DATASHEET 3A Synchronous Buck Converter In 2x2 DFN Package ISL80030, ISL80030A, ISL80031, ISL80031A The ISL80030, ISL80030A, ISL80031 and ISL80031A are highly Features efficient, monolithic, synchronous step-down DC/DC converters • VIN range 2.7V to 5.5V that can deliver up to 3A of continuous output current from a 2.7V to 5.5V input supply. They use peak current mode control architecture to allow very low duty cycle operation. They operate at either a 1MHz or 2MHz switching frequency, thereby providing superior transient response and allowing for the use of small inductors. They have excellent stability. • Up to 3A of output current • Switching frequency is 1MHz or 2MHz (see Table 1 on page 3) • 35µA quiescent current (ISL80031/A) • Overcurrent and short-circuit protection The ISL80030, ISL80030A, ISL80031 and ISL80031A integrate very low rDS(ON) MOSFETs in order to maximize efficiency. In addition, since the high-side MOSFET is a PMOS, the need for a Boot capacitor is eliminated, thereby reducing external component count. They can operate at 100% duty cycle. • Over-temperature/thermal protection The ISL80031, ISL80031A configured for PFM discontinuous conduction operation, provides high efficiency by reducing switching losses at light loads. • Internal soft-start and soft-stop ISL80030, ISL80030A configured for PWM pulse width modulation operation, provides a fast transient response, which helps reduce the output noise and RF interference. • Up to 95% peak efficiency • Negative current protection • Power-good and enable • 100% duty cycle • VIN undervoltage lockout and VOUT overvoltage protection Applications • General purpose POL These devices are offered in a space saving 8 pin 2mmx2mm DFN lead-free package with exposed pad for improved thermal performance. The complete converter occupies less than 64mm2 area. 3 EN 4 PG PG L1 PHASE 8 PGND 6 FB EPAD 9 93 VOUT C2 22µF GND C3 22pF R1 200k 1% 5 0.6V R2 100k 1% 87 80 VOUT = 1.8V 73 VOUT = 2.5V 67 VO R 1 = R 2 ------------ – 1 VFB (EQ. 1) 60 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 LOAD (A) FIGURE 1. TYPICAL APPLICATION CIRCUIT CONFIGURATION July 20, 2015 FN8766.0 VOUT = 3.3V +1.8V/3A PGND 7 EN • Game console EFFICIENCY (%) GND +2.7V …+5.5V 1 VIN C1 22µF 2 VIN • Telecom and networking equipment 100 ISL80030/ISL80031 VIN • Industrial, instrumentation and medical equipment 1 FIGURE 2. EFFICIENCY vs LOAD, ISL80031, VIN = 5V, TA = +25°C CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas LLC 2015. All Rights Reserved Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries. All other trademarks mentioned are the property of their respective owners. ISL80030, ISL80030A, ISL80031, ISL80031A Table of Contents Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Typical Performance Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Theory of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PWM Control Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PFM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overcurrent Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Short-circuit Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Negative Current Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UVLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Enable, Disable and Soft-start Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Discharge Mode (Soft-stop) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100% Duty Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Derating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 15 15 16 16 16 16 16 16 16 16 17 17 Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Inductor and Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Voltage Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Capacitor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Layout Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 17 17 17 17 18 Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 About Intersil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Submit Document Feedback 2 FN8766.0 July 20, 2015 ISL80030, ISL80030A, ISL80031, ISL80031A TABLE 1. SUMMARY OF KEY DIFFERENCES PART# PWM/PFM MODE fSW (MHz) ISL80030 PWM 1 ISL80030A PWM 2 ISL80031 PFM 1 ISL80031A PFM 2 VIN RANGE (V) IOUT (MAX) (A) PACKAGE SIZE 2.7 to 5.5 3 8 pin 2mmx2mm DFN NOTE: In this datasheet, the parts in the table above are collectively called "device". TABLE 2. COMPONENT VALUE SELECTION TABLE VOUT (V) C1 (µF) C2 (µF) C3 (pF) L1 (µH) R1 (kΩ) R2 (kΩ) 0.8 22 22 22 1.0~2.2 33 100 1.2 22 22 22 1.0~2.2 100 100 1.5 22 22 22 1.0~2.2 150 100 1.8 22 22 22 1.0~3.3 200 100 2.5 22 22 22 1.5~3.3 316 100 3.3 22 22 22 1.5~4.7 450 100 Submit Document Feedback 3 FN8766.0 July 20, 2015 ISL80030, ISL80030A, ISL80031, ISL80031A Pin Configuration ISL80030, ISL80030A, ISL80031, ISL80031A (8 LD 2x2 DFN) TOP VIEW VIN 1 VIN 2 EN 3 PG 4 EPAD (GND) PAD 8 PHASE 7 PGND 6 PGND 5 FB Pin Descriptions PIN NUMBER PIN NAME PIN DESCRIPTION 1, 2 VIN The input supply for the power stage of the PWM regulator and the source for the internal linear regulator that provides bias for the IC. Place a minimum of 10µF ceramic capacitance from VIN to GND and as close as possible to the IC for decoupling. 3 EN Device enable input. When the voltage on this pin rises above 1.4V, the device is enabled. The device is disabled when the pin is pulled to ground. When the device is disabled, a 100Ω resistor discharges the output through the PHASE pin. See Figure 3, “Functional Block Diagram” on page 5 for details. 4 PG Power-good output is pulled to ground during the soft-start interval and also when the output voltage is below regulation limits. There is an internal 5MΩ internal pull-up resistor on this pin. 5 FB Feedback pin for the regulator. FB is the negative input to the voltage loop error amplifier. The output voltage is set by an external resistor divider connected to FB. In addition, the power-good PWM regulator’s power-good and undervoltage protection circuits use FB to monitor the output voltage. 6, 7 PGND Power and analog ground connections. Connect directly to the board GROUND plane. 8 PHASE Power stage switching node for output voltage regulation. Connect to the output inductor. This pin is discharged by an 100Ω resistor when the device is disabled. See Figure 3, “Functional Block Diagram” on page 5 for details. - EPAD The exposed pad must be connected to the PGND pin for proper electrical performance. Place as many vias as possible under the pad connecting to the PGND plane for optimal thermal performance. Submit Document Feedback 4 FN8766.0 July 20, 2015 ISL80030, ISL80030A, ISL80031, ISL80031A Functional Block Diagram 27pF SOFTSoft START SHUTDOWN 200kΩ + VREF BANDGAP VIN OSCILLATOR + EN + EAMP COMP - - P PWM/PFM LOGIC CONTROLLER PROTECTION SHUTDOWN 3pF PHASE N HS DRIVER + PGND FB SLOPE Slope COMP 1.15*VREF 6kΩ + - CSA OV + + OCP - 0.85*VREF + UV + VIN SKIP 5MΩ PG 1ms DELAY - NEG CURRENT SENSING ZERO-CROSS SENSING 0.3V SCP + 100Ω SHUTDOWN FIGURE 3. FUNCTIONAL BLOCK DIAGRAM Submit Document Feedback 5 FN8766.0 July 20, 2015 ISL80030, ISL80030A, ISL80031, ISL80031A Ordering Information PART NUMBER (Notes 1, 2, 3) TAPE AND REEL QUANTITY PART MARKING TECHNICAL SPECIFICATIONS TEMP. RANGE (°C) PACKAGE (RoHS Compliant) PKG. DWG. # ISL80030FRZ-T 1000 030 1MHz, PWM -40 to +125 8 Ld DFN L8.2x2E ISL80030FRZ-T7A 250 030 1MHz, PWM -40 to +125 8 Ld DFN L8.2x2E ISL80030AFRZ-T 1000 30A 2MHz, PWM -40 to +125 8 Ld DFN L8.2x2E ISL80030AFRZ-T7A 250 30A 2MHz, PWM -40 to +125 8 Ld DFN L8.2x2E ISL80031FRZ-T 1000 031 1MHz, PFM -40 to +125 8 Ld DFN L8.2x2E ISL80031FRZ-T7A 250 031 1MHz, PFM -40 to +125 8 Ld DFN L8.2x2E ISL80031AFRZ-T 1000 31A 2MHz, PFM -40 to +125 8 Ld DFN L8.2x2E ISL80031AFRZ-T7A 250 31A 2MHz, PFM -40 to +125 8 Ld DFN L8.2x2E NOTES: 1. Please refer to TB347 for details on reel specifications. 2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. 3. For Moisture Sensitivity Level (MSL), please see device information page for ISL80030, ISL80030A, ISL80031, ISL80031A. For more information on MSL please see techbrief TB363. Submit Document Feedback 6 FN8766.0 July 20, 2015 ISL80030, ISL80030A, ISL80031, ISL80031A Absolute Maximum Ratings Thermal Information VIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6V (DC) or 7V (20ms) PHASE . . . . . . . . . . . . . . -1.5V (100ns)/-0.3V (DC) to 6V (DC) or 7V (20ms) EN, PG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to VIN + 0.3V FB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 2.7V Junction Temperature Range at 0A . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C ESD Rating Human Body Model (Tested per JESD22-JS-001). . . . . . . . . . . . . . . . 4kV Machine Model (Tested per JESD22-A115C) . . . . . . . . . . . . . . . . . 300V Charged Device Model (Tested per JESD22-C101D) . . . . . . . . . . . . . 