14-Bit, 80 MSPS, A/D Converter AD9444 FEATURES APPLICATIONS Multicarrier, multimode cellular receivers Antenna array positioning Power amplifier linearization Broadband wireless Radar, infared imaging Communications instrumentation GENERAL DESCRIPTION The AD9444 is a 14-bit monolithic, sampling analog-to-digital converter (ADC) with an on-chip, track-and-hold circuit and is optimized for power, small size, and ease of use. The product operates at up to an 80 MSPS conversion rate and is optimized for multicarrier, multimode receivers, such as those found in cellular infrastructure equipment. The ADC requires 3.3 V and 5.0 V power supplies and a low voltage differential input clock for full performance operation. No external reference or driver components are required for many applications. Data outputs are LVDS-compatible (ANSI644) or CMOS-compatible and include the means to reduce the overall current needed for short trace distances. AGND AVDD1 AVDD2 DRGND DRVDD DFS AD9444 DCS MODE BUFFER VIN+ VIN– CLK+ CLK– T/H CLOCK AND TIMING MANAGEMENT PIPELINE ADC OUTPUT MODE 14 CMOS OR LVDS OUTPUT STAGING 2 OR 28 D13–D0 2 DCO REF 05089-001 80 MSPS guaranteed sampling rate 100 dB two-tone SFDR with 69.3 MHz and 70.3 MHz 73.1 dB SNR with 70 MHz input 97 dBc SFDR with 70 MHz input Excellent linearity DNL = ±0.4 LSB typical INL = ±0.6 LSB typical 1.2 W power dissipation 3.3 V and 5 V supply operation 2.0 V p-p differential full-scale input LVDS outputs (ANSI-644 compatible) Data format select Output clock available FUNCTIONAL BLOCK DIAGRAM VREF SENSE REFT REFB Figure 1. Optional features allow users to implement various selectable operating conditions, including data format select and output data mode. The AD9444 is available in a 100-lead surface-mount plastic package (100-lead TQFP/EP) specified over the industrial temperature range (−40°C to +85°C). PRODUCT HIGHLIGHTS 1. High performance: Outstanding SFDR performance for multicarrier, multimode 3G and 4G cellular base station receivers. 2. Ease of use: On-chip reference and track-and-hold. An output clock simplifies data capture. 3. Packaged in a Pb-free, 100-lead TQFP/EP. 4. Clock DCS maintains overall ADC performance over a wide range of clock pulse widths. 5. OR (out-of-range) outputs indicate when the signal is beyond the selected input range. Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 © 2004 Analog Devices, Inc. All rights reserved. AD9444* PRODUCT PAGE QUICK LINKS Last Content Update: 02/23/2017 COMPARABLE PARTS TOOLS AND SIMULATIONS View a parametric search of comparable parts. • Visual Analog • AD9444 IBIS Models DOCUMENTATION Application Notes REFERENCE MATERIALS • AN-1142: Techniques for High Speed ADC PCB Layout Technical Articles • AN-282: Fundamentals of Sampled Data Systems • Correlating High-Speed ADC Performance to Multicarrier 3G Requirements • AN-345: Grounding for Low-and-High-Frequency Circuits • AN-501: Aperture Uncertainty and ADC System Performance • MS-2210: Designing Power Supplies for High Speed ADC • AN-586: LVDS Outputs for High Speed A/D Converters DESIGN RESOURCES • AN-715: A First Approach to IBIS Models: What They Are and How They Are Generated • AD9444 Material Declaration • AN-737: How ADIsimADC Models an ADC • Quality And Reliability • AN-741: Little Known Characteristics of Phase Noise • Symbols and Footprints • AN-756: Sampled Systems and the Effects of Clock Phase Noise and Jitter DISCUSSIONS • AN-807: Multicarrier WCDMA Feasibility View all AD9444 EngineerZone Discussions. • PCN-PDN Information • AN-808: Multicarrier CDMA2000 Feasibility • AN-835: Understanding High Speed ADC Testing and Evaluation • AN-905: Visual Analog Converter Evaluation Tool Version 1.0 User Manual • AN-935: Designing an ADC Transformer-Coupled Front End Data Sheet • AD9444: 14-Bit, 80 MSPS, A/D Converter Data Sheet SAMPLE AND BUY Visit the product page to see pricing options. TECHNICAL SUPPORT Submit a technical question or find your regional support number. DOCUMENT FEEDBACK Submit feedback for this data sheet. This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified. AD9444 TABLE OF CONTENTS DC Specifications ............................................................................. 3 Clock Input Considerations...................................................... 22 AC Specifications.............................................................................. 4 Power Considerations................................................................ 23 Digital Specifications........................................................................ 5 Digital Outputs ........................................................................... 23 Switching Specifications .................................................................. 6 Timing ......................................................................................... 23 Explanation of Test Levels........................................................... 7 Operational Mode Selection ..................................................... 23 Absolute Maximum Ratings............................................................ 8 Evaluation Board ........................................................................ 24 ESD Caution.................................................................................. 8 LVDS Evaluation Board Schematics ........................................ 25 Definitions of Specifications ........................................................... 9 LVDS Mode Evaluation Board Bill of Materials (BOM) ...... 30 Pin Configurations and Function Descriptions ......................... 10 CMOS Evaluation Board Schematics ...................................... 32 Equivalent Circuits ......................................................................... 14 CMOS Mode Evaluation Board Bill of Materials (BOM)..... 37 Typical Performance Characteristics ........................................... 15 Outline Dimensions ....................................................................... 39 Theory of Operation ...................................................................... 20 Ordering Guide .......................................................................... 39 Analog Input and Reference Overview ................................... 20 REVISION HISTORY 10/04—Revision 0: Initial Version Rev. 0 | Page 2 of 40 AD9444 DC SPECIFICATIONS AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, LVDS mode, sample rate = 80 MSPS, 2 V p-p differential input, internal trimmed reference (1.0 V mode), AIN = −0.5 dBFS, DCS on, unless otherwise noted. Table 1. Parameter RESOLUTION ACCURACY No Missing Codes Offset Error Gain Error1 Differential Nonlinearity (DNL)2 Integral Nonlinearity (INL)2 TEMPERATURE DRIFT Offset Error Gain Error VOLTAGE REFERENCE Output Voltage1 Load Regulation @ 1.0 mA Reference Input Current (External 1.0 V Reference) INPUT REFERRED NOISE ANALOG INPUT Input Span Input Common-Mode Voltage Input Resistance3 Input Capacitance3 POWER SUPPLIES Supply Voltage AVDD1 AVDD2 DRVDD—LVDS Outputs DRVDD—CMOS Outputs Supply Current AVDD1 AVDD22 IDRVDD2—LVDS Outputs IDRVDD2—CMOS Outputs PSRR Offset Gain POWER CONSUMPTION DC Input—LVDS Outputs DC Input—CMOS Outputs Sine Wave Input2—LVDS Outputs Sine Wave Input2—CMOS Outputs AD9444BSVZ-80 Typ Max 14 Temp Full Test Level VI Full Full Full Full 25°C Full VI VI VI VI I VI Full Full V V Full Full Full 25°C VI V VI V Full Full Full Full V V V V Full Full Full Full IV IV IV IV Full Full Full Full VI VI VI V 217 71 55 12 Full Full V V 1 0.2 Full Full Full Full VI V VI V 1.21 1.07 1.25 1.11 1 Min 6 −3.0 −0.8 −1.3 −1.7 Guaranteed ±0.3 ±0.4 ±0.4 ±0.6 6 +3.0 +0.8 +1.3 +1.7 12 0.002 0.87 1.0 ±2 80 1.0 3.3 5.0 3.3 mV % FSR LSB LSB LSB µV/°C %FS/°C 1.13 125 2 3.5 1 2.5 3.14 4.75 3.0 3.0 Unit Bits V mV µA LSB rms V p-p V kΩ pF 3.46 5.25 3.6 3.6 V V V V 240 80 62 mA mA mA mA mV/V %/V 1.4 W W W W The internal voltage reference is trimmed at final test to minimize the gain error of the AD9444. Measured at the maximum clock rate, fIN = 15 MHz, full-scale sine wave, with a 100 Ω differential termination on each pair of output bits for LVDS output mode and approximately 5 pF loading on each output bit for CMOS output mode. 3 Input capacitance or resistance refers to the effective impedance between one differential input pin and AGND. Refer to Figure 6 for the equivalent analog input structure. 