD are powered up with the IVDD at 0V, the sense circuits in the I/O pads cause all pad output drivers connected
to the EVDD/SD VDD to be in a high impedance state. There is no limit on how long after EVDD/SD VDD powers up before
IVDD must power up. IVDD should not lead the EVDD, SD VDD, or PLL VDD by more than 0.4V during power ramp up or there
is high current in the internal ESD protection diodes. The rise times on the power supplies should be slower than 1 microsecond
to avoid turning on the internal ESD protection clamp diodes.
The recommended power up sequence is:
1.
2.
4.2.2
Use 1 microsecond or slower rise time for all supplies.
IVDD/PLL VDD and EVDD/SD VDD should track up to 0.9V, then separate for the completion of ramps with EVDD/SD
VDD going to the higher external voltages. One way to accomplish this is to use a low drop-out voltage regulator.
Power Down Sequence
If IVDDPLL VDD are powered down first, sense circuits in the I/O pads cause all output drivers to be in a high impedance state.
There is no limit on how long after IVDD and PLL VDD power down before EVDD or SD VDD must power down. IVDD should
not lag EVDD, SD VDD, or PLL VDD going low by more than 0.4V during power down or there is undesired high current in the
ESD protection diodes. There are no requirements for the fall times of the power supplies.
The recommended power down sequence is:
3.
4.
Drop IVDD/PLL VDD to 0V
Drop EVDD/SD VDD supplies
MCF5485 Integrated Microprocessor Electrical Characteristics, Rev. 3
Freescale Semiconductor
7
Hardware Design Considerations
4.3
4.3.1
•
•
•
•
•
•
•
•
•
4.3.2
General USB Layout Guidelines
USB D+ and D- High-Speed Traces
High speed clock and the USBD+ and USBD- differential pair should be routed first.
Route USBD+ and USBD- signals on the top layer of the board.
The trace width and spacing of the USBD+ and USBD- signals should be such that the differential impedance is 90Ω.
Route traces over continuous planes (power and ground)—they should not pass over any power/ground plane slots or
anti-etch. When placing connectors, make sure the ground plane clear-outs around each pin have ground continuity
between all pins.
Maintain the parallelism (skew matched) between USBD+ and USBD-. These traces should be the same overall length.
Do not route USBD+ and USBD- traces under oscillators or parallel to clock traces and/or data buses. Minimize the
lengths of high speed signals that run parallel to the USBD+ and USBD- pair. Maintain a minimum 50mil spacing to
clock signals.
Keep USBD+ and USBD- traces as short as possible.
Route USBD+, USBD-, and USBVBUS signals with a minimum amount of vias and corners. Use 45° turns.
Stubs should be avoided as much as possible. If they cannot be avoided, stubs should be no greater than 200mils.
USB VBUS Traces
Connecting the USBVBUS pin directly to the 5V VBUS signal from the USB connector can cause long-term reliability
problems in the ESD network of the processor. Therefore, use of an external voltage divider for VBUS is recommended.
Figure 4 and Figure 5 depict possible connections for VBUS. Point A, marked in each figure, is where a 5V version of VBUS
should connect. Point B, marked in each figure, is where a 3.3V version of VBUS should connect to the USBVBUS pin on the
device.
(5V)
A
8.2k
(3.3V)
B
MCF548x
50k
20k
50k
Figure 4. Preferred VBUS Connections
(5V)
A
50k
(3.3V)
B
MCF548x
50k
50k
Figure 5. Alternate VBUS Connections
4.3.3
USB Receptacle Connections
It is recommended to connect the shield and the ground pin of the B USB receptacle for upstream ports to the board ground
plane. The ground pin of the A USB receptacles for downstream ports should also be connected to the board ground plane, but
industry practice varies widely on the connection of the shield of the A USB receptacles to other system grounds. Take
precautions for control of ground loops between hosts and self-powered USB devices through the cable shield.
MCF5485 Integrated Microprocessor Electrical Characteristics, Rev. 3
8
Freescale Semiconductor
Hardware Design Considerations
4.4
USB Power Filtering
To minimize noise, an external filter is required for each of the USB power pins. The filter shown in Figure 6 should be
connected between the board EVDD or IVDD and each of the USB VDD pins.
•
•
•
•
•
•
The resistor and capacitors should be placed as close to the dedicated USB VDD pin as possible.
A separate filter circuit should be included for each USB VDD pin, a total of five circuits.
All traces should be as low impedance as possible, especially ground pins to the ground plane.
The filter for USB_PHYVDD to VSS should be connected to the power and ground planes, respectively, not fingers
of the planes.
In addition to keeping the filter components for the USB_PLLVDD as close as practical to the body of the processor
as previously mentioned, special care should be taken to avoid coupling switching power supply noise or digital
switching noise onto the portion of that supply between the filter and the processor.
The capacitors for C2 in the table below should be rated X5R or better due to temperature performance.
R1
Board EVDD/IVDD
USB VDD Pin
C1
C2
GND
Figure 6. USB VDD Power Filter
NOTE
In addition to the above filter circuitry, a 0.01 F capacitor is also recommended in parallel
with those shown.
Table 5 lists the resistor values and supply voltages to be used in the circuit for each of the USB VDD pins.