2kV Latch-up (Tested per JESD78D, Class 2, Level A). . . . ±100mA at +125°C Thermal Resistance (Typical, Notes 4, 5) JA (°C/W) JC (°C/W) 2x2 DFN Package . . . . . . . . . . . . . . . . . . . . 70 7 Maximum Junction Temperature (Plastic Package) . . . . . . . . . . . +150°C Maximum Storage Temperature Range . . . . . . . . . . . . . .-65°C to +150°C Ambient Temperature Range . . . . . . . . . . . . . . . . . . . . . . .-40°C to +125°C Operating Junction Temperature Range . . . . . . . . . . . . . .-40°C to +125°C Pb-free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493 Recommended Operating Conditions VIN Supply Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7V to 5.5V Load Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0A to 3A Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . .-40°C to +125°C CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty. NOTES: 4. JA is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech Brief TB379 for details. 5. For JC, the “case temp” location is the center of the exposed metal pad on the package underside. Electrical Specifications TA= -40°C to +125°C, VIN = 2.7V to 5.5V, unless otherwise noted. Typical values are at TA = +25°C. Boldface limits apply across the junction operating temperature range, -40°C to +125°C. PARAMETER SYMBOL TEST CONDITIONS MIN (Note 6) TYP MAX (Note 6) UNIT 2.5 2.7 V INPUT SUPPLY VIN Undervoltage Lockout Threshold VUVLO Rising, no load Falling, no load Quiescent Supply Current IVIN Shutdown Supply Current ISD 2.2 2.4 V ISL80031A, no load at the output 35 60 µA ISL80030, no load at the output 7 15 mA ISL80030A, no load at the output 10 22 mA ISL80031, ISL80031A, VIN = 5.5V, EN = low 1.2 10 µA 0.600 0.606 V OUTPUT REGULATION Feedback Voltage VFB VFB Bias Current IVFB Line Regulation 0.594 TJ = -40°C to +125°C 0.589 0.606 V VFB = 2.7V. TJ = -40°C to +125°C -120 50 350 nA VIN = VO + 0.5V to 5.5V (minimal 2.7V) Nominal = 3.6V -0.32 -0.05 0.28 %/V Soft-start Ramp Time Cycle 1 ms PROTECTIONS Positive Peak Current Limit IPLIMIT Peak Skip Limit ISKIP Zero Cross Threshold 3.6 Negative Current Limit INLIMIT 5.4 450 ISL80031, ISL80031A VIN = 3.6, VOUT = 1.8V (See “Applications Information” on page 17 for more detail) ISL80031, ISL80031A 4.5 A mA -170 -70 30 mA -2.6 -2 -1 A Thermal Shutdown Temperature rising 150 °C Thermal Shutdown Hysteresis Temperature falling 25 °C Submit Document Feedback 7 FN8766.0 July 20, 2015 ISL80030, ISL80030A, ISL80031, ISL80031A Electrical Specifications TA= -40°C to +125°C, VIN = 2.7V to 5.5V, unless otherwise noted. Typical values are at TA = +25°C. Boldface limits apply across the junction operating temperature range, -40°C to +125°C. (Continued) PARAMETER SYMBOL TEST CONDITIONS MIN (Note 6) TYP MAX (Note 6) UNIT COMPENSATION Error Amplifier Transconductance 40 Transresistance RT 0.20 0.25 µA/V 0.30 Ω PHASE P-Channel MOSFET ON-resistance VIN = 5V, IO = 200mA 70 mΩ N-Channel MOSFET ON-resistance VIN = 5V, IO = 200mA 60 mΩ 100 PHASE Maximum Duty Cycle PHASE Minimum On-time ISL80030; ISL80030A 60 80 ns OSCILLATOR Nominal Switching Frequency fSW ISL80030, ISL80031 850 1000 1150 kHz ISL80030A, ISL80031A 1700 2000 2300 kHz 0.3 V 2 ms PG Output Low Voltage 1mA sinking current Delay Time (Rising Edge) 0.5 PGOOD Delay Time (Falling Edge) 1 5 PG Pin Leakage Current PG = VIN OVP PG Rising Threshold 110 OVP PG Hysteresis µs 0.01 0.1 117 125 2 UVP PG Rising Threshold 80 UVP PG Hysteresis 85 µA % % 90 2 % % EN LOGIC Logic Input Low Logic Input High 0.4 V 1 µA 1.4 Logic Input Leakage Current IEN Pulled up to 5.5V V 0.1 NOTES: 6. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization and are not production tested. Submit Document Feedback 8 FN8766.0 July 20, 2015 ISL80030, ISL80030A, ISL80031, ISL80031A 100 100 93 90 EFFICIENCY (%) EFFICIENCY (%) Typical Performance Curves 87 80 VOUT = 1.2V VOUT = 1.5V 73 80 VOUT = 1.2V 70 VOUT = 1.5V 60 VOUT = 1.8V VOUT = 1.8V VOUT = 2.5V 50 67 VOUT = 2.5V 60 0 0.3 0.6 0.9 1.2 1.5 1.8 LOAD (A) 2.1 2.4 2.7 93 90 EFFICIENCY (%) 100 87 80 73 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 FIGURE 5. EFFICIENCY vs LOAD (ISL80030A) fSW = 2MHz, VIN = 3.3V, PWM, TA = +25°C 100 VOUT = 1.2V 0 LOAD (A) FIGURE 4. EFFICIENCY vs LOAD (ISL80031A) fSW = 2MHz, VIN = 3.3V, PFM, TA = +25°C EFFICIENCY (%) 40 3.0 VOUT = 1.5V VOUT = 1.8V 67 80 VOUT = 1.2V 70 VOUT = 1.5V 60 VOUT = 1.8V VOUT = 2.5V 50 VOUT = 2.5V 60 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 40 3.0 0 0.3 0.6 0.9 FIGURE 6. EFFICIENCY vs LOAD (ISL80031) fSW = 1MHz, VIN = 3.3V, PFM, TA = +25°C 1.8 2.1 100 VOUT = 3.3V 93 2.4 2.7 3.0 VOUT = 3.3V 93 EFFICIENCY (%) EFFICIENCY (%) 1.5 FIGURE 7. EFFICIENCY vs LOAD (ISL80030) fSW = 1MHz, VIN = 3.3V, PWM, TA = +25°C 100 87 80 VOUT = 1.2V VOUT = 1.5V 73 VOUT = 1.8V 67 60 1.2 LOAD (A) LOAD (A) VOUT = 2.5V 0 0.3 0.6 0.9 1.2 1.5 1.8 LOAD (A) 2.1 2.4 FIGURE 8. EFFICIENCY vs LOAD (ISL80031A) fSW = 2MHz, VIN = 5V, PFM, TA = +25°C Submit Document Feedback 9 2.7 3.0 80 VOUT = 1.2V 67 VOUT = 1.5V V OUT = 1.8V VOUT = 2.5V 53 40 0 0.3 0.6 0.9 1.2 1.5 1.8 LOAD (A) 2.1 2.4 2.7 3.0 FIGURE 9. EFFICIENCY vs LOAD (ISL80030A) fSW = 2MHz, VIN = 5V, PWM, TA = +25°C FN8766.0 July 20, 2015 ISL80030, ISL80030A, ISL80031, ISL80031A Typical Performance Curves (Continued) 100 100 VOUT = 3.3V 90 EFFICIENCY (%) EFFICIENCY (%) 93 87 80 VOUT = 1.2V 73 VOUT = 1.5V VOUT = 1.8V VOUT = 2.5V 67 60 0 0.3 0.6 0.9 1.2 1.5 1.8 LOAD (A) 2.1 2.4 2.7 80 VOUT = 1.2V 70 VOUT = 1.5V VOUT = 2.5V 40 0 1.827 OUTPUT VOLTAGE (V) 1.872 1.867 5VIN PFM 1.863 3.3VIN PFM 1.854 0 0.3 0.6 0.9 1.2 1.5 1.8 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 2.1 2.4 2.7 3.0 3.3VIN PWM 1.826 1.825 1.824 5VIN PWM 1.823 1.822 0 0.3 OUTPUT LOAD (A) FIGURE 12. VOUT REGULATION vs LOAD (ISL80031) fSW = 1MHz, VOUT = 1.8V, PFM, TA = +25°C 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 OUTPUT LOAD (A) FIGURE 13. VOUT REGULATION vs LOAD (ISL80030) fSW = 1MHz, VOUT = 1.8V, PWM, TA = +25°C PHASE 5V/DIV PHASE 5V/DIV VOUT 1V/DIV VOUT 1V/DIV VEN 5V/DIV VEN 5V/DIV PG 5V/DIV PG 5V/DIV 500µs/DIV FIGURE 14. START-UP AT NO LOAD (ISL80031A) fSW = 2MHz, VIN = 5V, PFM, TA = +25°C Submit Document Feedback 0.6 FIGURE 11. EFFICIENCY vs LOAD (ISL80030) fSW = 1MHz, VIN = 5V, PWM, TA = +25°C 1.828 1.850 0.3 LOAD (A) 1.876 1.859 VOUT = 1.8V 60 50 3.0 FIGURE 10. EFFICIENCY vs LOAD (ISL80031) fSW = 1MHz, VIN = 5V, PFM, TA = +25°C OUTPUT VOLTAGE (V) VOUT = 3.3V 10 500µs/DIV FIGURE 15. START-UP AT NO LOAD (ISL80030A) fSW = 2MHz, VIN = 5V, PWM, TA = +25°C FN8766.0 July 20, 2015 ISL80030, ISL80030A, ISL80031, ISL80031A Typical Performance Curves (Continued) PHASE 5V/DIV PHASE 5V/DIV VOUT 1V/DIV VOUT 1V/DIV VEN 5V/DIV VEN 5V/DIV PG 5V/DIV PG 5V/DIV 500µs/DIV 500µs/DIV FIGURE 16. SHUTDOWN AT NO LOAD (ISL80031A) fSW = 2MHz, VIN = 5V, PFM, TA = +25°C FIGURE 17. SHUTDOWN AT NO LOAD (ISL80030A) fSW = 2MHz, VIN = 5V, PWM, TA = +25°C VEN 5V/DIV VEN 5V/DIV VOUT 1V/DIV VOUT 1V/DIV IL 2A/DIV IL 2A/DIV PG 5V/DIV PG 5V/DIV 500µs/DIV FIGURE 18. START-UP AT 3A LOAD (ISL80030A) fSW = 2MHz, VIN = 5V, PWM, TA = +25°C 500µs/DIV FIGURE 19. SHUTDOWN AT 3A LOAD (ISL80030A) fSW = 2MHz, VIN = 5V, PWM, TA = +25°C VEN 5V/DIV VEN 5V/DIV VOUT 1V/DIV VOUT 1V/DIV IL 2A/DIV IL 2A/DIV PG 5V/DIV PG 5V/DIV 500µs/DIV FIGURE 20. START-UP AT 3A LOAD (ISL80031A) fSW = 2MHz, VIN = 5V, PFM, TA = +25°C Submit Document Feedback 11 1ms/DIV FIGURE 21. SHUTDOWN AT 3A LOAD (ISL80031A) fSW = 2MHz, VIN = 5V, PFM, TA = +25°C FN8766.0 July 20, 2015 ISL80030, ISL80030A, ISL80031, ISL80031A Typical Performance Curves (Continued) VIN 5V/DIV VIN 5V/DIV VOUT 1V/DIV VOUT 1V/DIV IL 2A/DIV IL 2A/DIV PG 5V/DIV PG 5V/DIV 500µs/DIV 500µs/DIV FIGURE 22. START-UP VIN AT 3A LOAD (ISL80031A) fSW = 2MHz, VIN = 5V, PFM, TA = +25°C PHASE 5V/DIV FIGURE 23. START-UP VIN AT 3A LOAD (ISL80030A) fSW = 2MHz, VIN = 5V, PWM, TA = +25°C PHASE 5V/DIV VOUT 1V/DIV VOUT 1V/DIV VIN 5V/DIV VIN 5V/DIV PG 5V/DIV PG 5V/DIV 100µs/DIV FIGURE 24. SHUTDOWN VIN AT 3A LOAD (ISL80031A) fSW = 2MHz, VIN = 5V, PFM, TA = +25°C PHASE 5V/DIV 20µs/DIV FIGURE 25. SHUTDOWN VIN AT 3A LOAD (ISL80030A) fSW = 2MHz, VIN = 5V, PWM, TA = +25°C PHASE 5V/DIV VOUT 1V/DIV VOUT 1V/DIV VIN 5V/DIV VIN 5V/DIV PG 5V/DIV PG 5V/DIV 500µs/DIV FIGURE 26. START-UP VIN AT NO LOAD (ISL80031A) fSW = 2MHz, VIN = 5V, PFM, TA = +25°C Submit Document Feedback 12 500µs/DIV FIGURE 27. START-UP VIN AT NO LOAD (ISL80030A) fSW = 2MHz, VIN = 5V, PWM, TA = +25°C FN8766.0 July 20, 2015 ISL80030, ISL80030A, ISL80031, ISL80031A Typical Performance Curves (Continued) PHASE 5V/DIV PHASE 5V/DIV VOUT 1V/DIV VOUT 1V/DIV VIN 5V/DIV VIN 5V/DIV PG 5V/DIV PG 5V/DIV 2ms/DIV 5ms/DIV FIGURE 28. SHUTDOWN VIN AT NO LOAD (ISL80031A) fSW = 2MHz, VIN = 5V, PFM, TA = +25°C FIGURE 29. SHUTDOWN VIN AT NO LOAD (ISL80030A) fSW = 2MHz, VIN = 5V, PWM, TA = +25°C PHASE 1V/DIV PHASE 1V/DIV 10ns/DIV 10ns/DIV FIGURE 30. JITTER AT NO LOAD (ISL80030A) fSW = 2MHz, VIN = 5V, PWM, TA = +25°C FIGURE 31. JITTER AT FULL LOAD (ISL80030A) fSW = 