PD - 96186 IRFS4010PbF IRFSL4010PbF HEXFET® Power MOSFET Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits D G S Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free VDSS RDS(on) typ. max. ID 100V 3.9m: 4.7m: 180A D D S G G D2Pak IRFS4010PbF D S TO-262 IRFSL4010PbF G D S Gate Drain Source Absolute Maximum Ratings Symbol ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS Parameter Max. Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V 180 127 720 375 2.5 ± 20 31 -55 to + 175 c Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw e dv/dt TJ TSTG Avalanche Characteristics EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy c d Units A W W/°C V V/ns °C 300 x x 10lb in (1.1N m) 318 See Fig. 14, 15, 22a, 22b, f mJ A mJ Thermal Resistance Symbol RθJC RθJA www.irf.com Parameter jk Junction-to-Case Junction-to-Ambient (PCB Mount) ij Typ. Max. Units ––– ––– 0.40 40 °C/W 1 10/06/08 IRFS/SL4010PbF Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) IDSS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current IGSS RG(int) Min. Typ. Max. Units Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage 100 ––– ––– 2.0 ––– ––– ––– ––– ––– 0.10 3.9 ––– ––– ––– ––– ––– ––– ––– 4.7 4.0 20 250 100 -100 Internal Gate Resistance ––– 2.0 ––– Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 5mA mΩ VGS = 10V, ID = 106A V VDS = VGS, ID = 250µA VDS = 100V, VGS = 0V µA VDS = 100V, VGS = 0V, TJ = 125°C VGS = 20V nA VGS = -20V c f Ω Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Min. Typ. Max. Units Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance h Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related) g 189 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 143 38 50 93 21 86 100 77 9575 660 270 757 1112 ––– 215 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S nC ns Conditions VDS = 25V, ID = 106A ID = 106A VDS = 50V VGS = 10V ID = 106A, VDS =0V, VGS = 10V VDD = 65V ID = 106A RG = 2.7Ω VGS = 10V VGS = 0V VDS = 50V ƒ = 1.0MHz See Fig.5 VGS = 0V, VDS = 0V to 80V See Fig.11 VGS = 0V, VDS = 0V to 80V f f pF h g Diode Characteristics Symbol IS Parameter Continuous Source Current VSD trr (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Qrr Reverse Recovery Charge IRRM ton Reverse Recovery Current Forward Turn-On Time ISM c Notes: Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.057mH RG = 25Ω, IAS = 106A, VGS =10V. Part not recommended for use above this value . ISD ≤ 106A, di/dt ≤ 1319A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 Min. Typ. Max. Units ––– ––– 180 A ––– ––– 720 Conditions MOSFET symbol showing the integral reverse D G p-n junction diode. TJ = 25°C, IS = 106A, VGS = 0V VR = 85V, TJ = 25°C TJ = 125°C IF = 106A di/dt = 100A/µs TJ = 25°C f S ––– ––– 1.3 V ––– 72 ––– ns ––– 81 ––– ––– 210 ––– nC TJ = 125°C ––– 268 ––– ––– 5.3 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) f Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. When mounted on 1" square PCB (FR-4 or G-10 Material). For recom mended footprint and soldering techniques refer to application note #AN-994. Rθ is measured at TJ approximately 90°C RθJC value shown is at time zero www.irf.com IRFS/SL4010PbF 1000 1000 VGS 15V 10V 8.0V 7.0V 5.0V 4.5V 4.3V 4.0V 100 BOTTOM BOTTOM 100 10 1 ≤60µs PULSE WIDTH Tj = 25°C 4.0V 4.0V 0.1 0.1 10 1 10 0.1 100 Fig 1. Typical Output Characteristics Tj = 175°C 1 10 100 Fig 2. Typical Output Characteristics 2.5 RDS(on) , Drain-to-Source On Resistance (Normalized) 1000 ID, Drain-to-Source Current (A) ≤60µs PULSE WIDTH V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) 100 TJ = 175°C T J = 25°C 10 1 VDS = 50V ≤60µs PULSE WIDTH 2 3 4 5 6 1.0 T J , Junction Temperature (°C) Fig 4. Normalized On-Resistance vs. Temperature 14.0 VGS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd Ciss Coss 1000 1.5 -60 -40 -20 0 20 40 60 80 100120140160180 Fig 3. Typical Transfer Characteristics 10000 2.0 7 VGS, Gate-to-Source Voltage (V) 100000 ID = 106A VGS = 10V 0.5 0.1 C, Capacitance (pF) VGS 15V 10V 8.0V 7.0V 5.0V 4.5V 4.3V 4.0V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP Crss 100 ID= 106A 12.0 10.0 VDS= 80V VDS= 50V 8.0 6.0 4.0 2.0 0.0 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage www.irf.com 0 25 50 75 100 125 150 175 200 225 QG, Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 3 IRFS/SL4010PbF 10000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 T J = 175°C 100 T J = 25°C 10 OPERATION IN THIS AREA LIMITED BY R DS(on) 1000 1msec 100 10msec 10 DC 1 