Table 5. USB Filter Circuit Values
USB VDD Pin
Nominal Voltage
R1 (Ω)
C1 (μF)
C2 (μF)
USBVDD
(Bias generator supply)
3.3V
10
10
0.1
USB_PHYVDD
(Main transceiver supply)
3.3V
0
10
0.1
USB_PLLVDD
(PLL supply)
1.5V
10
1
0.1
USB_OSCVDD
(Oscillator supply)
3.3V
0
10
0.1
USB_OSCAVDD
(Oscillator analog supply)
1.5V
0
10
0.1
MCF5485 Integrated Microprocessor Electrical Characteristics, Rev. 3
Freescale Semiconductor
9
Output Driver Capability and Loading
4.4.1
Bias Resistor
The USBRBIAS resistor should be placed as close to the dedicated USB 2.0 pins as possible. The tolerance should be ±1%.
USBRBIAS
9.1kΩ
Figure 7. USBRBIAS Connection
5
Output Driver Capability and Loading
Table 6 lists values for drive capability and output loading.
Table 6. I/O Driver Capability
Signal
Drive
Output
Capability Load (CL)
SDRAMC (SDADDR[12:0], SDDATA[31:0], RAS, CAS, SDDM[3:0], SDWE, SDBA[1:0]
24 mA
15 pF
SDRAMC DQS and clocks (SDDQS[3:0], SDRDQS, SDCLK[1:0], SDCLK[1:0], SDCKE)
24 mA
15 pF
SDRAMC chip selects (SDCS[3:0])
24 mA
15 pF
FlexBus (AD[31:0], FBCS[5:0], ALE, R/W, BE/BWE[3:0], OE)
16 mA
30 pF
FEC (EnMDIO, EnMDC, EnTXEN, EnTXD[3:0], EnTXER
8 mA
15 pF
Timer (TOUT[3:0])
8 mA
50 pF
FlexCAN (CANTX)
8 mA
30 pF
DACK[1:0]
8 mA
30 pF
PSC (PSCnTXD[3:0], PSCnRTS/PSCnFSYNC,
8 mA
30 pF
DSPI (DSPISOUT, DSPICS0/SS, DSPICS[2:3], DSPICS5/PCSS)
24 mA
50 pF
PCI (PCIAD[31:0], PCIBG[4:1], PCIBG0/PCIREQOUT, PCIDEVSEL, PCICXBE[3:0],
PCIFRM, PCIPERR, PCIRESET, PCISERR, PCISTOP, PCIPAR, PCITRDY, PCIIRDY
16 mA
50 pF
I2C (SCL, SDA)
8 mA
50 pF
BDM (PSTCLK, PSTDDATA[7:0], DSO/TDO,
8 mA
25 pF
RSTO
8 mA
50 pF
MCF5485 Integrated Microprocessor Electrical Characteristics, Rev. 3
10
Freescale Semiconductor
PLL Timing Specifications
6
PLL Timing Specifications
The specifications in Table 7 are for the CLKIN pin.
Table 7. Clock Timing Specification
Num
Characteristic
Min
Max
Units
C1
Cycle time
20
40
ns
C2
Rise time (20% of VDD to 80% of VDD)
—
2
ns
C3
Fall time (80% of VDD to 20% of VDD)
—
2
ns
C4
Duty cycle (at 50% of VDD)
40
60
%
C1
CLKIN
C4
C4
C2
C3
Figure 8. Input Clock Timing Diagram
Table 8 shows the supported PLL encodings.
Table 8. MCF548X Divide Ratio Encodings
1
2
AD[12:8]1
Clock
Ratio
00011
1:2
Internal XLB, SDRAM
CLKIN—PCI and FlexBus
Bus, and PSTCLK Frequency
Frequency Range (MHz)
Range (MHz)
41.6–50.0
83.33–100
2
00101
1:2
25.0–41.5
50.0–83.0
01111
1:4
25
100
Core Frequency Range
(MHz)
166.66–200
100.0–166.66
200
All other values of AD[12:8] are reserved.
DDR memories typically have a minimum speed of 83 MHz. Some vendors specify down to 75 MHz. Check with
memory component specifications to verify.
Figure 9 correlates CLKIN, internal bus, and core clock frequencies for the 1x–4x multipliers.
Internal Clock
CLKIN
Core Clock
2x
2x
25.0
50.0
50.0
100.0
100.0
200.0
2x
4x
25.0
100.0
200.0
25 40 50 60 70
30 40 50 60 70 80 90 100
60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
CLKIN (MHz)
Internal Clock (MHz)
Core Clock (MHz)
Figure 9. CLKIN, Internal Bus, and Core Clock Ratios
MCF5485 Integrated Microprocessor Electrical Characteristics, Rev. 3
Freescale Semiconductor
11
Reset Timing Specifications
7
Reset Timing Specifications
Table 9 lists specifications for the reset timing parameters shown in Figure 10
Table 9. Reset Timing Specification
50 MHz CLKIN
Num
1
Characteristic
Units
Min
Max
R11
Valid to CLKIN (setup)
8
—
ns
R2
CLKIN to invalid (hold)
1.0
—
ns
R3
RSTI to invalid (hold)
1.0
—
ns
RSTI and FlexBus data lines are synchronized internally. Setup and hold
times must be met only if recognition on a particular clock is required.