2MHz, VIN = 5V, PWM, TA = +25°C PHASE 5V/DIV PHASE 5V/DIV VOUT 20mV/DIV VOUT 10mV/DIV IL 0.5A/DIV IL 0.5A/DIV 50ms/DIV FIGURE 32. STEADY STATE AT NO LOAD (ISL80031A) fSW = 2MHz, VIN = 5V, PFM, TA = +25°C Submit Document Feedback 13 200ns/DIV FIGURE 33. STEADY STATE AT NO LOAD (ISL80030A) fSW = 2MHz, VIN = 5V, PWM, TA = +25°C FN8766.0 July 20, 2015 ISL80030, ISL80030A, ISL80031, ISL80031A Typical Performance Curves (Continued) PHASE 5V/DIV PHASE 5V/DIV VOUT 10mV/DIV VOUT 10mV/DIV IL 2A/DIV IL 2A/DIV 500ns/DIV FIGURE 34. STEADY STATE AT 3A LOAD (ISL80031A) fSW = 2MHz, VIN = 5V, PFM, TA = +25°C VOUT RIPPLE 50mV/DIV 500ns/DIV FIGURE 35. STEADY STATE AT 3A LOAD (ISL80030A) fSW = 2MHz, VIN = 5V, PWM, TA = +25°C VOUT RIPPLE 50mV/DIV IL 1A/DIV IL 1A/DIV 200µs/DIV 200µs/DIV FIGURE 36. LOAD TRANSIENT (ISL80031A) fSW = 2MHz, VIN = 5V, PFM, TA = +25°C PHASE 5V/DIV FIGURE 37. LOAD TRANSIENT (ISL80030A) fSW = 2MHz, VIN = 5V, PWM, TA = +25°C VOUT 1V/DIV IL 2A/DIV IL 2A/DIV VOUT 1V/DIV PG 5V/DIV PG 5V/DIV 5µs/DIV FIGURE 38. OUTPUT SHORT-CIRCUIT (ISL80030A) fSW = 2MHz, VIN = 5V, PWM, TA = +25°C Submit Document Feedback 14 500µs/DIV FIGURE 39. OVERCURRENT PROTECTION (ISL80030A) fSW = 2MHz, VIN = 5V, PWM, TA = +25°C FN8766.0 July 20, 2015 ISL80030, ISL80030A, ISL80031, ISL80031A Typical Performance Curves (Continued) PHASE 5V/DIV VOUT 0.5V/DIV IL 2A/DIV PG 2V/DIV VOUT 2V/DIV PG 5V/DIV 1ms/DIV 200µs/DIV FIGURE 40. OVERVOLTAGE PROTECTION (ISL80030A) fSW = 2MHz, VIN = 5V, PWM, TA = +25°C Theory of Operation The device is a step-down switching regulator optimized for battery powered applications. It operates at a high switching frequency (1MHz or 2MHz), which enables the use of smaller inductors resulting in small form factor, while also providing excellent efficiency. The quiescent current is typically only 1.2µA when the regulator is shut down. PWM Control Scheme The ISL80030, ISL80030A employ the current-mode pulse-width modulation (PWM) control scheme for fast transient response and pulse-by-pulse current limiting. See “Functional Block Diagram” on page 5. The current loop consists of the oscillator, the PWM comparator, current sensing circuit and the slope compensation for the current loop stability. The slope compensation is 900mV/Ts, which changes with frequency. The gain for the current sensing circuit is typically 250mV/A. The control reference for the current loop comes from the error amplifier's (EAMP) output. The PWM operation is initialized by the clock from the oscillator. The P-channel MOSFET is turned on at the beginning of a PWM cycle and the current in the MOSFET starts to ramp-up. When the sum of the current amplifier CSA and the slope compensation reaches the control reference of the current loop, the PWM comparator COMP sends a signal to the PWM logic to turn off the P-FET and turn on the N-Channel MOSFET. The N-FET stays on until the end of the PWM cycle. Figure 42 shows the typical operating waveforms during the PWM operation. The dotted lines illustrate the sum of the slope compensation ramp and the current-sense amplifier’s CSA output. Submit Document Feedback 15 FIGURE 41. OVER-TEMPERATURE PROTECTION fSW = 2MHz, VIN = 5V, PWM, TA = +150°C VEAMP VCSA DUTY CYCLE IL VOUT FIGURE 42. PWM OPERATION WAVEFORMS The reference voltage is 0.6V, which is used by feedback to adjust the output of the error amplifier, VEAMP. The error amplifier is a transconductance amplifier that converts the voltage error signal to a current output. The voltage loop is internally compensated with the 27pF and 200kΩ RC network. The maximum EAMP voltage output is precisely clamped to 1.6V. PFM Operation The ISL80031, ISL80031A employs a pulse-skipping mode to minimize the switching loss at light load by reducing the switching frequency. Figure 43 on page 16 illustrates the skip-mode operation. A zero-cross sensing circuit shown in Figure 43 monitors the N-FET current for zero crossing. When 16 consecutive cycles of the inductor current crossing zero are detected, the regulator enters the skip mode. During the eight detecting cycles, the current in the inductor is allowed to become negative. The counter is reset to zero when the current in any cycle does not cross zero. FN8766.0 July 20, 2015 ISL80030, ISL80030A, ISL80031, ISL80031A PWM PFM PWM CLOCK 16 CYCLES PFM CURRENT LIMIT IL LOAD CURRENT 0 NOMINAL +1.5% VOUT NOMINAL -1.5% NOMINAL FIGURE 43. PFM MODE OPERATION WAVEFORMS Once the skip mode is entered, the