2 Rev. 0 | Page 3 of 40 AD9444 AC SPECIFICATIONS AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, LVDS mode, sample rate = 80 MSPS, 2 V p-p differential input, internal trimmed reference (1.0 V mode), AIN = −0.5 dBFS, DCS on, unless otherwise noted. Table 2. Parameter SIGNAL-TO-NOISE-RATIO (SNR) fIN = 10 MHz fIN = 35 MHz fIN = 70 MHz fIN = 100 MHz SIGNAL-TO-NOISE-AND DISTORTION (SINAD) fIN = 10 MHz fIN = 35 MHz fIN = 70 MHz fIN = 100 MHz EFFECTIVE NUMBER OF BITS (ENOB) fIN = 10 MHz fIN = 35 MHz fIN = 70 MHz fIN = 100 MHz SPURIOUS-FREE DYNAMIC RANGE (SFDR) fIN = 10 MHz fIN = 35 MHz fIN = 70 MHz fIN = 100 MHz WORST HARMONIC, SECOND OR THIRD fIN = 10 MHz fIN = 35 MHz fIN = 70 MHz fIN = 100 MHz WORST SPUR EXCLUDING SECOND OR HARMONICS fIN = 10 MHz fIN = 35 MHz fIN = 70 MHz fIN = 100 MHz TWO-TONE SFDR fIN = 10.8 MHz @ −7 dBFS, 9.8 MHz @ −7 dBFS fIN = 70.3 MHz @ −7 dBFS, 69.3 MHz @ −7 dBFS ANALOG BANDWIDTH AD9444BSVZ-80 Typ Max Temp Test Level Min 25°C Full 25°C Full 25°C Full 25°C IV IV I IV IV IV V 73.0 72.7 72.4 72.3 72.3 72.0 25°C Full 25°C Full 25°C Full 25°C IV IV I IV IV IV V 73.0 72.7 72.4 72.2 72.2 72.0 25°C 25°C 25°C 25°C V V V V 25°C Full 25°C Full 25°C Full 25°C IV IV I IV IV IV V 25°C Full 25°C Full 25°C Full 25°C IV IV I IV IV IV V −97 25°C Full 25°C Full 25°C Full 25°C IV IV I IV IV IV V −102 25°C 25°C Full V V V Rev. 0 | Page 4 of 40 74.0 dB dB dB dB dB dB dB 73.7 73.1 72.3 91 87 91 87 90 87 Unit 74.0 72.3 dB dB dB dB dB dB dB 12.1 12.0 11.9 11.8 Bits Bits Bits Bits 97 dBc dBc dBc dBc dBc dBc dBc 73.7 73.1 97 97 96 −97 −97 −91 −87 −91 −87 −90 −87 dBc dBc dBc dBc dBc dBc dBc −93 −93 −93 −93 −93 −93 dBc dBc dBc dBc dBc dBc dBc −96 −103 −102 −99 −102 −100 650 dBFS dBFS MHz AD9444 DIGITAL SPECIFICATIONS AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, RLVDSBIAS = 3.74 kΩ, unless otherwise noted. Table 3. Parameter CMOS LOGIC INPUTS (DFS, DCS MODE, OUTPUT MODE) High Level Input Voltage Low Level Input Voltage High Level Input Current Low Level Input Current Input Capacitance DIGITAL OUTPUT BITS—CMOS Mode (D0 to D13, OTR)1 DRVDD = 3.3 V High Level Output Voltage Low Level Output Voltage DIGITAL OUTPUT BITS LVDS Mode (D0 to D13, OTR) VOD Differential Output Voltage2 VOS Output Offset Voltage CLOCK INPUTS (CLK+, CLK−) Differential Input Voltage Common-Mode Voltage Differential Input Resistance Differential Input Capacitance 1 2 AD9444BSVZ-80 Typ Max Temp Test Level Min Full Full Full Full Full IV IV VI VI V 2.0 Full Full IV IV 3.25 Full Full VI VI 247 1.125 Full Full Full Full IV VI V V 0.2 1.3 8 Output voltage levels measured with 5 pF load on each output. LVDS RTERM = 100 Ω. Rev. 0 | Page 5 of 40 0.8 +200 +10 −10 2 1.5 10 4 Unit V V µA µA pF 0.2 V V 545 1.375 mV V 1.6 12 V V kΩ pF AD9444 SWITCHING SPECIFICATIONS AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, unless otherwise noted. Table 4. Parameter CLOCK INPUT PARAMETERS Maximum Conversion Rate Minimum Conversion Rate CLK Period CLK Pulse Width High1 (tCLKH) CLK Pulse Width Low1 (tCLKL) DATA OUTPUT PARAMETERS Output Propagation Delay—CMOS (tPD)2 (DX, DCO+) Output Propagation Delay—LVDS (tPD)3 (DX+, DCO+) Pipeline Delay (Latency) Aperture Delay (tA) Aperture Uncertainty (Jitter, tJ) Temp Test Level Full Full Full Full Full VI V V V V Full Full Full Full Full IV VI V V V AD9444BSVZ-80 Min Typ Max 80 10 12.5 4 4 3 3 5.25 5 12 0.2 8 7.5 Unit MSPS MSPS ns ns ns ns ns Cycles ns ps rms 1 With duty cycle stabilizer (DCS) enabled. Output propagation delay is measured from clock 50% transition to data 50% transition, with 5 pF load. 3 LVDS RTERM = 100 Ω. Measured from the 50% point of the rising edge of CLK+ to the 50% point of the data transition. 2 N–1 N N+1 AIN tCLKL tCLKH 1/fS CLK+ CLK– tPD N–12 DATA OUT N N–11 N+1 12 CLOCK CYCLES 05089-002 DCO+ DCO– tCPD Figure 2. LVDS Mode Timing Diagram Rev. 0 | Page 6 of 40 AD9444 N N–1 N+1 VIN N+2 tCLKL tCLKH CLK– CLK+ tPD 12 CYCLES N-12 DX N-11 N-1 N tDCOPD 05089-003 DCO+ DCO– Figure 3. CMOS Timing Diagram EXPLANATION OF TEST LEVELS Test Level I II III IV V VI Definitions 100% production tested. 100% production tested at 25°C and sample tested at specified temperatures. Sample tested only. Parameter is guaranteed by design and characterization testing. Parameter is a typical value only. 100% production tested at 25°C and guaranteed by design and characterization for industrial temperature range. Rev. 0 | Page 7 of 40 AD9444 ABSOLUTE MAXIMUM RATINGS Thermal Resistance Table 5. With Respect to Parameter ELECTRICAL AVDD1 AGND AVDD2 AGND DRVDD DGND AGND DGND AVDD1 DRVDD AVDD2 DRVDD AVDD2 AVDD1 D0 to D13 DGND CLK, MODE AGND VIN+, VIN− AGND VREF AGND SENSE AGND REFT, REFB AGND ENVIRONMENTAL Storage Temperature Operating Temperature Range Lead Temperature Range (Soldering 10 sec) Junction Temperature Min Max Unit −0.3 −0.3 −0.3 −0.3 −4 −4 −4 –0.3 –0.3 –0.3 –0.3 –0.3 –0.3 +4 +6 +4 +0.3 +4 +6 +6 DRVDD + 0.3 AVDD1 + 0.3 AVDD2 + 0.3 AVDD1 + 0.3 AVDD1 + 0.3 AVDD1 + 0.3 V V V V V V V V V V V V V –65 –40 +125 +85 300 °C °C °C 150 °C The heat sink of the AD9444 package must be soldered to ground. Table 6. Package Type 100-Lead TQFP/EP θJA 19.8 θJB 8.3 θJC 2 Unit °C/W Typical θJA = 19.8°C/W (heat-sink soldered) for multilayer board in still air. Typical θJB = 8.3°C/W (heat-sink soldered) for multilayer board in still air. Typical θJC = 2°C/W (junction to exposed heat sink) represents the thermal resistance through heat-sink path. Airflow increases heat dissipation effectively reducing θJA. Also, more metal directly in contact with the package leads, from metal traces, through holes, ground, and power planes, reduces the θJA. It is required that the exposed heat sink be soldered to the ground plane. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ESD CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Rev. 0 | Page 8 of 40 AD9444 DEFINITIONS OF SPECIFICATIONS Analog Bandwidth (Full Power Bandwidth) The analog input frequency at which the spectral power of the fundamental frequency (as determined by the FFT analysis) is reduced by 3 dB. Minimum Conversion Rate The clock rate at which the SNR of the lowest analog signal frequency drops by no more than 3 dB below the guaranteed limit. Aperture Delay (tA) The delay between the 50% point of the rising edge of the clock and the instant at which the analog input is sampled. Offset Error The major carry transition should occur for an analog value ½ LSB below VIN+ = VIN−. Offset error is defined as the deviation of the actual transition from that point. Aperture Uncertainty (Jitter, tJ) The sample-to-sample variation in aperture delay. Clock Pulse Width and Duty Cycle Pulse width high is the minimum amount of time that the clock pulse should be left in the Logic 1 state to achieve rated performance. Pulse width low is the minimum time the clock pulse should be left in the low state. At a given clock rate, these specifications define an acceptable clock duty cycle. Differential Nonlinearity (DNL, No Missing Codes) An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. Guaranteed no missing codes to 14-bit resolution indicates that all 16384 codes must be present over all operating ranges. Effective Number of Bits (ENOB) The effective number of bits for a sine wave input at a given input frequency can be calculated directly from its measured SINAD using the following formula ENOB = (SINAD − 1.76 ) 6.02 Gain Error The first code transition should occur at an analog value ½ LSB above negative full scale. The last transition should occur at an analog value 1 ½ LSB below the positive full scale. Gain error is the deviation of the actual difference between first and last code transitions and the ideal difference between first and last code transitions. Integral Nonlinearity (INL) The deviation of each individual code from a line drawn from negative full scale through positive full scale. The point used as negative full scale occurs ½ LSB before the first code transition. Positive full scale is defined as a level 1 ½ LSBs beyond the last code transition. The deviation is measured from the middle of each particular code to the true straight line. Maximum Conversion Rate The clock rate at which parametric testing is performed. Out-of-Range Recovery Time The time it takes for the ADC to reacquire the analog input after a transition from 10% above positive full scale to 10% above negative full scale, or from 10% below negative full scale to 10% below positive full scale. Output Propagation Delay (tPD) The delay between the clock rising edge and the time when all bits are within valid logic levels. Power-Supply Rejection Ratio The change in full scale from the value with the supply at the minimum limit to the value with the supply at its maximum limit. Signal-to-Noise and Distortion (SINAD) The ratio of the rms input signal amplitude to the rms value of the sum of all other spectral components below the Nyquist frequency, including harmonics but excluding dc. Signal-to-Noise Ratio (SNR) The ratio of the rms input signal amplitude to the rms value of the sum of