Figure 10 shows reset timing for the values in Table 9.
CLKIN
R1
RSTI
R2
Mode Select
FlexBus
R1
R3
NOTE:
Mode selects are registered on the rising clock edge before
the cycle in which RSTI is recognized as being negated.
Figure 10. Reset Timing
8
FlexBus
A multi-function external bus interface called FlexBus is provided on the MCF5482 with basic functionality to interface to
slave-only devices up to a maximum bus frequency of 66 MHz. It can be directly connected to asynchronous or synchronous
devices such as external boot ROMs, flash memories, gate-array logic, or other simple target (slave) devices with little or no
additional circuitry. For asynchronous devices, a simple chip-select based interface can be used. The FlexBus interface has six
general purpose chip-selects (FBCS[5:0]). Chip-select FBCS0 can be dedicated to boot ROM access and can be programmed
to be byte (8 bits), word (16 bits), or longword (32 bits) wide. Control signal timing is compatible with common ROM / flash
memories.
MCF5485 Integrated Microprocessor Electrical Characteristics, Rev. 3
12
Freescale Semiconductor
FlexBus
8.1
FlexBus AC Timing Characteristics
The following timing numbers indicate when data is latched or driven onto the external bus, relative to the system clock.
Table 10. FlexBus AC Timing Specifications
Num
Min
Max
Unit
Notes
Frequency of Operation
25
50
Mhz
1
FB1
Clock Period (CLKIN)
20
40
ns
2
FB2
Address, Data, and Control Output Valid (AD[31:0], FBCS[5:0],
R/W, ALE, TSIZ[1:0], BE/BWE[3:0], OE, and TBST)
—
7.0
ns
3
FB3
Address, Data, and Control Output Hold ((AD[31:0], FBCS[5:0],
R/W, ALE, TSIZ[1:0], BE/BWE[3:0], OE, and TBST)
1
—
ns
3, 4
FB4
Data Input Setup
3.5
—
ns
FB5
Data Input Hold
0
—
ns
FB6
Transfer Acknowledge (TA) Input Setup
4
—
ns
FB7
Transfer Acknowledge (TA) Input Hold
0
—
ns
FB8
Address Output Valid (PCIAD[31:0])
—
7.0
ns
5
FB9
Address Output Hold (PCIAD[31:0])
0
—
ns
5
—
1
2
3
4
5
Characteristic
The frequency of operation is the same as the PCI frequency of operation. The MCF548X supports a single
external reference clock (CLKIN). This signal defines the frequency of operation for FlexBus and PCI.
Max cycle rate is determined by CLKIN and how the user has the system PLL configured.
Timing for chip selects only applies to the FBCS[5:0] signals. Please see Section 10.1, “DDR SDRAM AC
Timing Characteristics” for SDCS[3:0] timing.
The FlexBus supports programming an extension of the address hold. Please consult the MCF548X
specification manual for more information.
These specs are used when the PCIAD[31:0] signals are configured as 32-bit, non-muxed FlexBus address
signals.
MCF5485 Integrated Microprocessor Electrical Characteristics, Rev. 3
Freescale Semiconductor
13
FlexBus
CLKIN
FB1
FB3
AD[X:0]
A[X:0]
FB2
AD[31:Y]
FB5
A[31:Y]
DATA
R/W
FB4
ALE
TSIZ[1:0]
TSIZ[1:0]
FBCSn, BE/BWEn
FB7
OE
FB6
TA
Figure 11. FlexBus Read Timing
MCF5485 Integrated Microprocessor Electrical Characteristics, Rev. 3
14
Freescale Semiconductor
SDRAM Bus
CLKIN
FB1
FB3
AD[X:0]
A[X:0]
FB2
AD[31:Y]
FB3
A[31:Y]
DATA
R/W
ALE
TSIZ[1:0]
TSIZ[1:0]
FBCSn, BE/BWEn
FB7
OE
FB6
TA
Figure 12. FlexBus Write Timing
9
SDRAM Bus
The SDRAM controller supports accesses to main SDRAM memory from any internal master. It supports standard SDRAM or
double data rate (DDR) SDRAM, but it does not support both at the same time. The SDRAM controller uses SSTL2 and SSTL3
I/O drivers. Both SSTL drive modes are programmable for Class I or Class II drive strength.
10
SDR SDRAM AC Timing Characteristics
The following timing numbers indicate when data is latched or driven onto the external bus, relative to the memory bus clock,
when operating in SDR mode on write cycles and relative to SDR_DQS on read cycles. The MCF5485 SDRAM controller is
a DDR controller with an SDR mode. Because it supports DDR, a DQS pulse must remain supplied to the MCF5485 for each
data beat of an SDR read. The MCF5485 accomplishes this by asserting a signal called SDR_DQS during read cycles. During
board design, adhere to the following guidelines and specs with regard to the SDR_DQS signal and its usage.
