Maxim MAX4583EUE Low-voltage, cmos analog multiplexers/switch Datasheet

19-1328; Rev 1; 10/99
Low-Voltage, CMOS Analog
Multiplexers/Switches
____________________________Features
The MAX4581/MAX4582/MAX4583 are low-voltage,
CMOS analog ICs configured as an 8-channel multiplexer
(MAX4581), two 4-channel multiplexers (MAX4582), and
three single-pole/double-throw (SPDT) switches
(MAX4583).
These CMOS devices can operate continuously with
±2V to ±6V dual power supplies or a +2V to +12V single supply. Each switch can handle Rail-to-Rail® analog signals. The off-leakage current is only 1nA at
+25°C or 5nA at +85°C.
♦ Pin Compatible with Industry-Standard
74HC4051/74HC4052/74HC4053 and
MAX4051/MAX4052/MAX4053
♦ Offered in Automotive Temperature Range
(-40°C to +125°C)
♦ Guaranteed On-Resistance:
80Ω with ±5V Supplies
150Ω with Single +5V Supply
♦ Guaranteed On-Resistance Match Between
Channels
All digital inputs have 0.8V to 2.4V logic thresholds,
ensuring TTL/CMOS-logic compatibility when using a
single +5V or dual ±5V supplies.
♦ Guaranteed Low Off-Leakage Current:
1nA at +25°C
♦ Guaranteed Low On-Leakage Current:
1nA at +25°C
________________________Applications
Battery-Operated Equipment
♦ +2V to +12V Single-Supply Operation
±2V to ±6V Dual-Supply Operation
Audio and Video Signal Routing
♦ TTL/CMOS-Logic Compatible
Low-Voltage Data-Acquisition Systems
♦ Low Distortion: < 0.02% (600Ω)
♦ Low Crosstalk: < -96dB (50Ω, MAX4582)
Communications Circuits
♦ High Off-Isolation: < -74dB (50Ω)
Automotive
_______________Ordering Information
PART
MAX4581CPE
TEMP. RANGE
PIN-PACKAGE
0°C to +70°C
16 Plastic DIP
MAX4581CSE
0°C to +70°C
16 Narrow SO
MAX4581CUE
0°C to +70°C
16 TSSOP
Ordering Information continued at end of data sheet.
____________________________________Pin Configurations/Functional Diagrams
TOP VIEW
MAX4582
MAX4581
MAX4583
16 VCC
Y0 1
16 VCC
Y1 1
16 VCC
X6 2
15 X2
Y2 2
15 X2
Y0 2
15 Y
X 3
14 X1
Y 3
14 X1
Z1 3
14 X
X7 4
13 X0
Y3 4
13 X
Z 4
13 X1
X5 5
12 X3
Y1 5
12 X0
Z0 5
12 X0
11 A
Enable 6
11 X3
Enable 6
11 A
10 B
VEE 7
VEE 7
10 B
X4 1
Enable 6
VEE 7
GND 8
LOGIC
9
DIP/SO/QSOP/TSSOP
C
GND 8
LOGIC
10 A
9
DIP/SO/QSOP/TSSOP
B
GND 8
9
C
DIP/SO/QSOP/TSSOP
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.
________________________________________________________________ Maxim Integrated Products
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.
For small orders, phone 1-800-835-8769.
MAX4581/MAX4582/MAX4583
________________General Description
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
ABSOLUTE MAXIMUM RATINGS
Voltages Referenced to VEE
VCC .........................................................................-0.3V to 13V
Voltage into Any Terminal (Note 1) ...(VEE - 0.3V) to (VCC + 0.3V)
Continuous Current into Any Terminal..............................±20mA
Peak Current, X_, Y_, Z_
(pulsed at 1ms, 10% duty cycle) ...................................±40mA
ESD per Method 3015.7 ..................................................>2000V
Continuous Power Dissipation (TA = +70°C)
Plastic DIP (derate 10.53mW/°C above +70°C)............842mW
Narrow SO (derate 8.70mW/°C above +70°C)..............696mW
QSOP (derate 8.3mW/°C above +70°C) .......................667mW
TSSOP (derate 6.7mW/°C above +70°C)......................457mW
Operating Temperature Ranges
MAX458_C_ .........................................................0°C to +70°C
MAX458_E_ ......................................................-40°C to +85°C
MAX458_A_.....................................................-40°C to +125°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10sec) .............................+300°C
Note 1: Voltages exceeding VCC or VEE on any signal terminal are clamped by internal diodes. Limit forward-diode current to maximum current rating.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS—Dual Supplies
(VCC = 4.5V to 5.5V, VEE = -4.5V to -5.5V, V_H = 2.4V, V_L = 0.8V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at
TA = +25°C.)