all other spectral components below the Nyquist frequency, excluding the first six harmonics and dc. Spurious-Free Dynamic Range (SFDR) The ratio of the rms signal amplitude to the rms value of the peak spurious spectral component. The peak spurious component may or may not be a harmonic. May be reported in dBc (i.e., degrades as signal level is lowered) or dBFS (always related back to converter full scale). Temperature Drift The temperature drift for offset error and gain error specifies the maximum change from the initial (25°C) value to the value at TMIN or TMAX. Total Harmonic Distortion (THD) The ratio of the rms input signal amplitude to the rms value of the sum of the first six harmonic components. Two-Tone SFDR The ratio of the rms value of either input tone to the rms value of the peak spurious component. The peak spurious component may or may not be an IMD product. Rev. 0 | Page 9 of 40 AD9444 76 D11– 78 D12– 77 D11+ 79 D12+ 81 D13+ (MSB) 80 D13– 82 DRGND 83 DRVDD 84 OR– 86 AGND 85 OR+ 87 AVDD1 88 AGND 89 AVDD1 91 AVDD1 90 AVDD1 92 AVDD1 93 AVDD1 94 AVDD1 96 AGND 95 AVDD1 97 AGND 99 AGND 98 AVDD1 100 DCS MODE PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS AVDD1 1 75 DRVDD DNC 2 74 DRGND DNC 3 DNC 4 73 D10+ 72 D10– OUTPUT MODE 5 DFS 6 71 D9+ 70 D9– LVDSBIAS 7 69 D8+ AVDD1 8 AVDD1 9 68 D8– 67 DRGND 66 D7+ 65 D7– SENSE 10 VREF 11 AD9444 AGND 12 64 DCO+ TOP VIEW (Not to Scale) REFT 13 REFB 14 63 DCO– 62 DRVDD AGND 15 61 DRGND 60 D6+ AVDD1 16 59 D6– AVDD1 17 AVDD1 18 58 D5+ 57 D5– AVDD2 19 VIN+ 21 56 D4+ 55 D4– AGND 20 Rev. 0 | Page 10 of 40 D2– 49 D2+ 50 DRGND 48 D1– 45 D1+ 46 DRVDD 47 Figure 4. 100-Lead TQFP/EP Pin Configuration in LVDS Mode 05089-004 DNC = DO NOT CONNECT AVDD1 42 (LSB) D0– 43 D0+ 44 AVDD2 40 AVDD1 41 CLK– 37 AVDD1 38 AVDD2 39 AVDD1 35 CLK+ 36 C1 33 AVDD1 34 51 D3– AVDD2 31 AGND 32 AVDD1 25 AVDD2 30 53 DRGND 52 D3+ AVDD2 28 AVDD2 29 54 DRVDD AVDD1 26 AVDD1 27 VIN– 22 AGND 23 AVDD1 24 AD9444 Table 7. Pin Function Descriptions—100-Lead TQFP/EP in LVDS Mode Pin No. 1, 8 to 9, 16 to 18, 24 to 27, 34 to 35, 38, 41 to 42, 87, 89 to 95, 98 2 to 4 Mnemonic AVDD1 Description 3.3 V (±5%) Analog Supply. DNC 5 OUTPUT MODE 6 DFS 7 LVDSBIAS 10 SENSE 11 VREF 12, 15, 20, 23, 32, 86, 88, 96 to 97, 99, Exposed Heat Sink 13 AGND Do Not Connect. These pins should float. CMOS Compatible Output Logic Mode Control Pin. OUTPUT MODE = 0 for CMOS mode, and OUTPUT MODE = 1 (AVDD1) for LVDS outputs. Data Format Select Pin. CMOS control pin that determines the format of the output data. DFS = high (AVDD1) for twos complement, DFS = low (ground) for offset binary format. Set Pin for LVDS Output Current. Place 3.7 kΩ resistor terminated to DRGND. Reference Mode Selection. Connect to AGND for internal 1 V reference, and connect to AVDD2 for external reference. 1.0 V Reference I/O—Function Dependent on SENSE. Decouple to ground with 0.1 µF and 10 µF capacitors. Analog Ground. The exposed heat sink on the bottom of the package must be connected to AGND. 14 REFB 19, 28 to 31, 39 to 40 21 22 33 AVDD2 VIN+ VIN− C1 36 37 43 CLK+ CLK− D0− (LSB) REFT Differential Reference Output. Decoupled to ground with 0.1 µF capacitor and to REFB (Pin 14) with 0.1 µF and 10 µF capacitors. Differential Reference Output. Decoupled to ground with a 0.1 µF capacitor and to REFT (Pin 13) with 0.1 µF and 10 µF capacitors. 5.0 V Analog Supply (±5%). Pin No. 44 45 46 47, 54, 62, 75, 83 48, 53, 61, 67, 74, 82 49 50 51 52 55 56 57 58 59 60 63 64 65 66 68 69 70 71 72 73 76 77 78 79 80 81 84 D2− D2+ D3− D3+ D4− D4+ D5− D5+ D6− D6+ DCO− DCO+ D7− D7+ D8− D8+ D9− D9+ D10− D10+ D11− D11+ D12− D12+ D13− D13+ (MSB) OR− 85 100 OR+ DCS MODE Analog Input—True. Analog Input—Complement. Internal Bypass Node. Connect a 0.1 µF capacitor from this pin to AGND. Clock Input—True. Clock Input—Complement. D0 Complement Output Bit (LVDS Levels). Rev. 0 | Page 11 of 40 Mnemonic D0+ D1− D1+ DRVDD DRGND Description D0 True Output Bit. D1 Complement Output Bit. D1 True Output Bit. 3.3 V Digital Output Supply (3.0 V to 3.6 V). Digital Ground. D2 Complement Output Bit. D2 True Output Bit. D3 Complement Output Bit. D3 True Output Bit. D4 Complement Output Bit. D4 True Output Bit. D5 Complement Output Bit. D5 True Output Bit. D6 Complement Output Bit. D6 True Output Bit. Data Clock Output—Complement. Data Clock Output—True. D7 Complement Output Bit. D7 True Output Bit. D8 Complement Output Bit. D8 True Output Bit. D9 Complement Output Bit. D9 True Output Bit. D10 Complement Output Bit. D10 True Output Bit. D11 Complement Output Bit. D11 True Output Bit. D12 Complement Output Bit. D12 True Output Bit. D13 Complement Output. D13 True Output Bit. Out-of-Range Complement Output Bit. Out-of-Range True Output Bit. Clock Duty Cycle Stabilizer (DCS) Control Pin, CMOS-Compatible. DCS = low (AGND) to enable DCS (recommended). DCS = high (AVDD1) to disable DCS. 76 D7 78 D9 77 D8 79 D10 81 D12 80 D11 82 DRGND 83 DRVDD 84 D13 (MSB) 86 AGND 85 OR 87 AVDD1 88 AGND 89 AVDD1 91 AVDD1 90 AVDD1 92 AVDD1 93 AVDD1 96 AGND 95 AVDD1 94 AVDD1 98 AVDD1 97 AGND 100 DCS MODE 99 AGND AD9444 AVDD1 1 75 DRVDD DNC 2 74 DRGND DNC 3 DNC 4 73 D6 72 D5 OUTPUT MODE 5 DFS 6 71 D4 70 D3 DNC 7 69 D2 AVDD1 8 AVDD1 9 68 D1 67 DRGND 66 D0 (LSB) 65 DNC SENSE 10 VREF 11 AD9444 AGND 12 64 DCO+ TOP VIEW (Not to Scale) REFT 13 REFB 14 63 DCO– 62 DRVDD AGND 15 61 DRGND 60 DNC AVDD1 16 DNC = DO NOT CONNECT Figure 5. 100-Lead TQFP/EP Pin Configuration in CMOS Mode Rev. 0 | Page 12 of 40 DNC 49 DNC 50 DRGND 48 DNC 45 DNC 46 DRVDD 47 DNC 43 DNC 44 AVDD1 42 51 DNC AVDD2 40 AVDD1 41 AVDD1 25 AVDD1 38 AVDD2 39 53 DRGND 52 DNC CLK+ 36 CLK– 37 54 DRVDD AGND 23 AVDD1 24 C1 33 AVDD1 34 AVDD1 35 55 DNC VIN– 22 AVDD2 31 AGND 32 56 DNC VIN+ 21 AVDD2 30 AGND 20 AVDD2 28 AVDD2 29 58 DNC 57 DNC AVDD1 26 AVDD1 27 AVDD2 19 05089-005 59 DNC AVDD1 17 AVDD1 18 AD9444 Table 8. Pin Function Descriptions—100-Lead TQFP/EP in CMOS Mode Pin No. 1, 8 to 9, 16 to 18, 24 to 27, 34 to 35, 38, 41 to 42, 87, 89 to 95, 98 2 to 4, 7, 43 to 46, 49 to 52, 55 to 60, 65 5 Mnemonic AVDD1 Description 3.3 V (±5%) Analog Supply. DNC Do Not Connect. These pins should float. OUTPUT MODE 10 SENSE 11 VREF 12, 15, 20, 23, 32, 86, 88, 96 to 97, 99, Exposed Heat Sink 13 AGND 14 REFB 19, 28 to 31, 39 to 40 21 22 AVDD2 CMOS Compatible Output Logic Mode Control Pin. OUTPUT MODE = 0 for CMOS mode, and OUTPUT MODE = 1 (AVDD1) for LVDS outputs. Data Format Select Pin. CMOS control pin that determines the format of the output data. DFS = high (AVDD1) for twos complement, DFS = low (ground) for offset binary format. Reference Mode Selection. Connect to AGND for internal 1 V reference, and connect to AVDD2 for external reference. 1.0 V Reference I/O— Function Dependent on SENSE. Decouple to ground with 0.1 µF and 10 µF capacitors. Analog Ground. The exposed heat sink on the bottom of the package must be connected to AGND. Differential Reference Output. Decoupled to ground with 0.1 µF capacitor and to REFB (Pin 14) with 0.1 µF and 10 µF capacitors. Differential Reference Output. Decoupled to ground with a 0.1 µF capacitor and to REFT (Pin 13) with 0.1 µF and 10 µF capacitors. 5.0 V Analog Supply (±5%). VIN+ VIN− Analog Input—True. Analog Input—Complement. 6 DFS REFT Pin No. 33 Mnemonic C1 36 37 47, 54, 62, 75, 83 48, 53, 61, 67, 74, 82 63 CLK+ CLK− DRVDD 64 DCO+ 66 D0 (LSB) 68 69 70 71 72 73 76 77 78 79 80 81 84 85 100 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 (MSB) OR DCS MODE Rev. 0 | Page 13 of 40 DRGND DCO− Description Internal Bypass Node. Connect a 0.1 µF capacitor from this pin to AGND. Clock Input—True. Clock Input—Complement. 3.3 V Digital Output Supply (2.5V to 3.6 V). Digital Ground. Data Clock Output— Complement (CMOS Levels). Data Clock Output— True. D0 Output Bit (LSB) (CMOS Levels). D1 Output Bit. D2 Output Bit. D3 Output Bit. D4 Output Bit. D5 Output Bit. D6 Output Bit. D7 Output Bit. D8 Output Bit. D9 Output Bit. D10 Output Bit. D11 Output Bit. D12 Output Bit. D13 Output Bit. Out-of-Range Output. Clock Duty Cycle Stabilizer (DCS) Control Pin, CMOSCompatible. DCS = low (AGND) to enable DCS (recommended). DCS = high (AVDD1) to disable DCS. AD9444 EQUIVALENT CIRCUITS AVDD2 VIN+ AVDD2 DRVDD 1kΩ 2.5pF DX 3.5V AVDD2 05089-009 SHA X1 1kΩ Figure 9. Equivalent CMOS Digital Output Circuit 05089-006 VIN– 2.5pF VDD Figure 6. Equivalent Analog Input Circuit DRVDD DRVDD DCS MODE, OUTPUT MODE, DFS 30kΩ K LVDSBIAS 3.74kΩ ILVDSOUT 05089-007 05089-010 1.2V Figure 10. Equivalent Digital Input Circuit, DFS, DCS MODE, OUTPUT MODE Figure 7. Equivalent LVDS BIAS Circuit AVDD2 DRVDD V DX– DX+ V V 12kΩ 150Ω 150Ω CLK+ CLK– 10kΩ 10kΩ 05089-011 05089-008 V 12kΩ Figure 8. Equivalent LVDS Digital Output Circuit Figure 11. Equivalent Sample Clock Input Circuit Rev. 0 | Page 14 of 40 AD9444 TYPICAL PERFORMANCE CHARACTERISTICS AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, sample rate = 80 MSPS, LVDS mode, DCS enabled, TA = 25°C, 2 V p-p differential input, AIN = −0.5 dBFS, internal trimmed reference (nominal VREF = 1.0 V), unless otherwise noted. 