Table 11. SDR Timing Specifications
Symbol
—
Characteristic
Frequency of Operation
Min
Max
Unit
Notes
0
133
Mhz
1
2
SD1
Clock Period (tCK)
7.52
12
ns
SD2
Clock Skew (tSK)
—
TBD
—
SD3
Pulse Width High (tCKH)
0.45
0.55
SDCLK
3
MCF5485 Integrated Microprocessor Electrical Characteristics, Rev. 3
Freescale Semiconductor
15
SDR SDRAM AC Timing Characteristics
Table 11. SDR Timing Specifications
Symbol
1
2
3
4
5
6
7
8
Characteristic
Min
Max
Unit
Notes
0.45
0.55
SDCLK
4
SD4
Pulse Width Low (tCKL)
SD5
Address, CKE, CAS, RAS, WE, BA, CS - Output Valid (tCMV)
—
0.5 × SDCLK +
1.0ns
ns
SD6
Address, CKE, CAS, RAS, WE, BA, CS - Output Hold (tCMH)
2.0
—
ns
SD7
SDRDQS Output Valid (tDQSOV)
—
Self timed
ns
5
SD8
SDDQS[3:0] input setup relative to SDCLK (tDQSIS)
0.25 × SDCLK
0.40 × SDCLK
ns
6
SD9
SDDQS[3:0] input hold relative to SDCLK (tDQSIH)
SD10
Data Input Setup relative to SDCLK (reference only) (tDIS)
0.25 × SDCLK
—
ns
SD11
Data Input Hold relative to SDCLK (reference only) (tDIH)
1.0
—
ns
SD12
Data and Data Mask Output Valid (tDV)
—
0.75 × SDCLK
+0.500ns
ns
SD13
Data and Data Mask Output Hold (tDH)
1.5
Does not apply. 0.5 SDCLK fixed width.
7
8
ns
The frequency of operation is 2x or 4x the CLKIN frequency of operation. The MCF548X supports a single external reference
clock (CLKIN). This signal defines the frequency of operation for FlexBus and PCI, but SDRAM clock operates at the same
frequency as the internal bus clock. Please see the PLL chapter of the MCF548X Reference Manual for more information on
setting the SDRAM clock rate.
SDCLK is one SDRAM clock in (ns).
Pulse width high plus pulse width low cannot exceed min and max clock period.
Pulse width high plus pulse width low cannot exceed min and max clock period.
SDR_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This is a guideline only. Subtle
variation from this guideline is expected. SDR_DQS pulses only during a read cycle and one pulse occurs for each data beat.
SDR_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This spec is a guideline only. Subtle
variation from this guideline is expected. SDR_DQS pulses only during a read cycle and one pulse occurs for each data beat.
The SDR_DQS pulse is designed to be 0.5 clock in width. The timing of the rising edge is most important. The falling edge
does not affect the memory controller.
Because a read cycle in SDR mode continues using the DQS circuit within the MCF548X, it is most critical that the data valid
window be centered 1/4 clk after the rising edge of DQS. Ensuring that this happens results in successful SDR reads. The
input setup spec is provided as guidance.
MCF5485 Integrated Microprocessor Electrical Characteristics, Rev. 3
16
Freescale Semiconductor
SDR SDRAM AC Timing Characteristics
SD2
SD3
SD1
SDCLK0
SD4
SD2
SDCLK1
SD6
SDCSn,SDWE,
RAS, CAS
CMD
SD5
SDADDR,
SDBA[1:0]
ROW
COL
SD12
SDDM
SD13
WD1
SDDATA
WD2
WD3
WD4
Figure 13. SDR Write Timing
SD2
SD1
SDCLK0
SD2
SDCLK1
SD6
SDCSn,SDWE,
RAS, CAS
CMD
3/4 MCLK
Reference
SD5
SDADDR,
SDBA[1:0]
ROW
COL
tDQS
SDDM
SD7
SDRQS
(Measured at Output Pin)
Board Delay
SDDQS
SD9
(Measured at Input Pin)
Board Delay
SD8
Delayed
SDCLK
SD10
SDDATA
form
Memories
WD1
NOTE: Data driven from memories relative
to delayed memory clock.
WD2
WD3
WD4
SD11
Figure 14. SDR Read Timing
MCF5485 Integrated Microprocessor Electrical Characteristics, Rev. 3
Freescale Semiconductor
17
SDR SDRAM AC Timing Characteristics
10.1
DDR SDRAM AC Timing Characteristics
When using the DDR SDRAM controller, the following timing numbers must be followed to properly latch or drive data onto
the memory bus. All timing numbers are relative to the four DQS byte lanes.
Table 12 shows the DDR clock crossover specifications.
Table 12. DDR Clock Crossover Specifications
Symbol
1
Characteristic
Min
Max
Unit
VMP
Clock output mid-point voltage
1.05
1.45
V
VOUT
Clock output voltage level
−0.3
SD_VDD + 0.3
V
VID
Clock output differential voltage (peak to peak swing)
0.7
SD_VDD + 0.6
V
VIX
Clock crossing point voltage1
1.05
1.45
V
The clock crossover voltage is only guaranteed when using the highest drive strength option for the SDCLK[1:0]
and SDCLK[1:0] signals.