pulse modulation starts being controlled by the SKIP comparator as shown in the “Functional Block Diagram” on page 5. Each pulse cycle is still synchronized by the PWM clock. The P-FET is turned on at the clock's rising edge and turned off when the output is higher than 1.5% of the nominal regulation or when its current reaches the peak skip current limit value. Then the inductor current discharges to 0A and stays at zero. The internal clock is disabled. The output voltage reduces gradually due to the load current discharging the output capacitor. When the output voltage drops to the nominal voltage, the P-FET will be turned on again at the rising edge of the internal clock as it repeats the previous operations. Overcurrent Protection The overcurrent protection is realized by monitoring the CSA output with the OCP comparator, as shown in the “Functional Block Diagram” on page 5. The current sensing circuit has a gain of 300mV/A, from the P-FET current to the CSA output. When the CSA output reaches a threshold, the OCP comparator is tripped to turn off the P-FET immediately. The overcurrent function protects the switching converter from a shorted output by monitoring the current flowing through the upper MOSFET. regulator will be in PFM for 20µs before switching to PWM if necessary. PG PG is an output of a window comparator that continuously monitors the buck regulator output voltage. PG is actively held low when EN is low and during the buck regulator soft-start period. After 1ms delay of the soft-start period, PG becomes high impedance as long as the output voltage is within nominal regulation voltage set by VFB. When VFB drops 15% below or raises 15% above the nominal regulation voltage, the device pulls PG low. Any fault condition forces PG low until the fault condition is cleared by attempts to soft-start. There is an internal 5MΩ pull-up resistor to fit most applications. An external resistor can be added from PG to VIN for more pull-up strength. UVLO When the input voltage is below the Undervoltage Lockout (UVLO) threshold, the regulator is disabled. Enable, Disable and Soft-start Up Upon detection of overcurrent condition, the upper MOSFET will be immediately turned off and will not be turned on again until the next switching cycle. If the overcurrent condition goes away, the output will resume back into the regulation point. After the VIN pin exceeds its rising POR trip point (nominal 2.5V), the device begins operation. If the EN pin is held low externally, nothing happens until this pin is released. Once the EN is released and above the logic threshold, the internal default soft-start time is 1ms. Short-circuit Protection Discharge Mode (Soft-stop) The short-circuit protection (SCP) comparator monitors the VFB pin voltage for output short-circuit protection. When the VFB is lower than 0.3V, the SCP comparator forces the PWM oscillator frequency to drop to 1/3 of the normal operation value. This comparator is effective during start-up or an output short-circuit event. When a transition to shutdown mode occurs or the VIN UVLO is set, the outputs discharge to GND through an internal 100Ω switch. Negative Current Protection Similar to the overcurrent, the negative current protection is realized by monitoring the current across the low-side N-FET, as shown in the “Functional Block Diagram” on page 5. When the valley point of the inductor current reaches -2A for 2 consecutive cycles, both P-FET and N-FET shut off. The 100Ω in parallel to the N-FET will activate discharging the output into regulation. The control will begin to switch when output is within regulation. The Submit Document Feedback 16 100% Duty Cycle The device features 100% duty cycle operation to maximize the battery life. When the battery voltage drops to a level that the device can no longer maintain the regulation at the output, the regulator completely turns on the P-FET. The maximum dropout voltage under the 100% duty cycle operation is the product of the load current and the ON-resistance of the P-FET. FN8766.0 July 20, 2015 ISL80030, ISL80030A, ISL80031, ISL80031A Applications Information Thermal Shutdown The device has built-in thermal protection. When the internal temperature reaches +150°C, the regulator is completely shut down. As the temperature drops to +125°C, the device resumes operation by stepping through the soft-start. Power Derating Characteristics To prevent the device from exceeding the maximum