0 80MSPS 100.3MHz @ –0.5dBFS SNR: 72.3dB ENOB: 11.8BITS SFDR: 96dBc –20 AMPLITUDE (dBFS) –20 –40 –60 –80 –100 –40 –60 –80 –100 0 5 10 15 20 25 30 35 40 FREQUENCY (MHz) –120 05089-012 –120 0 5 10 15 20 25 30 35 40 FREQUENCY (MHz) 05089-015 AMPLITUDE (dBFS) 0 80MSPS 10.1MHz @ –0.5dBFS SNR: 73.9dB ENOB: 12.0BITS SFDR: 97dBc Figure 12. 64K Point Single-Tone FFT/80 MSPS/10.1 MHz Figure 15. 64K Point Single-Tone FFT/80 MSPS/100 MHz 0 0 80MSPS 30.3MHz @ –0.5dBFS SNR: 74.0dB ENOB: 12.1BITS SFDR: 95dBc –20 AMPLITUDE (dBFS) –40 –60 –80 –40 –60 –80 0 5 10 15 20 25 30 35 40 FREQUENCY (MHz) –120 05089-013 –120 0 10 15 20 25 30 35 40 FREQUENCY (MHz) Figure 13. 64K Point Single-Tone FFT/80 MSPS/30.3 MHz Figure 16. 64K Point Single-Tone FFT/80 MSPS/125 MHz 0 0 80MSPS 70.3MHz @ –0.5dBFS SNR: 73.3dB ENOB: 11.9BITS SFDR: 100dBc 80MSPS 151MHz @ –0.5dBFS SNR: 71.1dB ENOB: 11.5BITS SFDR: 87dBc –20 AMPLITUDE (dBFS) –20 AMPLITUDE (dBFS) 5 05089-016 –100 –100 –40 –60 –80 –40 –60 –80 –100 –120 0 5 10 15 20 25 30 35 FREQUENCY (MHz) 40 05089-014 –100 –120 0 5 10 15 20 25 30 35 FREQUENCY (MHz) Figure 17. 64K Point Single-Tone FFT/80 MSPS/151 MHz Figure 14. 64K Point Single-Tone FFT/80 MSPS/70 MHz Rev. 0 | Page 15 of 40 40 05089-017 AMPLITUDE (dBFS) –20 80MSPS 125MHz @ –0.5dBFS SNR: 71.2dB ENOB: 11.6BITS SFDR: 91dBc AD9444 75 75 SNR dB @ –40°C 74 74 SNR dB @ –40°C 73 73 SNR dB @ +25°C 72 SNR dB @ +85°C (dB) (dB) SNR dB @ +25°C 71 71 70 70 69 69 68 68 67 67 66 66 0 20 40 60 80 100 120 140 160 ANALOG INPUT FREQUENCY (MHz) 180 65 05089-018 65 200 SNR dB @ +85°C 0 20 40 60 80 100 120 140 160 180 05089-021 72 200 ANALOG INPUT FREQUENCY (MHz) Figure 18. SNR vs. Analog Input Frequency, 80 MSPS/LVDS Mode Figure 21. SNR vs. Analog Input Frequency, 80 MSPS/CMOS Mode 105 105 SFDR dBc @ +85°C SFDR dBc @ +85°C SFDR dBc @ +25°C 100 100 95 95 SFDR dBc @ +25°C (dB) (dB) 90 85 85 80 80 75 75 0 20 40 60 80 100 120 140 160 ANALOG INPUT FREQUENCY (MHz) 180 70 05089-019 70 200 THIRD –dBFS 0 20 40 60 80 100 120 140 160 ANALOG INPUT FREQUENCY (MHz) 180 200 Figure 22. SFDR vs. Analog Input Frequency, 80 MSPS/CMOS Mode Figure 19. SFDR vs. Analog Input Frequency, 80 MSPS/LVDS Mode 120 SFDR dBc @ –40°C 05089-022 SFDR dBc @ –40°C 90 120 SECOND –dBFS SECOND –dBFS 110 THIRD –dBFS 110 100 100 SFDR –dBFS 90 90 SECOND –dBc 80 80 SFDR –dBFS (dB) 70 SFDR –dBFS 60 70 SECOND –dBc 60 50 50 40 40 30 30 20 20 THIRD –dBc 10 –100 –90 –80 –70 –60 –50 –40 –30 –20 –10 ANALOG INPUT AMPLITUDE (dBc) 0 10 –100 –90 –80 –70 –60 –50 –40 –30 –20 –10 ANALOG INPUT AMPLITUDE (dBc) Figure 20. Single-Tone SFDR/Second/Third vs. Analog Input Level, 80 MSPS, AIN = 30.3 MHz Figure 23. Single-Tone SFDR/Second/Third vs. Analog Input Level 80 MSPS, AIN = 70.30 MHz Rev. 0 | Page 16 of 40 0 05089-023 SFDR –dBFS 05089-020 (dB) THIRD –dBc AD9444 0 0 SFDR: 102dBFS –10 90dBFS REFERENCE LINE –20 –20 AMPLITUDE (dBFS) –30 –40 SFDR (dBc) IMD (dBFS) –40 –60 –50 –60 –70 –80 –80 –100 –100 WORST THIRD-ORDER IMD (dBc) –90 SFDR (dBFS) –110 5 10 15 20 25 30 35 40 FREQUENCY (MHz) –120 –110 –100 –90 0 0 –10 90dBFS REFERENCE LINE –20 –20 –30 –30 –50 –60 –70 –80 –40 SFDR (dBc) –50 –60 –70 WORST THIRD-ORDER IMD (dBc) –80 SFDR (dBFS) –90 –100 –100 –110 –110 –120 –120 –110 –100 –90 5 10 15 20 25 30 35 40 FREQUENCY (MHz) Figure 25. 32K Point Two-Tone FFT 80 MSPS/69.3 MHz/70.3 MHz 95 90 90 SFDR (dB) 95 85 75 75 50 60 70 80 SAMPLE RATE (MSPS) 90 100 110 05089-026 80 40 –60 –50 –40 –30 –20 –10 0 85 80 30 –70 Figure 28. Two-Tone SFDR vs. Analog Input Level, AIN = 69.3 MHz/70.3 MHz 100 20 –80 ANALOG INPUT LEVEL (dBFS) 100 70 WORST THIRD-ORDER IMD (dBFS) Figure 26. SFDR vs. Sample Rate, VIN = 10.3 MHz @ −0.5 dBFS 70 10 20 30 40 50 60 70 80 SAMPLE RATE (MSPS) 90 100 110 Figure 29. SFDR vs. Sample Rate, VIN = 70.3 MHz @ −0.5 dBFS Rev. 0 | Page 17 of 40 05089-029 0 05089-025 –90 05089-028 SFDR AND IMD3 (dB) AMPLITUDE (dBFS) –10 0 SFDR: –100dBFS –40 SFDR (dB) –20 Figure 27. Two-Tone SFDR vs. Analog Input Level, AIN = 9.8 MHz/10.8 MHz Figure 24. 32K Point Two-Tone FFT 80 MSPS/9.8 MHz/10.8 MHz –10 WORST THIRD-ORDER IMD (dBFS) –80 –70 –60 –50 –40 –30 ANALOG INPUT LEVEL (dBFS) 05089-027 0 05089-024 –120 AD9444 0 12000 61.44MSPS TOTAL INPUT SIGNAL POWER: –30dBFS –10 –20 10000 –30 AMPLITUDE (dBFS) –40 8000 FREQUENCY –50 –60 –70 –80 6000 4000 –90 –100 2000 –110 0 7.68 15.36 FREQUENCY (MHz) 23.04 30.72 0 05089-030 –130 8179 8180 8181 8182 8183 BIN 8184 8185 8186 8187 05089-033 –120 Figure 33. Ground Input Histogram 80 MSPS, VIN+ = VIN−, 32K Samples Figure 30. 64K FFT, 61.44 MSPS, 4 @ WCDMA, IF = 46.08 MHz 250 0 NPR: 63.1dB –10 230 –20 210 190 –40 AVDD1 (3.3V) CURRENT (mA) –50 –60 –70 –80 170 150 130 –90 110 –100 90 –110 AVDD2 (5.0V) DRVDD (3.3V) 70 –130 0 5 10 15 20 25 FREQUENCY (MHz) 30 35 40 05089–031 –120 50 20 Figure 31. NPR, 80 MSPS/18 MHz Notch 30 40 50 60 70 80 90 100 SAMPLE RATE (MSPS) 110 120 130 05089-034 AMPLITUDE (dBFS) –30 Figure 34. ISUPPLY vs. Sample Rate, AIN = 10.3 MHz @ −0.5 dBFS 100 105 SFDR (dBc) 100 SFDR - DCS ON (dBFS) 95 90 95 SFDR - DCS OFF (dBFS) 85 dB (dB) 90 80 85 75 SNR (dB) 80 70 75 SNR - DCS ON (dB) 65 30 40 50 60 CLOCK DUTY CYCLE (%) 70 80 60 2.5 05089-032 70 20 2.7 2.9 3.1 3.3 3.5 3.7 VIN COMMON-MODE (V) Figure 32. Single-Tone SNR/SFDR vs. Clock Duty Cycle, FSAMPLE = 80 MSPS, 10.3 MHz @ −0.5 dBFS Figure 35. Single-Tone SNR/SFDR vs. VIN Common-Mode Voltage 80 MSPS/10.3 MHz Rev. 0 | Page 18 of 40 3.9 05089-035 SNR - DCS OFF (dB) AD9444 0.961 0.2 0.960 0.1 0 0.958 0.957 GAIN (%FS) REFERENCE VOLTAGE (V) 0.959 0.956 0.955 0.954 –0.1 –0.2 –0.3 0.953 0 20 40 TEMPERATURE (°C) 60 80 –0.5 –40 –20 0.75 0.50 0.50 INL ERROR (LSB) 0.75 0.25 0 –0.25 –0.25 –0.75 –0.75 6144 8192 10240 12288 14336 16384 OUTPUT CODE 80 0 –0.50 4096 60 0.25 –0.50 05089-037 DNL ERROR (LSB) 1.00 2048 40 Figure 38. Gain vs. Temperature 1.00 0 20 TEMPERATURE (°C) Figure 36. VREF vs. Temperature –1.00 0 Figure 37. DNL Error vs. Output Code, 80 MSPS, AIN = 15 MHz –1.00 0 2048 4096 6144 8192 10240 12288 14336 16384 OUTPUT CODE Figure 39. INL Error vs. Output Code, 80 MSPS, AIN = 15 MHz Rev. 0 | Page 19 of 40 05089-039 –20 05089-036 0.951 –40 05089-038 –0.4 0.952 AD9444 THEORY OF OPERATION The AD9444 architecture is optimized for high speed and ease of use. The analog inputs drive an integrated, high bandwidth, track-and-hold circuit that samples the signal prior to quantization by the 14-bit pipeline ADC core. The device includes an on-board reference and input logic that accepts TTL, CMOS, or LVPECL levels. The digital output logic levels are user selectable as standard 3 V CMOS or LVDS (ANSI-644 compatible) via the OUTPUT MODE pin. ANALOG INPUT AND REFERENCE OVERVIEW A stable and accurate 0.5 V voltage reference is built into the AD9444. The input range can be adjusted by varying the reference voltage applied to the AD9444, using either the internal reference or an externally applied reference voltage. The input span of the ADC tracks reference voltage changes linearly. The various reference modes are described in the next few sections. Internal Reference Trim The internal reference voltage is trimmed during the production test to adjust the gain (analog input voltage range) of the AD9444. Therefore, there is little advantage to the user supplying an external voltage reference to the AD9444. The gain trim is performed with the AD9444’s input range set to 2 V p-p nominal (SENSE connected to AGND). Because of this trim, and because the 2 V p-p analog input range provides maximum ac performance, there is little benefit to using analog input ranges < 2 V p-p. Users are cautioned that the differential nonlinearity of the ADC varies with the reference voltage. Configurations that use < 2 V p-p may exhibit missing codes and, therefore, degraded noise and distortion performance. VIN+ VIN– REFT Internal Reference Connection ADC CORE 0.1µF 0.1µF + 10µF REFB 0.1µF VREF 10µF + 0.1µF SELECT LOGIC SENSE 0.5V AD9444 ⎛ R2 ⎞ VREF = 0.5 × ⎜1 + ⎟ R1 ⎠ ⎝ 05089-043 A comparator within the AD9444 detects the potential at the SENSE pin and configures the reference into four possible states, which are summarized in Table 9. If SENSE is grounded, the reference amplifier switch is connected to the internal resistor divider (see Figure 40), setting VREF to ~1 V. Connecting the SENSE pin to VREF switches the reference amplifier output to the SENSE pin, completing the loop and providing a ~0.5 V reference output. If a resistor divider is