SDCLK
VIX
VMP
VIX
VID
SDCLK
Figure 15. DDR Clock Timing Diagram
Table 13. DDR Timing Specifications
Symbol
Min
Max
Unit
Notes
Frequency of Operation
501
133
MHz
2
DD1
Clock Period (tCK)
7.52
12
ns
3
DD2
Pulse Width High (tCKH)
0.45
0.55
SDCLK
4
DD3
Pulse Width Low (tCKL)
0.45
0.55
SDCLK
5
DD4
Address, SDCKE, CAS, RAS, WE, SDBA, SDCS—Output
Valid (tCMV)
—
0.5 × SDCLK
+ 1.0 ns
ns
6
DD5
Address, SDCKE, CAS, RAS, WE, SDBA, SDCS—Output Hold
(tCMH)
2.0
—
ns
—
DD6
Write Command to first DQS Latching Transition (tDQSS)
—
1.25
SDCLK
—
DD7
Data and Data Mask Output Setup (DQ−>DQS) Relative to
DQS (DDR Write Mode) (tQS)
1.0
—
ns
7
DD8
Data and Data Mask Output Hold (DQS−>DQ) Relative to DQS
(DDR Write Mode) (tQH)
1.0
—
ns
9
DD9
Input Data Skew Relative to DQS (Input Setup) (tIS)
—
1
ns
10
DD10
Input Data Hold Relative to DQS (tIH)
0.25 × SDCLK
+ 0.5ns
—
ns
11
DD11
DQS falling edge to SDCLK rising (output setup time) (tDSS)
0.5
—
ns
—
DD12
DQS falling edge from SDCLK rising (output hold time) (tDSH)
0.5
—
ns
—
—
Characteristic
8
MCF5485 Integrated Microprocessor Electrical Characteristics, Rev. 3
18
Freescale Semiconductor
SDR SDRAM AC Timing Characteristics
Table 13. DDR Timing Specifications (continued)
Symbol
Characteristic
Min
Max
Unit
Notes
DD13
DQS input read preamble width (tRPRE)
0.9
1.1
SDCLK
—
DD14
DQS input read postamble width (tRPST)
0.4
0.6
SDCLK
—
DD15
DQS output write preamble width (tWPRE)
0.25
—
SDCLK
—
DD16
DQS output write postamble width (tWPST)
0.4
0.6
SDCLK
—
1
DDR memories typically have a minimum speed specification of 83 MHz. Check with memory component specifications to
verify.
2
The frequency of operation is 2x or 4x the CLKIN frequency of operation. The MCF548X supports a single external
reference clock (CLKIN). This signal defines the frequency of operation for FlexBus and PCI, but SDRAM clock operates at
the same frequency as the internal bus clock. Please see the reset configuration signals description in the “Signal
Descriptions” chapter within the MCF548x Reference Manual.
3
SDCLK is one memory clock in (ns).
4 Pulse width high plus pulse width low cannot exceed max clock period.
5 Pulse width high plus pulse width low cannot exceed max clock period.
6 Command output valid should be 1/2 the memory bus clock (SDCLK) plus some minor adjustments for process,
temperature, and voltage variations.
7 This specification relates to the required input setup time of today’s DDR memories. SDDATA[31:24] is relative to SDDQS3,
SDDATA[23:16] is relative to SDDQS2, SDDATA[15:8] is relative to SDDQS1, and SDDATA[7:0] is relative SDDQS0.
8 The first data beat is valid before the first rising edge of SDDQS and after the SDDQS write preamble. The remaining data
beats is valid for each subsequent SDDQS edge.
9 This specification relates to the required hold time of today’s DDR memories. SDDATA[31:24] is relative to SDDQS3,
SDDATA[23:16] is relative to SDDQS2, SDDATA[15:8] is relative to SDDQS1, and SDDATA[7:0] is relative SDDQS0.
10 Data input skew is derived from each SDDQS clock edge. It begins with a SDDQS transition and ends when the last data
line becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing
or other factors).
11 Data input hold is derived from each SDDQS clock edge. It begins with a SDDQS transition and ends when the first data
line becomes invalid.
MCF5485 Integrated Microprocessor Electrical Characteristics, Rev. 3
Freescale Semiconductor
19
SDR SDRAM AC Timing Characteristics
DD1
DD2
SDCLK0
DD3
SDCLK1
SDCLK0
SDCLK1
DD5
SDCSn,SDWE,
RAS, CAS
CMD
DD6
DD4
SDADDR,
SDBA[1:0]
ROW
COL
DD7
SDDM
DD8
SDDQS
DD7
SDDATA
WD1 WD2 WD3 WD4
DD8
Figure 16. DDR Write Timing
MCF5485 Integrated Microprocessor Electrical Characteristics, Rev. 3
20
Freescale Semiconductor
PCI Bus
DD1
DD2
SDCLK0
DD3
SDCLK1
SDCLK0
SDCLK1
CL=2
DD5
SDCSn,SDWE,
RAS, CAS
CMD
CL=2.5
DD4
SDADDR,
SDBA[1:0]
ROW
COL
DD9
DQS Read
Preamble
SDDQS
DQS Read
Postamble
DD10
SDDATA
WD1 WD2 WD3 WD4
DQS Read
DQS Read
Preamble
Postamble
SDDQS
WD1 WD2 WD3 WD4
SDDATA
Figure 17. DDR Read Timing
11
PCI Bus
The PCI bus on the MCF5485 is PCI 2.2 compliant. The following timing numbers are mostly from the PCI 2.2 spec. Please
refer to the PCI 2.2 spec for a more detailed timing analysis.