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 0.1 1.0 0.2 0.6 1.0 1.4 1 1.8 180 ID, Drain Current (A) 160 140 120 100 80 60 40 20 0 75 100 125 150 175 V(BR)DSS , Drain-to-Source Breakdown Voltage (V) 200 50 1000 130 Id = 5mA 125 120 115 110 105 100 95 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 9. Maximum Drain Current vs. Case Temperature Fig 10. Drain-to-Source Breakdown Voltage 4.0 EAS , Single Pulse Avalanche Energy (mJ) 1400 3.5 ID 12.5A 17A BOTTOM 106A 1200 3.0 Energy (µJ) 100 Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage 25 10 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) TOP 1000 2.5 2.0 1.5 1.0 0.5 0.0 800 600 400 200 0 0 20 40 60 80 100 VDS, Drain-to-Source Voltage (V) Fig 11. Typical COSS Stored Energy 4 100µsec 120 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 12. Maximum Avalanche Energy vs. DrainCurrent www.irf.com IRFS/SL4010PbF Thermal Response ( Z thJC ) °C/W 1 D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01 0.01 τJ R1 R1 τJ τ1 0.001 τC τ2 τ1 τ2 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 R2 R2 1E-005 0.0001 τ Ri (°C/W) 0.17537 0.22547 τi (sec) 0.000343 0.006073 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Avalanche Current (A) Duty Cycle = Single Pulse 100 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Tj = 150°C and Tstart =25°C (Single Pulse) 0.01 0.05 10 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth 350 300 EAR , Avalanche Energy (mJ) Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 106A 250 200 150 100 50 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 4.5 35 4.0 30 3.5 25 3.0 20 2.5 ID = 250µA 2.0 ID = 1.0A IRR (A) VGS(th) , Gate threshold Voltage (V) IRFS/SL4010PbF ID = 1.0mA IF = 70A V R = 85V TJ = 25°C TJ = 125°C 15 10 1.5 5 1.0 0 -75 -50 -25 0 25 50 75 100 125 150 175 0 200 T J , Temperature ( °C ) 600 800 1000 Fig. 17 - Typical Recovery Current vs. dif/dt Fig 16. Threshold Voltage vs. Temperature 1100 35 IF = 106A V R = 85V 30 IF = 70A V R = 85V 1000 900 TJ = 25°C TJ = 125°C 25 TJ = 25°C TJ = 125°C 800 20 QRR (A) IRR (A) 400 diF /dt (A/µs) 15 700 600 500 400 10 300 5 200 100 0 0 200 400 600 800 0 1000 200 400 600 800 1000 diF /dt (A/µs) diF /dt (A/µs) Fig. 19 - Typical Stored Charge vs. dif/dt Fig. 18 - Typical Recovery Current vs. dif/dt 1100 IF = 106A V R = 85V 1000 900 TJ = 25°C TJ = 125°C QRR (A) 800 700 600 500 400 300 200 0 200 400 600 800 1000 diF /dt (A/µs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRFS/SL4010PbF Driver Gate Drive D.U.T - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG VGS 20V + V - DD IAS A 0.01Ω tp I AS Fig 22a. Unclamped Inductive Test Circuit RD VDS Fig 22b. Unclamped Inductive Waveforms VDS 90% VGS D.U.T. RG + - VDD V10V GS 10% VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % td(on) Fig 23a. Switching Time Test Circuit tr t d(off) Fig 23b. Switching Time Waveforms Id Current Regulator Same Type as D.U.T. Vds Vgs 50KΩ 12V tf .2µF .3µF D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Current Sampling Resistors Fig 24a. Gate Charge Test Circuit www.irf.com Qgs1 Qgs2 Qgd Qgodr Fig 24b. Gate Charge Waveform 7 IRFS/SL4010PbF TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information (;$03/( 7+,6,6$1,5// /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(& 3$57180%(5 ,17(51$7,21$/ 5(&7,),(5 /2*2 '$7(&2'( <($5 :((. /,1(& $66(0%/< /27&2'( 25 ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 '$7(&2'( 3 '(6,*1$7(6/($')5(( 352'8&7 237,21$/ <($5 :((. $ $66(0%/<6,7(&2'( Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 8 www.irf.com IRFS/SL4010PbF D2Pak (TO-263AB) Package Outline Dimensions are shown in millimeters (inches) D2Pak (TO-263AB) Part Marking Information 7+,6,6$1,5)6:,7+ /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(/ ,17(51$7,21$/ 5(&7,),(5 /2*2 3$57180%(5 )6 '$7(&2'( <($5 :((. /,1(/ $66(0%/< /27&2'( 25 ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 )6 '$7(&2'( 3 '(6,*1$7(6/($')5(( 352'8&7 237,21$/ <($5 :((. $ $66(0%/<6,7(&2'( Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9 IRFS/SL4010PbF D2Pak (TO-263AB) Tape & Reel Information Dimensions are shown in millimeters (inches) TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 1.60 (.063) 1.50 (.059) 11.60 (.457) 11.40 (.449) 1.65 (.065) 0.368 (.0145) 0.342 (.0135) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 1.75 (.069) 1.25 (.049) 10.90 (.429) 10.70 (.421) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. 10 IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 10/2008 www.irf.com