connected, as shown in Figure 41, the switch again sets to the SENSE pin. This puts the reference amplifier in a noninverting mode with the VREF output defined as Figure 40. Internal Reference Configuration VIN+ In all reference configurations, REFT and REFB drive the A/D conversion core and establish its input span. The input range of the ADC always equals twice the voltage at the reference pin for either an internal or an external reference. VIN– REFT ADC CORE 0.1µF 0.1µF + 10µF REFB 0.1µF VREF + 10µF 0.1µF R2 SELECT LOGIC SENSE 0.5V AD9444 Figure 41. Programmable Reference Configuration Rev. 0 | Page 20 of 40 05089-042 R1 AD9444 Table 9. Reference Configuration Summary Selected Mode External Reference Internal Fixed Reference Programmable Reference SENSE Voltage AVDD VREF 0.2 V to VREF Resulting VREF (V) N/A 0.5 Internal Fixed Reference AGND to 0.2 V 1.0 Resulting Differential Span (V p-p) 2 × External Reference 1.0 2 × VREF R2 ⎞ ⎛ 0.5 × ⎜ 1 + ⎟ (See Figure 41) R1 ⎠ ⎝ 2.0 External Reference Operation Analog Inputs As with most new high speed, high dynamic range ADCs, the analog input to the AD9444 is differential. Differential inputs improve on-chip performance as signals are processed through attenuation and gain stages. Most of the improvement is a result of differential analog stages having high rejection of even-order harmonics. There are also benefits at the PCB level. First, differential inputs have high common-mode rejection of stray signals, such as ground and power noise. Second, they provide good rejection of common-mode signals, such as local oscillator feedthrough. The specified noise and distortion of the AD9444 cannot be realized with a single-ended analog input, so such configurations are discouraged. Contact ADI for recommendations of other 14-bit ADCs that support single-ended analog input configurations. With the 1 V reference (nominal value, see the Internal Reference Trim section), the differential input range of the AD9444’s analog input is nominally 2 V p-p or 1 V p-p on each input (VIN+ or VIN−). 1Vp-p 3.5V VIN– DIGITAL OUT = ALL 1s DIGITAL OUT = ALL 0s 05089-045 When the SENSE pin is tied to AVDD, the internal reference is disabled, allowing the use of an external reference. An internal reference buffer loads the external reference with an equivalent 7 kΩ load. The internal buffer still generates the positive and negative full-scale references, REFT and REFB, for the ADC core. The input span is always twice the value of the reference voltage; therefore, the external reference must be limited to a maximum of 1 V. VIN+ Figure 42. Differential Analog Input Range for VREF = 1 V The AD9444 analog input voltage range is offset from ground by 3.5 V. Each analog input connects through a 1 kΩ resistor to the 3.5 V bias voltage and to the input of a differential buffer. The internal bias network on the input properly biases the buffer for maximum linearity and range (see the Equivalent Circuits section). Therefore, the analog source driving the AD9444 should be ac-coupled to the input pins. The recommended method for driving the analog input of the AD9444 is to use an RF transformer to convert single-ended signals to differential (see Figure 44). Series resistors between the output of the transformer and the AD9444 analog inputs help isolate the analog input source from switching transients caused by the internal sample-and-hold circuit. The series resistors, along with the 1 kΩ resisters connected to the internal 3.5 V bias, must be considered in impedance matching the transformers input. For example, if RT were set to 51 Ω and RS were set to 33 Ω, along with a 1:1 impedance ratio transformer, the input would match a 50 Ω source with a full-scale drive of 10.0 dBm. The 50 Ω impedance matching can also be incorporated on the secondary side of the transformer, as shown in the evaluation board schematic (see Figure 47 and Figure 59). ANALOG INPUT SIGNAL RT RS ADT1–1WT RS 0.1µF AIN AD9444 AIN 05089-046 The AD9444’s internal reference is trimmed to enhance the gain accuracy of the ADC. An external reference may be more stable over temperature, but the gain of the ADC is not likely to be improved. Figure 36 shows the typical drift characteristics of the internal reference in both 1 V and 0.5 V modes. Figure 43. Transformer-Coupled Analog Input Circuit Rev. 0 | Page 21 of 40 AD9444 Typical high speed ADCs use both clock edges to generate a variety of internal timing signals and, as a result, may be sensitive to the clock duty cycle. Commonly a 5% tolerance is required on the clock duty cycle to maintain dynamic performance characteristics. The AD9444 contains a clock duty cycle stabilizer (DCS) that retimes the nonsampling edge, providing an internal clock signal with a nominal 50% duty cycle. As shown in Figure 32, noise and distortion performance are nearly flat for a 30% to 70% duty cycle with the DCS enabled. The DCS circuit locks to the rising edge of CLK+ and optimizes timing internally. This allows for a wide range of input duty cycles at the input without degrading performance. Jitter in the rising edge of the input is still of paramount concern and is not reduced by the internal stabilization circuit. The duty cycle control loop does not function for clock rates less than 30 MHz nominally. The loop has a time constant associated with it that needs to be considered in applications where the clock rate can change dynamically, which requires a wait time of 1.5 µs to 5 µs after a dynamic clock frequency increase (or decrease) before the DCS loop is relocked to the input signal. During the time period the loop is not locked, the DCS loop is bypassed, and the internal device timing is dependant on the duty cycle of the input clock signal. In such an application, it may appropriate to disable the duty cycle stabilizer. In all other applications, enabling the DCS circuit is recommended to maximize ac performance. The DCS circuit is controlled by the DCS MODE pin; a CMOS logic low (AGND) on DCS MODE enables the duty cycle stabilizer, and logic high (AVDD1 = 3.3 V) disables the controller. The AD9444 input sample clock signal must be a high quality, extremely low phase noise source to prevent degradation of performance. Maintaining 14-bit accuracy places a premium on the encode clock phase noise. SNR performance can easily degrade by 3 dB to 4 dB with 70 MHz analog input signals when using a high jitter clock source. (See AN-501, Aperture Uncertainty and ADC System Performance, for complete details.) For optimum performance, the AD9444 must be clocked differentially. The sample clock inputs are internally biased to ~2.2 V, and the input signal is usually ac-coupled into If a low jitter clock is available, another option is to ac couple a differential ECL/PECL signal to the encode input pins, as shown in Figure 46. ADT1–1WT CLOCK SOURCE CLK+ 0.1µF AD9444 CLK– HSMS2812 DIODES 05089-047 Any high speed ADC is extremely sensitive to the quality of the sampling clock provided by the user. A track-and-hold circuit is essentially a mixer, and any noise, distortion, or timing jitter on the clock is combined with the desired signal at the A/D output. For that reason, considerable care was taken in the design of the clock inputs of the AD9444, and the user is advised to give careful thought to the clock source. the CLK+ and CLK− pins via a transformer or capacitors. Figure 44 shows one preferred method for clocking the AD9444. The clock source (low jitter) is converted from single-ended-todifferential using an RF transformer. The back-to-back Schottky diodes across the transformer secondary limit clock excursions into the AD9444 to approximately 0.8 V p-p differential. This helps prevent the large voltage swings of the clock from feeding through to other portions of the AD9444 and limits the noise presented to the sample clock inputs. Figure 44. Crystal Clock Oscillator, Differential Encode VT 0.1µF ENCODE ECL/ PECL 0.1µF AD9444 ENCODE VT 05089-048 CLOCK INPUT CONSIDERATIONS Figure 45. Differential ECL for Encode Jitter Considerations High speed, high resolution ADCs are sensitive to the quality of the clock input. The degradation in SNR at a given input frequency (fINPUT) and rms amplitude due only to aperture jitter (tJ) can be calculated using the following equation. SNR = 20 log[2πfINPUT × tJ] In the equation, the rms aperture jitter represents the root-mean square of all jitter sources, which includes the clock input, analog input signal, and ADC aperture jitter specification. IF undersampling applications are particularly sensitive to jitter, see Figure 46. The clock input should be treated as an analog signal in cases where aperture jitter may affect the dynamic range of the AD9444. Power supplies for clock drivers should be separated from the ADC output driver supplies to avoid modulating the clock signal with digital noise. Low jitter, crystal-controlled oscillators make the best clock sources. If the clock is generated from another type of source (by gating, dividing, or other methods), it should be retimed by the original clock at the last step. Rev. 0 | Page 22 of 40 AD9444 75 tion resistor placed at the LVDS receiver inputs results in a nominal 350 mV swing at the receiver. LVDS mode facilitates interfacing with LVDS receivers in custom ASICs and FPGAs that have LVDS capability for superior switching performance in noisy environments. Single point-to-point net topologies are recommended with a 100 Ω termination resistor as close to the receiver as possible. It is recommended to keep the trace length less than 1 inch to 2 inches and to keep differential output trace lengths as equal as possible. 