Table 14. PCI Timing Specifications
Num
Characteristic
Min
Max
Unit
Notes
—
Frequency of Operation
25
50
MHz
1
P1
Clock Period (tCK)
20
40
ns
2
P2
Address, Data, and Command (33< PCI ≤ 50 Mhz)—Input Setup (tIS)
3.0
—
ns
—
P3
Address, Data, and Command (0 < PCI ≤ 33 Mhz)—Input Setup (tIS)
7.0
—
ns
—
P4
Address, Data, and Command (33–50 Mhz)—Output Valid (tDV)
—
6.0
ns
3
P5
Address, Data, and Command (0–33 Mhz) - Output Valid (tDV)
—
11.0
ns
—
P6
PCI signals (0–50 Mhz) - Output Hold (tDH)
0
—
ns
4
MCF5485 Integrated Microprocessor Electrical Characteristics, Rev. 3
Freescale Semiconductor
21
PCI Bus
Table 14. PCI Timing Specifications (continued)
Num
1
2
3
4
5
6
Characteristic
Min
Max
Unit
Notes
P7
PCI signals (0–50 Mhz) - Input Hold (tIH)
0
—
ns
5
P8
PCI REQ/GNT (33 < PCI ≤ 50Mhz) - Output valid (tDV)
—
6
ns
6
P9
PCI REQ/GNT (0 < PCI ≤ 33Mhz) - Output valid (tDV)
—
12
ns
—
P10
PCI REQ/GNT (33 < PCI ≤ 50Mhz) - Input Setup (tIS)
—
5
ns
—
P11
PCI REQ (0 < PCI ≤ 33Mhz) - Input Setup (tIS)
12
—
ns
—
P12
PCI GNT (0 < PCI ≤ 33Mhz) - Input Setup (tIS)
10
—
ns
—
Please see the reset configuration signals description in the “Signal Descriptions” chapter within the MCF548x
Reference Manual. Also specific guidelines may need to be followed when operating the system PLL below certain
frequencies.
Max cycle rate is determined by CLKIN and how the user has the system PLL configured.
All signals defined as PCI bused signals. Does not include PTP (point-to-point) signals.
PCI 2.2 spec does not require an output hold time. Although the MCF548X may provide a slight amount of hold, it
is not required or guaranteed.
PCI 2.2 spec requires zero input hold.
These signals are defined at PTP (Point-to-point) in the PCI 2.2 spec.
P1
CLKIN
P4
Output
Valid/Hold
P6
Output Valid
P2
Input
Setup/Hold
Input Valid
P7
Figure 18. PCI Timing
MCF5485 Integrated Microprocessor Electrical Characteristics, Rev. 3
22
Freescale Semiconductor
Fast Ethernet AC Timing Specifications
12
Fast Ethernet AC Timing Specifications
12.1
MII/7-WIRE Interface Timing Specs
The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing
specs/constraints for the EMAC_10_100 I/O signals.
The following timing specs meet the requirements for MII and 7-Wire style interfaces for a range of transceiver devices. If this
interface is used with a specific transceiver device, the timing specs may be altered to match that specific transceiver.
Table 15. MII Receive Signal Timing
Num
Characteristic
Min
Max
Unit
M1
RXD[3:0], RXDV, RXER to RXCLK setup
5
—
ns
M2
RXCLK to RXD[3:0], RXDV, RXER hold
5
—
ns
M3
RXCLK pulse width high
35%
65%
RXCLK period
M4
RXCLK pulse width low
35%
65%
RXCLK period
M3
RXCLK (Input)
M1
M4
RXD[3:0] (Inputs)
RXDV,
RXER
M2
Figure 19. MII Receive Signal Timing Diagram
MCF5485 Integrated Microprocessor Electrical Characteristics, Rev. 3
Freescale Semiconductor
23
Fast Ethernet AC Timing Specifications
12.2
MII Transmit Signal Timing
Table 16. MII Transmit Signal Timing
Num
Characteristic
Min
Max
Unit
M5
TXCLK to TXD[3:0], TXEN, TXER invalid
0
—
ns
M6
TXCLK to TXD[3:0], TXEN, TXER valid
—
25
ns
M7
TXCLK pulse width high
35%
65%
TXCLK period
M8
TXCLK pulse width low
35%
65%
TXCLK period
Min
Max
Unit
1.5
—
TX_CLK period
M7
TXCLK (Input)
M5
M8
TXD[3:0] (Outputs)
TXEN,
TXER
M6
Figure 20. MII Transmit Signal Timing Diagram
12.3
MII Async Inputs Signal Timing (CRS, COL)
Table 17. MII Transmit Signal Timing
Num
M9
Characteristic
CRS, COL minimum pulse width
CRS, COL
M9
Figure 21. MII Async Inputs Timing Diagram
12.4
MII Serial Management Channel Timing (MDIO,MDC)
Table 18. MII Serial Management Channel Signal Timing
Num
Characteristic
Min
Max
Unit
M10
MDC falling edge to MDIO output invalid
(min prop delay)
0
—
ns
M11
MDC falling edge to MDIO output valid
(max prop delay)
—
25
ns
M12
MDIO (input) to MDC rising edge setup
10
—
ns
M13
MDIO (input) to MDC rising edge hold
0
—
ns
MCF5485 Integrated Microprocessor Electrical Characteristics, Rev. 3
24
Freescale Semiconductor
General Timing Specifications
Table 18. MII Serial Management Channel Signal Timing
Num
Characteristic
Min
Max
Unit
M14
MDC pulse width high
40%
60%
MDC period
M15
MDC pulse width low
40%
60%
MDC period
M14
M15
MDC (Output)
M10
MDIO (Output)
M12
M11
MDIO (Input)
M13
Figure 22. MII Serial Management Channel TIming Diagram
13
General Timing Specifications
Table 19 lists timing specifications for the GPIO, PSC, FlexCAN, DREQ, DACK, and external interrupts.