junction temperature, some thermal analysis is required. The temperature rise is given by Equation 2: (EQ. 2) T RISE = PD JA Where PD is the power dissipated by the regulator and θJA is the thermal resistance from the junction of the die to the ambient temperature. The junction temperature, TJ, is given by Equation 3: (EQ. 3) T j = T A + T RISE Where TA is the ambient temperature. For the DFN package, the θJA is +70°C/W. The actual junction temperature should not exceed the absolute maximum junction temperature of +125°C when considering the thermal design. The device delivers full current at ambient temperatures up to +85°C; if the thermal impedance from the thermal pad maintains the junction temperature below the thermal shutdown level, depending on the input voltage/output voltage combination and the switching frequency. The device power dissipation must be reduced to maintain the junction temperature at or below the thermal shutdown level. Figure 44 illustrates the approximate output current derating versus ambient temperature for the ISL80030EVAL1Z board. 3.5 OUTPUT CURRENT (V) To consider steady state and transient operations, the device typically requires a 1µH output inductor. Higher or lower inductor values can be used to optimize the total converter system performance. For example, for higher output voltage 3.3V application, in order to decrease the inductor ripple current and output voltage ripple, the output inductor value can be increased. It is recommended to set the inductor ripple current to be approximately 30% of the maximum output current for optimized performance. The inductor ripple current can be expressed as shown in Equation 4: VO V O 1 – --------- V IN I = --------------------------------------L f SW (EQ. 4) The inductor’s saturation current rating needs to be at least larger than the peak current. The device uses an internal compensation network and the output capacitor value is dependent on the output voltage. The ceramic capacitor is recommended to be X5R or X7R. Output Voltage Selection The output voltage of the regulator can be programmed via an external resistor divider that is used to scale the output voltage relative to the internal reference voltage and feed it back to the inverting input of the error amplifier. The output voltage programming resistor, R1, will depend on the value chosen for the feedback resistor and the desired output voltage of the regulator. The value for the feedback resistor is typically between 10kΩ and 100kΩas shown in Equation 5. VO R 1 = R 2 ------------ – 1 VFB (EQ. 5) If the output voltage desired is 0.6V, then R2 is left unpopulated and R1 is shorted. There is a leakage current from VIN to LX. It is recommended to preload the output with 10µA minimum. For better performance, add 22pF in parallel with R1 VIN = 5V, OLFM 3.0 Output Inductor and Capacitor Selection 2.5 2.0 Input Capacitor Selection 1.5 1.0 0.5 0 50 60 70 80 90 100 TEMPERATURE (°C) 110 120 FIGURE 44. DERATING CURVE vs TEMPERATURE 130 The main functions for the input capacitor are to provide decoupling of the parasitic inductance and to provide filtering function to prevent the switching current flowing back to the battery rail. At least two 22µF X5R or X7R ceramic capacitors are a good starting point for the input capacitor selection. Output Capacitor Selection An output capacitor is required to filter the inductor current. Output ripple voltage and transient response are two critical factors when considering output capacitance choice. The current mode control loop allows for the usage of low ESR ceramic capacitors and thus smaller board layout. Electrolytic and polymer capacitors may also be used. Additional consideration applies to ceramic capacitors. While they offer excellent overall performance and reliability, the actual in-circuit capacitance must be considered. Ceramic capacitors Submit Document Feedback 17 FN8766.0 July 20, 2015 ISL80030, ISL80030A, ISL80031, ISL80031A are rated using large peak-to-peak voltage swings and with no DC bias. In the DC/DC converter application, these conditions do not reflect reality. As a result, the actual capacitance may be considerably lower than the advertised value. Consult the manufacturers datasheet to determine the actual in-application capacitance. Most manufacturers publish capacitance vs DC bias so this effect can be easily accommodated. The effects of AC voltage are not frequently published, but an