0.2ps 70 65 SNR (dBc) 0.5ps 60 1.0ps 1.5ps 55 2.0ps 2.5ps 50 3.0ps CMOS Mode 40 1 10 100 INPUT FREQUENCY (MHz) 1000 05089-049 45 Figure 46. SNR vs. Input Frequency and Jitter POWER CONSIDERATIONS Care should be taken when selecting a power source. The use of linear dc supplies is highly recommended. Switching supplies tend to have radiated components that may be received by the AD9444. Each of the power supply pins should be decoupled as closely to the package as possible using 0.1 µF chip capacitors. The AD9444 has separate digital and analog power supply pins. The analog supplies are denoted AVDD1 (3.3 V) and AVDD2 (5 V) and the digital supply pins are denoted DRVDD. Although the AVDD1 and DRVDD supplies may be tied together, best performance is achieved when the supplies are separate. This is because the fast digital output swings can couple switching current back into the analog supplies. Note that both AVDD1 and AVDD2 must be held within 5% of the specified voltage. The DRVDD supply of the AD9444 is a dedicated supply for the digital outputs, in either LVDS or CMOS output modes. When in LVDS mode, the DRVDD should be set to 3.3 V. In CMOS mode, the DRVDD supply may be connected from 2.5 V to 3.6 V to be compatible with the receiving logic. DIGITAL OUTPUTS In applications that can tolerate a slight degradation in dynamic performance, the AD9444 output drivers can be configured to interface with 2.5 V or 3.3 V logic families by matching DRVDD to the digital supply of the interfaced logic. CMOS outputs are available when OUTPUT MODE is CMOS logic low (or AGND for convenience). In this mode, the output data bits are singleended CMOS, DX, as is the overrange output, OR. The output clock is provided as a differential CMOS signal, DCO+/DCO−. Lower supply voltages are recommended to avoid coupling switching transients back to the sensitive analog sections of the ADC. The capacitive load to the CMOS outputs should be minimized, and each output should be connected to a single gate through a series resistor (220 Ω) to minimize switching transients caused by the capacitive loading. TIMING The AD9444 provides latched data outputs with a pipeline delay of 12 clock cycles. Data outputs are available one propagation delay (tPD) after the rising edge of CLK+. Refer to Figure 2 and Figure 3 for detailed timing diagrams. OPERATIONAL MODE SELECTION Data Format Select The data format select (DFS) pin of the AD9444 determines the coding format of the output data. This pin is 3.3 V CMOS compatible, with logic high (or AVDD1, 3.3 V) selecting twos complement, and DFS logic low (AGND) selecting offset binary format. Table 10 summarizes the output coding. LVDS Mode Output Mode Select The off-chip drivers on the chip can be configured to provide LVDS-compatible output levels via Pin 5 (OUTPUT MODE). LVDS outputs are available when OUTPUT MODE is CMOS logic high (or AVDD1 for convenience) and a 3.74 kΩ RSET resistor is placed at Pin 7 (LVDSBIAS) to ground. Dynamic performance, including both SFDR and SNR, is maximized when the AD9444 is used in LVDS mode, and designers are encouraged to take advantage of this mode. The AD9444 outputs include complimentary LVDS outputs for each data bit (DX+/DX−), the overrange output (OR+/OR−), and the output data clock output (DCO+/DCO−). The RSET resistor current is ratioed on-chip, setting the output current at each output equal to a nominal 3.5 mA (11 × I RSET ). A 100 Ω differential termina- The OUPUT MODE pin controls the logic compatibility, as well as the pinout of the digital outputs. This pin is a CMOS compatible input. With OUTPUT MODE = 0 (AGND), the AD9444 outputs are CMOS-compatible and the pin assignment for the device is defined in Table 8. With OUTPUT MODE = 1 (AVDD1, 3.3 V), the AD9444 outputs are LVDS-compatible and the pin assignment for the device is defined in Table 7. Duty Cycle Stabilizer The DCS circuit is controlled by the DCS MODE pin; a CMOS logic low (AGND) on DCS MODE enables the DCS, and logic high (AVDD1, 3.3 V) disables the controller. Rev. 0 | Page 23 of 40 AD9444 Table 10. Digital Output Coding Code 16383 8192 8191 0 VIN+ − VIN− Input Span = 2 V p-p (V) 1.000 0 −0.000122 −1.00 VIN+ − VIN− Input Span = 1 V p-p (V) 0.500 0 −0.000061 −0.5000 EVALUATION BOARD Digital Output Offset Binary (D9••••••D0) 11 1111 1111 1111 10 0000 0000 0000 01 1111 1111 1111 00 0000 0000 0000 Digital Output Twos Complement (D9••••••D0) 01 1111 1111 1111 00 0000 0000 0000 11 1111 1111 1111 10 0000 0000 0000 Evaluation boards are offered to configure the AD9444 in either CMOS or LVDS mode. Each represents a recommended configuration for using the device over a wide range of sample rates and analog input frequencies. These evaluation boards provide all the support circuitry required to operate the ADC in its various modes and configurations. Complete schematics and layout plots follow and demonstrate the proper routing and grounding techniques that should be applied at the system level. Both the LVDS and CMOS versions of the evaluation board are compatible with the high speed ADC FIFO evaluation kit (part number HSC-ADC-EVALA-SC). The kit includes a high speed data capture board that provides a hardware solution for capturing up to 32Ksamples of high speed ADC output data in a FIFO memory chip (user upgradeable to 256K samples). Software is provided to enable the user to download the captured data to a PC via the USB port. This software also includes a behavioral model of the AD9444 and many other high speed ADCs. It is critical that signal sources with very low phase noise (< 1 ps rms jitter) be used to realize the ultimate performance of the converter. Proper filtering of the input signal, to remove harmonics and lower the integrated noise at the input, is also necessary to achieve the specified noise performance. Behavioral modeling of the AD9444 is also available at www.analog.com/ADIsimADC. The ADIsimADC™ software supports virtual ADC evaluation using ADI proprietary behavioral modeling technology. This allows rapid comparison between the AD9444 and other high speed ADCs, with or without hardware evaluation boards. The evaluation boards are shipped with an ac to 6 V dc power supply. The evaluation boards include low dropout regulators to generate the various dc supplies required by the AD9444 and its support circuitry. Separate power supplies are provided to isolate the DUT from the support circuitry. Each input configuration can be selected by proper connection of various jumpers (see Figure 47 to Figure 50 and Figure 59 to Figure 61). The AD9444 LVDS evaluation board includes an on-board, LVDS-to-CMOS translator, but the user may choose to remove the translator and terminations to access the LVDS outputs directly. The CMOS evaluation board includes a buffer for the output data and the DCO output clock of the AD9444. Rev. 0 | Page 24 of 40 Rev. 0 | Page 25 of 40 Figure 47. LVDS Mode Evaluation Board Schematic C13 20pF GND VCC VCC VCC 5V GND VCC VCC GND GND U1 PIN DEFINITIONS LVDS/CMOS AD9444 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 C9 0.1µF C91 0.1µF GND R13 xx C51 10µF ANALOG R6 36Ω R4 36Ω C2 0.1µF GND TOUTB GND R28 33Ω C5 TINB E15 0.1µF C12 0.1µF 0.1µF VCC VCC 1kΩ D2+ D2– DRGND DRVDD D1+ D1– D0+ (LSB) D0– AVDD1 AVDD1 AVDD2 AVDD2 AVDD1 CLK– CLK+ AVDD1 AVDD1 C1 AGND AVDD2 AVDD2 AVDD2 AVDD2 AVDD1 AVDD1 L1 100Ω 4 3 TOUT 6 2 3.8kΩ GND R5 J4 xx 3.8kΩ GND C24 0.1µF GND GND GND GND 1 5 R2 T5 ADT1-1WT + 10µF C39 E25 E27 C3 0.1µF NC GND E41 E24 E26 R1 3.8kΩ R3 GND EXTREF GND VCC R20 XX EXTREF E20 GND C86 R14 AVDD1 DNC DNC DNC OUTPUT MODE DFS LVDSBIAS/DNC AVDD1 AVDD1 SENSE VREF AGND REFT REFB AGND AVDD1 AVDD1 AVDD1 AVDD2 AGND VIN+ VIN– AGND AVDD1 AVDD1 EPAD GND 101 E2 C36 0.1µF D11– D11+ D12– D12+ D13– D13+ (MSB) DRGND DRVDD OR– OR+ AGND AVDD1 AGND AVDD1 AVDD1 AVDD1 AVDD1 AVDD1 AVDD1 AVDD1 AGND AGND AVDD1 AGND DCS MOD GND E1 D12_T/D10_YN D13_C/D11_YN D13_T/D12_YN GND DRVDD DOR_C/D13_YN DOR_T/DOR_YN GND VCC GND VCC VCC VCC VCC VCC VCC VCC GND GND 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 E3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 DRVDD DRGND D10+ D10– D9+ D9– D8+ D8– DRGND D7+ D7– DCO+ DCO– DRVDD DRGND D6+ D6– D5+ D5– D4+ D4– DRVDD DRGND D3+ D3– 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 GND 1kΩ R15 1kΩ D11_C/D7_YN D11_T/D8_YN D12_C/D9_YN VCC VCC GND GND D6_TN D6_CN D5_TN D5_CN D4_TN D4_CN DRVDD GND D3_TN D3_CN D7_T/D0_YN D7_CN DRN DRBN DRVDD GND D9_C/D3_YN D8_T/D2_YN D8_C/D1_YN GND GND D10_T/D6_YN D10_C/D5_YN D9_T/D4_YN DRVDD H2 MTHOLE6 GND R27 XX E40 E39 VCC GND E38 H3 MTHOLE6 U2 VCC XTALINPUTB XTALINPUT XTALOUTB XTALOUT R12 1kΩ R9 DRVDD R19 XX R37 XX VXTAL C26 0.1µF VCC ENCB H4 MTHOLE6 GND 6 5 4 GND 2 VCC OUTPUTB OUTPUT R38 XX 3 XTALINPUTB GND R40 XX GND 1 JN00158 VXTAL C42 0.1µF 5V 1 E/D 2 3 NC GND ~OUT 4 6 2 PRI SEC 3 P5 VDL 05089-050 VEE 1 NC 5 ENC GND FOR VF XTAL R18 XX 7 GND GND 50Ω R8 FOR VECTRON XTAL GND 8 XTALOUTB R36 XX 1 XTALOUT J1 ENCODE T3 ADT1-1WT CR2 OUT GND XTALINPUT J5 GND GND VCC VXTAL C92 0.1µF R39 XX U6 ECLOSC GND C93 0.1µF GND 14 VCC C44 10µF GND R17 XX GND E52 + ENCODE 8 7 6 5 4 3 2 1 VXTAL E46 5V GND 50Ω R7 VXTAL E47 VXTAL OPTIONAL ENCODE CIRCUITS AD9444 LVDS EVALUATION BOARD SCHEMATICS H1 MTHOLE6 D2_TN D2_CN GND DRVDD D1_TN D1_CN D0_TN D0_CN VCC VCC VCC ENCB ENC VCC VCC 5V GND C40 0.1µF GND VCC VCC 5V OPTIONAL 33Ω R35 AD9444 POWER OPTIONS ADP3338 PJ-102A C33 10µF GND 5V VIN 3 + C34 10µF C4 10µF C89 10µF 05089-051 GND GND GND 2 OUT1 OUT IN + 1 + C6 10µF GND 5V 4 C88 10µF 1 3 GND + 1 GND VIN 3 5V DRVDD DRVDD OUT1 OUT GND U14 IN + GND GND GND ADP3338 2 VCC VCC + U3 1 3 2 C87 10µF ADP3338 GND 2 3 C1 10µF + 4 OUT1 OUT IN C57 10µF 3.3V 2 VIN 3 + + 1 GND 4 GND IN 2 VIN OUT1 OUT 1 VDL VDL GND 4 VIN P4 3.3V GND U15 3.3V GND U4 GND ADP3338 Figure 48. LVDS Mode Evaluation Board Schematic (Continued) VCC + C43 0.1µF C64 10µF C35 0.1µF C32 0.1µF C30 0.1µF C28 0.1µF C27 0.1µF C48 0.1µF C50 0.1µF C60 0.1µF C61 0.1µF C46 0.1µF C75 0.1µF C14 XX C17 XX C16 XX C15 XX C31 XX C37 XX C38 XX C29 XX C19 XX C18 XX C90 XX C70 XX C45 XX C49 XX P19 GND GND VCC C10 XX C11 XX GND DRVDD DRVDD + C65 10µF C47 0.1µF C23 0.1µF C22 0.1µF C21 0.1µF C59 XX GND EXTREF 5V 5V + C56 10µF C85 0.1µF C53 0.1µF C52 0.1µF C71 XX C58 0.1µF C72 XX C73 XX + C62 XX GND GND Figure 49. LVDS Mode Evaluation Board Schematic (Continued) Rev. 0 | Page 26 of 40 C55 10µF 05089-052 GND GND C69 XX C20 0.1µF AD9444 U7 SN75LVDS386 P6 C40MS 39 37 GND DOR_C/D13_YN D13_C/D11_YN D12_C/D9_YN D11_C/D7_YN D10_C/D5_YN D9_C/D3_YN D8_C/D1_YN D7_CN DRBN D6_CN D5_CN D4_CN D3_CN D2_CN 35 33 31 P39 P40 P37 P38 P35 P36 P33 P32 P29 P30 P27 P28 25 P25 23 P23 P26 21 P21 19 P19 P22 17 P17 15 P15 P18 13 P13 11 P11 P14 9 P9 7 P7 P10 29 27 D0_CN 5 P5 3 P3 GND 1 P1 D1_CN 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 GND P34 P31 2 P24 P20 P16 P12 P8 P6 P4 P2 40 GND 38 36 34 GND DOR_T/DOR_YN 32 D13_T/D12_YN 30 D12_T/D10_YN 28 D11_T/D8_YN 26 D10_T/D6_YN 24 D9_T/D4_YN 22 20 18 16 14 12 10 8 6 4 2 D8_T/D2_YN D7_T/D0_YN DRN D6_TN D5_TN D4_TN D3_TN D2_TN D1_TN D0_TN GND P40 P39 39 GND P38 P37 37 DRO P36 P35 35 GND P34 P33 33 D13O P32 P31 31 D12O P30 P29 29 D11O P28 P27 27 D10O P26 P25 25 D9O P24 P23 23 D8O P22 P21 21 D7O P20 P19 19 D6O P18 P17 17 D5O P16 P15 15 D4O P14 P13 13 D3O P12 P11 11 D2O P10 P9 9 D1O P8 P7 7 D0O P6 P5 5 ORO P4 P3 3 P2 P1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 A1A A1B A2A A2B A3A A3B A4A A4B B1A B1B B2A B2B B3A B3B B4A B4B C1A C1B C2A C2B C3A C3B C4A C4B D1A D1B D2A D2B D3A D3B D4A D4B GND VCC1 VCC2 GND1 ENA A1Y A2Y A3Y A4Y ENB B1Y B2Y B3Y B4Y GND2 VCC3 VCC4 GND3 C1Y C2Y C3Y C4Y ENC D1Y D2Y D3Y D4Y END GND4 VCC5 VCC6 GND5 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 GND VDL VDL GND VDL RZ5 220 RSO16ISO R1 1 R2 2 R3 3 R4 4 VDL R5 5 R6 6 R7 7 R8 8 GND VDL VDL GND DRP 16 ORO 15 D13O 14 D12O 13 D11O 12 D10O 11 D9O 10 D8O 9 D7O 220 RSO16ISO VDL VDL GND VDL VDL GND 1 R1 16 D6O 2 R2 15 D5O 3 R3 14 D4O 4 R4 13 D3O 5 R5 12 D2O 6 R6 11 D1O 7 R7 10 D0O 8 R8 9 RZ4 74VCX86 3 1 1A 1Y 2 1B 4 2A GND 00 XORN VDL E43 GND E34 00 8 9 3A 11 R52 3Y 14 PWR 12 4A GND 6 5 2B 10 3B R53 E32 2Y 4Y 13 4B 7 GND DRO VDL GND U10 VDL + C76 10µF C97 0.1µF C82 0.1µF C80 0.1µF 81 0.1µF GND 05089-053 GND DOR_T/DOR_YN DOR_C/D13_YN D13_T/D12_YN D13_C/D11_YN D12_T/D10_YN D12_C/D9_YN D11_T/D8_YN D11_C/D7_YN D10_T/D6_YN D10_C/D5_YN D9_T/D4_YN D9_C/D3_YN D8_T/D2_YN D8_C/D1_YN D7_T/D0_YN D7_CN DRN DRBN D6_TN D6_CN D5_TN D5_CN D4_TN D4_CN D3_TN D3_CN D2_TN D2_CN D1_TN D1_CN D0_TN D0_CN GND P3 C40MS Figure 50. LVDS Mode Evaluation Board Schematic (Continued) Rev. 0 | Page 27 of 40 05089-057 05089-060 AD9444 Figure 54. LVDS Mode Evaluation Board Layout, Ground Plane 2 05089-061 05089-058 Figure 51. LVDS Mode Evaluation Board Layout, Primary Side 05089-059 05089-062 Figure 55. LVDS Mode Evaluation Board Layout, Power Plane 1 Figure 52. LVDS Mode Evaluation Board Layout, Secondary Side Figure 56. LVDS Mode Evaluation Board Layout, Power Plane 2 Figure 53. LVDS Mode Evaluation Board Layout, Ground Plane 1 Rev. 0 | Page 28 of 40 05089-063 05089-064 AD9444 Figure 57. LVDS Mode Evaluation Board Layout, Primary Silkscreen Figure 58. LVDS Mode Evaluation Board Layout, Secondary Silkscreen Rev. 0 | Page 29 of 40 AD9444 LVDS MODE EVALUATION BOARD BILL OF MATERIALS (BOM) Table 11. Item 1 2 Qty. 1 16 3 38 4 5 6 1 1 17 7 8 9 10 11 12 13 14 2 1 1 1 1 2 1 4 15 16 2 3 17 18 19 20 21 22 23 24 25 2 2 1 3 1 1 1 1 4 REFDES AD9444PCB C1, C4, C6, C33, C34, C39, C44, C55 to C57, C64, C65, C76, C87 to C89 C2, C3, C5, C9, C12, C20 to C24, C26 to C28, C30, C32, C35, C40, C42, C43, C46 to C48, C50, C52, C53, C58, C60, C61, C75, C80 to C82, C85, C86, C91 to C93, C97 C51 CR2 E1 to E3, E24, to E27, E32, E34, E38, E39, E40, E41, E43, E46, E47, E52 J1, J4 L1 P3 P4 R3 R4, R6 R8 R9, R12, R14, R15 R28, R35 R39, R52, R53 RZ4, RZ5 T3, T5 U1 U3, U4, U15 U14 U6 U7 U10 U6 Description PCB, AD9444 LVDS Engineering Evaluation Board Capacitors, Tantalum, SMT BCAPTAJC, 10 µF, 16 V, 10% Manufacturer PCSM KEMET MFG_PART_NO AD9444LVDSCUSTREVC T491C106K016AS Capacitors, 0.1 µF 10 V Ceramic X5R 0402 Panasonic ECJ-0EB1A104K Capacitor, Ceramic 10 µF 6.3 V X5R 0805 Diode, Dual Schottky HSMS2812, SOT-23, 30 V, 20 mA 40-Pin Breakable Header KEMET Panasonic 3M C0805C106K9PACTU MA716-(TX) 2340-611TN Connector, Gold, Male, Coaxial, SMA, Vertical 10 nH Inductor Header, 40-Pin, Male, 40-Pin Right Angle Power Jack Resistor, 3.6 kΩ 1/16 W 1% 0402 SMD Resistor, 36 Ω 1/16 W 5% 0402 SMD Resistor, 49.9 Ω 1/16 W 1% 0402 SMD Resistor, 1.00 kΩ 1/16 W 1% 0402 SMD Johnston Comp. Coilcraft Samtec Swithcraft Panasonic Panasonic Panasonic Panasonic 142-0701-201 0603CJ-10NXGBU TSW-120-08-T-D-RA RAPC722 ERJ-2GEJ362X ERJ-2GEJ360X ERJ-2RKF49R9X ERJ-2RKF1001X Resistor, 33 Ω 1/16 W 5% 0402 SMD Resistor, 0 Ω 1/16 W 5% 0402 SMD Panasonic Panasonic ERJ-2GEJ330X ERJ-2GE0R00X 22 Ω Resistor Array, 16 Term Transformer, ADT1-1WT, CD542, ADT1-1WT 14-Bit, 80 MSPS ADC 3.3 V Voltage Regulator 5 V Voltage Regulator Clock Oscillator, 80 MHz LVDS-to-CMOS Translator with 100 Term 2 Input XOR Gate Pin Sockets, Closed End CTS Corp. Mini-Circuits ADI ADI ADI CTS Reeves Texas Instruments Fairchild AMP 742163220JTR ADT1-1WT AD9444BSVZ-80 ADP3338-3.3 V ADP3338-5.0 V MX045-80 SN75LVDT386DGG 74VCX86M 5-330808-3 Rev. 0 | Page 30 of 40 AD9444 Item 26 Qty. 24 27 28 29 1 2 1 30 1 31 5 1 REFDES C10, C11, C13, to C19, C29, C31, C36 to C38, C45, C49, C59, C62, C69, C70 to C73, C901 J51 P5, P61 R1, R2, R5, R7, R131 R17 to R20, R27, R36 to R38, R401 U21 Description Capacitors, Select 10 V Ceramic X5R 0402 Manufacturer Panasonic MFG_PART_NO Connector, Gold, Male, Coaxial, SMA, Vertical Power Connectors Resistors, Select 1/16 W 1% 0402 SMD Johnston Comp. Weiland Panasonic 142-0701-201 Resistors, Select 1/16 W 1% 0402 SMD Panasonic XO Select Vectron Parts not placed. Rev. 0 | Page 31 of 40 Rev. 0 | Page 32 of 40 Figure 59. CMOS Mode Evaluation Board Schematic E15 TOUTB GND R6 36Ω R4 36Ω C9 0.1µF C91 0.1µF GND R13 xx C51 10µF C13 20pF GND VCC VCC U1 PIN DEFINITIONS LVDS/CMOS AD9444 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 OPTIONAL 05089-054 PRI CT VCC 5V GND VCC VCC GND GND VCC VCC 1kΩ R15 DNC DNC DRGND DRVDD DNC DNC DNC DNC AVDD1 AVDD1 AVDD2 AVDD2 AVDD1 CLK– CLK+ AVDD1 AVDD1 C1 AGND AVDD2 AVDD2 AVDD2 AVDD2 AVDD1 AVDD1 GND 100Ω 4 3 C12 SEC 0.1µF 6 2 1 5 C78 0.1µF L110NH C5 TINB 0.1µF ANALOG R5 xx 3.8kΩ GND R28 33Ω J4 R2 3.8kΩ NC C39 + 10µF GND C2 0.1µF GND GND EXTREF GND E25 E27 GND T5 ADT1-1WT TOUT R1 3.8kΩ R3 GND E26 R20 XX E41 E24 