Table 19. General AC Timing Specifications
Name
14
Characteristic
Min
Max
Unit
G1
CLKIN high to signal output valid
—
2
PSTCLK
G2
CLKIN high to signal invalid (output hold)
0
—
ns
G3
Signal input pulse width
2
—
PSTCLK
I2C Input/Output Timing Specifications
Table 20 lists specifications for the I2C input timing parameters shown in Figure 23.
Table 20. I2C Input Timing Specifications Between SCL and SDA
Num
Characteristic
Min
Max
Units
I1
Start condition hold time
2
—
Bus clocks
I2
Clock low period
8
—
Bus clocks
I3
SCL/SDA rise time (VIL = 0.5 V to VIH = 2.4 V)
—
1
mS
I4
Data hold time
0
—
ns
I5
SCL/SDA fall time (VIH = 2.4 V to VIL = 0.5 V)
—
1
mS
MCF5485 Integrated Microprocessor Electrical Characteristics, Rev. 3
Freescale Semiconductor
25
I2C Input/Output Timing Specifications
Table 20. I2C Input Timing Specifications Between SCL and SDA (continued)
Num
Characteristic
Min
Max
Units
I6
Clock high time
4
—
Bus clocks
I7
Data setup time
0
—
ns
I8
Start condition setup time (for repeated start condition only)
2
—
Bus clocks
I9
Stop condition setup time
2
—
Bus clocks
Table 21 lists specifications for the I2C output timing parameters shown in Figure 23.
Table 21. I2C Output Timing Specifications Between SCL and SDA
Num
Characteristic
Min
Max
Units
I11
Start condition hold time
6
—
Bus clocks
I2 1
Clock low period
10
—
Bus clocks
I3
2
SCL/SDA rise time (VIL = 0.5 V to VIH = 2.4 V)
—
—
µS
I4
1
Data hold time
7
—
Bus clocks
I5
3
SCL/SDA fall time (VIH = 2.4 V to VIL = 0.5 V)
—
3
ns
I6
1
Clock high time
10
—
Bus clocks
I7
1
Data setup time
2
—
Bus clocks
I8
1
Start condition setup time (for repeated start
condition only)
20
—
Bus clocks
Stop condition setup time
10
—
Bus clocks
I9 1
1
Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the
maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table 21. The
I2C interface is designed to scale the actual data transition time to move it to the middle of the
SCL low period. The actual position is affected by the prescale and division values programmed
into the IFDR; however, the numbers given in Table 21 are minimum values.
2 Because SCL and SDA are open-collector-type outputs, which the processor can only actively
drive low, the time SCL or SDA take to reach a high level depends on external signal capacitance
and pull-up resistor values.
3 Specified at a nominal 50-pF load.
Figure 23 shows timing for the values in Table 20 and Table 21.
I2
I6
I5
SCL
I1
I3
I7
I4
I8
I9
SDA
Figure 23. I2C Input/Output Timings
MCF5485 Integrated Microprocessor Electrical Characteristics, Rev. 3
26
Freescale Semiconductor
JTAG and Boundary Scan Timing
15
JTAG and Boundary Scan Timing
Table 22. JTAG and Boundary Scan Timing
Characteristics1
Num
1
Symbol
Min
Max
Unit
J1
TCLK Frequency of Operation
fJCYC
DC
10
MHz
J2
TCLK Cycle Period
tJCYC
2
—
tCK
J3
TCLK Clock Pulse Width
tJCW
15.15
—
ns
J4
TCLK Rise and Fall Times
tJCRF
0.0
3.0
ns
J5
Boundary Scan Input Data Setup Time to TCLK Rise
tBSDST
5.0
—
ns
J6
Boundary Scan Input Data Hold Time after TCLK Rise
tBSDHT
24.0
—
ns
J7
TCLK Low to Boundary Scan Output Data Valid
tBSDV
0.0
15.0
ns
J8
TCLK Low to Boundary Scan Output High Z
tBSDZ
0.0
15.0
ns
J9
TMS, TDI Input Data Setup Time to TCLK Rise
tTAPBST
5.0
—
ns
J10
TMS, TDI Input Data Hold Time after TCLK Rise
tTAPBHT
10.0
—
ns
J11
TCLK Low to TDO Data Valid
tTDODV
0.0
20.0
ns
J12
TCLK Low to TDO High Z
tTDODZ
0.0
15.0
ns
J13
TRST Assert Time
tTRSTAT
100.0
—
ns
J14
TRST Setup Time (Negation) to TCLK High
tTRSTST
10.0
—
ns
MTMOD is expected to be a static signal. Hence, it is not associated with any timing
J2
J3
TCLK (Input)
J3
VIH
VIL
J4
J4
Figure 24. Test Clock Input Timing
TCLK
VIH
VIL
5
6
Input Data Valid
Data Inputs
7
Output Data Valid
Data Outputs
8
Data Outputs
7
Data Outputs
Output Data Valid
Figure 25. Boundary Scan (JTAG) Timing
MCF5485 Integrated Microprocessor Electrical Characteristics, Rev. 3
Freescale Semiconductor
27
JTAG and Boundary Scan Timing
TCLK
VIH
VIL
9
TDI, TMS, BKPT
10
Input Data Valid
11
TDO
Output Data Valid
12
TDO
11
TDO
Output Data Valid
Figure 26. Test Access Port Timing
TCLK
14
TRST
13
Figure 27. TRST Timing Debug AC Timing Specifications
Table 23 lists specifications for the debug AC timing parameters shown in Figure 29.