assumption of ~20% further reduction will generally suffice. The result of these considerations can easily result in an effective capacitance 50% lower than the rated value. Nonetheless, they are a very good choice in many applications due to their reliability and extremely low ESR. The following equations allow calculation of the required capacitance to meet a desired ripple voltage level. Additional capacitance may be used. For the ceramic capacitors (low ESR) = I V OUTripple = ------------------------------------8 f SW C OUT Layout Considerations The PCB layout is a very important converter design step to make sure the designed converter works well. The power loop is composed of the output inductor L’s, the output capacitor COUT, the PHASE’s pins and the PGND pin. It is necessary to make the power loop as small as possible and the connecting traces among them should be direct, short and wide. The switching node of the converter, the PHASE pins and the traces connected to the node are very noisy, so keep the voltage feedback trace away from these noisy traces. The input capacitor should be placed as closely as possible to the VIN pin and the ground of the input and output capacitors should be connected as closely as possible. The heat of the IC is mainly dissipated through the thermal pad. Maximizing the copper area connected to the thermal pad is preferable. In addition, a solid ground plane is helpful for better EMI performance. It is recommended to add at least 4 vias ground connection within the pad for the best thermal relief. (EQ. 6) Where I is the inductor’s peak-to-peak ripple current, fSW is the switching frequency and COUT is the output capacitor. If using electrolytic capacitors then: V OUTripple = I*ESR (EQ. 7) Regarding transient response needs, a good starting point is to determine the allowable overshoot in VOUT if the load is suddenly removed. In this case, energy stored in the inductor will be transferred to COUT causing its voltage to rise. After calculating capacitance required for both ripple and transient needs, choose the larger of the calculated values. The following equation determines the required output capacitor value in order to achieve a desired overshoot relative to the regulated voltage. I OUT 2 * L C OUT = -------------------------------------------------------------------------------------------V OUT 2 * V OUTMAX V OUT 2 – 1 (EQ. 8) Where VOUTMAX/VOUT is the relative maximum overshoot allowed during the removal of the load. For an overshoot of 5%, Equation 9 becomes as follows: I OUT 2 * L C OUT = ----------------------------------------------------V OUT 2 * 1.05 2 – 1 Submit Document Feedback (EQ. 9) 18 FN8766.0 July 20, 2015 ISL80030, ISL80030A, ISL80031, ISL80031A Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest revision. DATE REVISION July 20, 2015 FN8766.0 CHANGE Initial release About Intersil Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets. For the most updated datasheet, application notes, related documentation and related parts, please see the respective product information page found at www.intersil.com. You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask. Reliability reports are also available from our website at www.intersil.com/support For additional products, see www.intersil.com/en/products.html Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com Submit Document Feedback 19 FN8766.0 July 20, 2015 ISL80030, ISL80030A, ISL80031, ISL80031A Package Outline Drawing L8.2x2E 8 LEAD DUAL FLAT NO-LEAD PLASTIC PACKAGE (DFN) WITH E-PAD Rev 0, 5/15 2.00 6 PIN #1 INDEX AREA A B 6 PIN 1 INDEX AREA 8 1 0.50 2.00 1.45±0.050 Exp.DAP (4X) 0.15 0.10 M C A B 0.25 ( 8x0.30 ) TOP VIEW 0.80±0.050 Exp.DAP BOTTOM VIEW (8x0.20) Package Outline (8x0.30) SEE DETAIL "X" (6x0.50) 1.45 2.00 0.10 C 0.90 ±0.10 C BASE PLANE SEATING PLANE 0.08 C SIDE VIEW (8x0.25) 0.80 2.00 TYPICAL RECOMMENDED LAND PATTERN C 0.2 REF 0.00 MIN. 0.05 MAX. DETAIL "X" NOTES: 1. Dimensions are in millimeters. Dimensions in ( ) for Reference Only. 2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994. 3. Unless otherwise specified, tolerance : Decimal ± 0.05 4. Dimension b applies to the metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip. 5. Tiebar shown (if present) is a non-functional feature. 6. The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1 identifier may be either a mold or mark feature. Submit Document Feedback 20 FN8766.0 July 20, 2015