VCC C3 0.1µF GND GND GND EPAD E2 101 D7 D8 D9 D10 D11 D12 DRGND DRVDD (MSB) D13 OR AGND DRVDD AGND AVDD1 AVDD1 AVDD1 AVDD1 AVDD1 AVDD1 AVDD1 AGND AGND AVDD1 AGND DCS MODE EXTERNAL REFERENCE INPUT E20 EXTREF E1 H3 MTHOLE6 DRVDD DRGND D6 D5 D4 D3 D2 D1 DRGND D0 (LSB) DNC DCO+ DCO– DRVDD DRGND DNC DNC DNC DNC DNC DNC DRVDD DRGND DNC DNC 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 H4 MTHOLE6 AVDD1 DNC DNC DNC OUTPUT MODE DFS LVDSBIAS AVDD1 AVDD1 SENSE VREF AGND REFT REFB AGND AVDD1 AVDD1 AVDD1 AVDD2 AGND VIN+ VIN– AGND AVDD1 AVDD1 P5 DRVDD GND COUT COUTB DRVDD GND D7T/D0Y D9C/D3Y D8T/D2Y D8C/D1Y GND GND D10T/D6YN D10C/D5YN D9T/D4Y DRVDD 5V GND E3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 VCC 1kΩ R21 GND C36 0.1µF VCC VCC E40 R12 1kΩ D12T/D10YN D13C/D11YN D13T/D12YN GND DRVDD DORC/D13Y DORT/DORY GND VCC GND VCC VCC VCC VCC VCC VCC VCC GND GND 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 GND GND GND D11C/D7YN D11T/D8YN D12C/D9YN U2 R27 XX XTALINPUT XTALOUTB XTALOUT E39 ENCB H2 MTHOLE6 R19 XX VXTAL R37 XX VCC OUTPUTB OUTPUT E38 R9 1kΩ GND 2 GND VCC C26 0.1µF VCC C42 0.1µF 3 XTALINPUTB GND XTALINPUTB 4 6 2 PRI SEC 3 NC 5 1 T3 ADT1-1WT 1 JN00158 GND R40 XX R38 XX GND J1 GND J5 GND 1 E/D 2 3 NC GND VXTAL 1 XTALOUT GND C96 0.1µF H1 MTHOLE6 FOR VF XTAL R18 XX VEE 6 5 4 OUT ~OUT VCC FOR VECTRON XTAL 7 R36 XX 8 XTALOUTB C92 0.1µF 50Ω R8 GND C93 0.1µF R39 XX VXTAL C44 10µF CR2 U6 ECLOSC GND + GND 14 VCC 5V ENC GND VXTAL E52 ENCODE GND R17 XX GND E47 E46 GND 8 7 6 5 4 3 2 1 VXTAL XTALINPUT 50Ω R7 VXTAL OPTIONAL ENCODE CIRCUITS GND AD9444 CMOS EVALUATION BOARD SCHEMATICS GND VDL DRVDD GND DRVDD VCC VCC VCC ENCB ENC VCC VCC 5V GND C40 0.1µF GND VCC VCC 5V 33Ω R35 AD9444 ADP3338 U8 U15 3 1 VIN VIN 1 GND GND VCC C6 10µF + C33 10µF GND GND 5V OUT1 IN 1 2 3 + C4 10µF Figure 60. CMOS Mode Evaluation Board Schematic (Continued) Rev. 0 | Page 33 of 40 05089-055 C89 10µF GND + GND GND OUT C34 10µF + C88 10µF 3 2 VIN 3 GND 4 VIN IN 2 5V DRVDD DRVDD OUT1 GND U14 OUT 3 GND GND GND ADP3338 U3 1 2 C87 10µF ADP3338 GND 2 + + 3.3V + IN C57 10µF 4 OUT1 OUT C1 10µF + + 4 PJ-102A 5V 3 1 GND IN 2 GND GND OUT1 OUT 3.3V VCC 4 1 P4 VIN VDL GND VDL 3.3V GND ADP3338 AD9444 40 RZ1 220 RSO16ISO DORC/D13Y D13T/D12Y D13C/D11Y D12T/D10Y D12C/D9Y D11T/D8Y D11C/D7Y R1 16 2 R2 15 3 R3 14 4 R4 13 5 R5 12 6 R6 11 7 R7 10 8 R8 9 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 XOR2IN GND VDL GND RZ2 220 RSO16ISO D10T/D6Y D10C/D5Y D9T/D4Y D9C/D3Y D8T/D2Y D8C/D1Y D7T/D0Y 1 R1 16 2 R2 15 3 R3 14 4 R4 13 5 R5 12 6 R6 11 7 R7 10 8 R8 9 GND VDL GND XOR2IN 38 R1 36 1 Q = OUTPUT LE2 D = INPUT OE2 2Q8 2D8 2Q7 2D7 GND GND 2Q6 2D6 2Q5 2D5 VCC VCC 2Q4 2D4 2Q3 2D3 GND GND 2Q2 2D2 2Q1 2D1 1Q8 1D8 1Q7 1D7 GND GND 1Q6 1D6 1Q5 1D5 VCC VCC 1Q4 1D4 1Q3 1D3 GND GND 1D2 1Q2 1Q1 1D1 LE1 OE1 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 2 GND 3 4 GND VDL VDL GND GND R4 R5 6 R6 8 GND R3 5 7 GND R2 R7 R8 16 15 ORM D13M 14 D12M 13 D11M 12 D10M 11 10 9 34 32 30 28 26 D9M 24 D8M 22 D7M 20 RZ5 220 RSO16ISO 18 1 R1 16 16 2 R2 15 3 R3 14 D4M 4 R4 13 D3M 5 R5 12 6 R6 11 7 R7 10 8 R8 9 D6M D5M 12 10 8 D2M 6 D1M 4 D0M GND RZ4 RZ4 14 2 P40 P39 39 GND P38 P37 37 DRM P36 P35 35 GND P34 P33 33 D13M P32 P31 31 D12M P30 P29 29 D11M P28 P27 27 D10M P26 P25 25 D9M P24 P23 23 D8M P22 P21 21 D7M P20 P19 19 D6M P18 P17 17 D5M P16 P15 15 D4M P14 P13 13 D3M P12 P11 11 D2M P10 P9 9 D1M P8 P7 7 D0M P6 P5 5 ORM P4 P3 3 P2 P1 1 GND P3 C40MS NOT PLACED 00 COUTB R50 00 COUT VDL 1 1A E49 2 1B E42 E45 GND U4 74VCX86 XORZIN R16 4 2A GND 2Y 5 2B 9 3A 10 3B VDL E32 12 4A GATE2 GND 3Y 00 R41 6 8 4Y 7 DRM R14 GATE 00 11 14 PWR 13 4B E31 00 3 1Y GND DRM R42 VDL GND E30 U10 VDL + C66 10µF C25 0.1µF C41 0.1µF C24 0.1µF C68 0.1µF C67 0.1µF 63 0.01µF GND Figure 61. CMOS Mode Evaluation Board Schematic (Continued) Rev. 0 | Page 34 of 40 05089-056 DORT/DORY 1 U5 SN74LVCH16373A 220 RZ5 RSO16ISO 05089-065 05089-068 AD9444 05089-066 05089-069 Figure 65. CMOS Mode Evaluation Board Layout, Ground Plane 2 Figure 62. CMOS Mode Evaluation Board Layout, Primary Side 05089-067 05089-070 Figure 66. CMOS Mode Evaluation Board Layout, Power Plane 1 Figure 63. CMOS Mode Evaluation Board Layout, Secondary Side Figure 67. CMOS Mode Evaluation Board Layout, Power Plane 2 Figure 64. CMOS Mode Evaluation Board Layout, Ground Plane 1 Rev. 0 | Page 35 of 40 05089-071 05089-072 AD9444 Figure 68. CMOS Mode Evaluation Board Layout, Primary Silkscreen Figure 69. CMOS Mode Evaluation Board Layout, Secondary Silkscreen Rev. 0 | Page 36 of 40 AD9444 CMOS MODE EVALUATION BOARD BILL OF MATERIALS (BOM) Table 12. Item 1 2 Qty. 1 16 REFDES AD9444PCB C1, C4, C6, C33, C34, C39, C44, C55 to C57, C64 to C66, C87 to C89 Description PCB, AD9444 LVDS Evaluation Board Capacitors, Tantalum, SMT BCAPTAJC, 10 µF, 16 V, 10% Manufacturer PCSM KEMET MFG_PART_NO AD9444LVDSCUSTREVC T491C106K016AS 3 32 C2, C3, C5, C9, C12, C20 to C23, C26 to C28, C30, C32, C35, C40, C42, C43, C46 to C48, C50, C52, C53, C58, C60, C61, C75, C78, C85, C91, C92 Capacitors, 0.1 µF 10 V Ceramic X5R 0402 Panasonic ECJ-0EB1A104K 4 5 C24, C25, C41, C67, C68 Capacitors, 0.1 µF 16 V Ceramic X7R 0603 Panasonic ECJ-1VB1C104K 5 6 7 1 1 20 C51 CR2 E1 to E3, E24 to E27, E30 to E32, E38 to E42, E45 to E47, E49, E52 Capacitor, Ceramic 10 µF 6.3 V X5R 0805 Diode, Dual Schottky HSMS2812, SOT-23, 30 V, 20 mA 40-Pin Breakable Header KEMET Panasonic 3M C0805C106K9PACTU MA716-(TX) 2340-611TN 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2 1 1 1 1 2 1 4 2 2 1 4 2 1 4 1 1 4 J1, J4 L1 P3 P4 R3 R4, R6 R8 R9, R12, R15, R21 R14, R50 R28, R35 R39 RZ1 to RZ3, RZ6 T3, T5 U1 U3, U8, U15 U14 U5 U6 Connector, Gold, Male, Coaxial, SMA, Vertical 10 nH O402 Inductor Header, 40-Pin, Male, 40-Pin Right Angle Power Jack Resistor, 3.6 kΩ 1/16 W 1% 0402 SMD Resistors, 36 Ω 1/16 W 5% 0402 SMD Resistor, 49.9 Ω 1/16 W 1% 0402 SMD Resistors, 1.00 kΩ 1/16 W 1% 0402 SMD Resistors, 0 Ω 1/10 W 5% 0603 SMD Resistors, 33 Ω 1/16 W 5% 0402 SMD Resistor, 0 Ω 1/16 W 5% 0402 SMD 220 Ω Resistor Array, 16 Term Transformer, ADT1-1WT, CD542, ADT1-1WT 14-Bit, 80 MSPS ADC 3.3 V Voltage Regulator 5 V Voltage Regulator 16-Bit Flip Flop Pin Sockets, Closed End Johnston Comp. Coilcraft Samtec Swithcraft Panasonic Panasonic Panasonic Panasonic Panasonic Panasonic Panasonic CTS Corp. Mini-Circuits ADI ADI ADI Fairchild AMP 142-0701-201 0402CS-10NX_B_ TSW-120-08-T-D-RA RAPC722 ERJ-2GEJ362X ERJ-2GEJ360X ERJ-2RKF49R9X ERJ-2RKF1001X ERJ-3GEY0R00V ERJ-2GEJ330X ERJ-2GE0R00X 742163221JTR ADT1-1WT AD9444BSVZ-80 ADP3338-3.3 V ADP3338-5.0 V 74LVTH162374 5-330808-3 Rev. 0 | Page 37 of 40 AD9444 Item 26 Qty. 26 27 28 1 15 29 30 31 32 3 1 1 2 1 REFDES C10, C11, C13, C14 to C19, C29, C31, C36 to C37, C38, C45, C49, C59, C62,C69, C70 to C73, C90, C93, C961 J51 R1,R2,R5,R7, R13, R17 to R20, R27, R36 to R401 R16, R41, R421 C631 U41 P5, P61 Description Capacitors, Select 10 V Ceramic X5R 0402 Manufacturer Panasonic MFG_PART_NO Connector, Gold, Male, Coaxial, SMA, Vertical Resistors, Select 1/16 W 1% 0402 SMD Johnston Comp. Panasonic 142-0701-201 Resistors, Select 1/16 W 5% 0603 SMD Capacitor, Select 10 V Ceramic X5R 0603 XOR 74VCX86D Power Connectors Panasonic Panasonic Fairchild Weiland Parts not placed. Rev. 0 | Page 38 of 40 74VCX86D AD9444 OUTLINE DIMENSIONS 0.75 0.60 0.45 16.00 SQ 1.20 MAX 14.00 SQ 100 1 76 76 75 100 1 75 SEATING PLANE BOTTOM VIEW (PINS UP) TOP VIEW (PINS DOWN) CONDUCTIVE HEAT SINK 51 25 26 0.20 0.09 51 50 25 50 1.05 1.00 0.95 7° 3.5° 0° 0.50 BSC 0.27 0.22 0.17 0.15 0.05 26 6.50 NOM COPLANARITY 0.08 COMPLIANT TO JEDEC STANDARDS MS-026AED-HD NOTES 1. CENTER FIGURES ARE TYPICAL UNLESS OTHERWISE NOTED. 2. THE PACKAGE HAS A CONDUCTIVE HEAT SLUG TO HELP DISSIPATE HEAT AND ENSURE RELIABLE OPERATION OF THE DEVICE OVER THE FULL INDUSTRIAL TEMPERATURE RANGE. THE SLUG IS EXPOSED ON THE BOTTOM OF THE PACKAGE AND ELECTRICALLY CONNECTED TO CHIP GROUND. IT IS RECOMMENDED THAT NO PCB SIGNAL TRACES OR VIAS BE LOCATED UNDER THE PACKAGE THAT COULD COME IN CONTACT WITH THE CONDUCTIVE SLUG. ATTACHING THE SLUG TO A GROUND PLANE WILL REDUCE THE JUNCTION TEMPERATURE OF THE DEVICE WHICH MAY BE BENEFICIAL IN HIGH TEMPERATURE ENVIRONMENTS. 3. THE EXPOSED HEAT SINK SOLDERED TO THE GROUND PLANE IS REQUIRED FOR THE 100-LEAD TQFP/EP. Figure 70. 100-Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP] (SV-100-1) Dimensions shown in millimeters ORDERING GUIDE Model AD9444BSVZ-801 AD9444-CMOS/PCB AD9444-LVDS/PCB 1 Temperature Range –40°C to +85°C Package Description 100-Lead TQFP_EP CMOS Mode Evaluation Board LVDS Mode Evaluation Board Z = Pb-free part. Rev. 0 | Page 39 of 40 Package Outline SV-100-1 AD9444 NOTES © 2004 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05089–0–10/04(0) Rev. 0 | Page 40 of 40