Table 23. Debug AC Timing Specification
50 MHz
Num
Units
Min
Max
D1
PSTDDATA to PSTCLK setup
4.5
—
ns
D2
PSTCLK to PSTDDATA hold
4.5
—
ns
D3
DSI-to-DSCLK setup
1
—
PSTCLKs
D4 1
DSCLK-to-DSO hold
4
—
PSTCLKs
DSCLK cycle time
5
—
PSTCLKs
D5
1
Characteristic
DSCLK and DSI are synchronized internally. D4 is measured from the
synchronized DSCLK input relative to the rising edge of CLKOUT.
Figure 28 shows real-time trace timing for the values in Table 23.
PSTCLK
D1
D2
PSTDDATA[7:0]
Figure 28. Real-Time Trace AC Timing
MCF5485 Integrated Microprocessor Electrical Characteristics, Rev. 3
28
Freescale Semiconductor
DSPI Electrical Specifications
Figure 29 shows BDM serial port AC timing for the values in Table 23.
D5
DSCLK
D3
DSI
Current
Next
D4
DSO
Past
Current
Figure 29. BDM Serial Port AC Timing
16
DSPI Electrical Specifications
Table 24 lists DSPI timings.
Table 24. DSPI Modules AC Timing Specifications
Name
Characteristic
Min
Max
Unit
1 × tck
510 × tck
ns
DS1
DSPI_CS[3:0] to DSPI_CLK
DS2
DSPI_CLK high to DSPI_DOUT valid.
—
12
ns
DS3
DSPI_CLK high to DSPI_DOUT invalid. (Output hold)
2
—
ns
DS4
DSPI_DIN to DSPI_CLK (Input setup)
10
—
ns
DS5
DSPI_DIN to DSPI_CLK (Input hold)
10
—
ns
The values in Table 24 correspond to Figure 30.
DSPI_CS[3:0]
DS1
DSPI_CLK
DS2
DSPI_DOUT
DS3
DS4
DS5
DSPI_DIN
Figure 30. DSPI Timing
MCF5485 Integrated Microprocessor Electrical Characteristics, Rev. 3
Freescale Semiconductor
29
Timer Module AC Timing Specifications
17
Timer Module AC Timing Specifications
Table 25 lists timer module AC timings.
Table 25. Timer Module AC Timing Specifications
0–50 MHz
Name
18
Characteristic
Unit
Min
Max
T1
TIN0 / TIN1 / TIN2 / TIN3 cycle time
3
—
PSTCLK
T2
TIN0 / TIN1 / TIN2 / TIN3 pulse width
1
—
PSTCLK
Revision History
Revision
Number
Date
Substantive Changes
2.2
August 29, 2005
Table 7: Changed C1 minimum spec from 15.15 ns to 20 ns and maximum
spec from 33.3 ns to 40 ns.
2.3
August 30, 2005
Table 22: Changed J11 maximum from 15 ns to 20 ns.
2.4
December 14, 2005
3
March 1, 2007
Table 9: Changed heading maximum from 66 MHz to 50 MHz.
Table 10: Changed frequency of operation maximum from 66 MHz to 50 MHz
and corresponding FB1 minimum from 15.15 ns to 20 ns.
Table 10: Changed FB1 maximum from 33.33 ns to 40 ns.
Table 14: Changed frequency of operation maximum from 66 MHz to 50 MHz
and corresponding FB1 minimum from 15.15 ns to 20 ns.
Table 14: Changed FB1 maximum from 33.33 ns to 40 ns.
Table 14: Changed various entry descriptions from “(33 < PCI ≤ 66 Mhz)” to
(33< PCI ≤ 50 Mhz)
Table 23: Changed heading maximum from 66 MHz to 50 MHz.
Table 25: Changed heading maximum from 66 MHz to 50 MHz.
Table 4: Updated DC electrical specifications, VIL and VIH.
Table 6: Changed FlexBus output load from 20pF to 30pF.
Added Section 4.3, “General USB Layout Guidelines.”
MCF5485 Integrated Microprocessor Electrical Characteristics, Rev. 3
30
Freescale Semiconductor
Similar pages