PARAMETER
SYMBOL
CONDITIONS
TEMP
MIN
TYP
MAX
UNITS
(Note 2)
ANALOG SWITCH
Analog-Signal Range
VX, VY, VZ
C, E, A
+25°C
VEE
50
VCC
V
80
Ω
Switch On-Resistance
RON
VCC = 4.5V; VEE = -4.5V;
IX, IY, IZ = 1mA; VX, VY, VZ = 3.5V
Switch On-Resistance
Match Between
Channels (Note 3)
∆RON
VCC = 4.5V; VEE = -4.5V;
IX, IY, IZ = 1mA; VX, VY, VZ = 3.5V
+25°C
Switch On-Resistance
Flatness (Note 4)
RFLAT(ON)
VCC = 5V; VEE = -5V; IX, IY, IZ = 1mA;
VX, VY, VZ = 3V, 0V, -3V
+25°C
X_, Y_, Z_ Off Leakage
(Note 5)
IX_(OFF),
IY_(OFF),
IZ_(OFF)
VCC = 5.5V; VEE = -5.5V;
±
VX_, VY_, VZ_ = ±4.5V; VX, VY, VZ = 4.5V
+25°C
-1
1
C, E, A
-10
10
X, Y, Z Off Leakage
(Note 5)
IX(OFF),
IY(OFF),
IZ(OFF)
VCC = 5.5V; VEE = -5.5V;
VX_, VY_, VZ_ = ±4.5V;
±
VX, VY, VZ = 4.5V
X, Y, Z On Leakage
(Note 5)
IX(ON),
IY(ON),
IZ(ON)
C, E, A
1
C, E, A
MAX4581
MAX4582
MAX4583
MAX4581
VCC = 5.5V; VEE = -5.5V;
VX, VY, VZ = ±4.5V
100
MAX4582
MAX4583
4
Ω
6
4
C, E, A
10
12
Ω
nA
+25°C
-2
2
C, E, A
-100
100
+25°C
-1
1
C, E, A
-50
50
+25°C
-2
2
C, E, A
-100
100
+25°C
-1
1
C, E, A
-50
50
nA
nA
DIGITAL I/O
Logic Input Logic
Threshold High
VAH, VBH,
VCH
C, E, A
Logic Input Logic
Threshold Low
VAL, VBL,
VCL
C, E, A
2
1.5
0.8
1.5
_______________________________________________________________________________________
2.4
V
V
Low-Voltage, CMOS Analog
Multiplexers/Switches
(VCC = 4.5V to 5.5V, VEE = -4.5V to -5.5V, V_H = 2.4V, V_L = 0.8V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at
TA = +25°C.)
PARAMETER
SYMBOL
CONDITIONS
TEMP
MIN
TYP
MAX
UNITS
(Note 2)
Input Current High
IAH, IBH,
ICH
VA, VB, VC = 2.4V
C, E, A
-1
1
µA
Input Current Low
IAL, IBL,
ICL
VA, VB, VC = 0.8V
C, E, A
-1
1
µA
SWITCH DYNAMIC CHARACTERISTICS
Inhibit Turn-On Time
t(ON)
VX_, VY_, VZ_ = 3V; RL = 300Ω; CL = 35pF;
Figure 3
TA = +25°C
Inhibit Turn-Off Time
t(OFF)
VX_, VY_, VZ_ = 3V; RL = 300Ω; CL = 35pF;
Figure 3
TA = +25°C
Address Transition Time
tTRANS
VX_, VY_, VZ_ = ±3V; RL = 300Ω; CL = 35pF;
Figure 2
TA = +25°C
Break-Before-Make Time
tBBM
Charge Injection (Note 6)
Q
4
CX(ON),
CY(ON),
CZ(ON)
VX_, VY_, VZ_ = 0V; f = 1MHz;
Figure 7
VISO
RL = 50Ω, f = 1MHz, Figure 6
RL = 50Ω, f = 1MHz, Figure 6
Total Harmonic
Distortion
THD
RL = 600Ω, 5Vp-p, f = 20Hz to 20kHz
VCC, VEE
VCC = 5.5V, VEE = -5.5V,
VA, VB, VC, VEnable = V+ or 0
ns
5
pC
pF
pF
6
25
TA = +25°C
17
MAX4583
VCT
ns
ns
10
MAX4581
MAX4582
20
ns
18
TA = +25°C
MAX4583
Channel-to-Channel
Crosstalk
ICC, IEE
4
MAX4581
MAX4582
200
200
TA = +25°C
VX_, VY_, VZ_ = 0V; f = 1MHz;
Figure 7
Power-Supply Current
90
C, E, A
0.5
CX(OFF),
CY(OFF),
CZ(OFF)
100
150
TA = +25°C
Output Off Capacitance
POWER SUPPLY
Power-Supply Range
C, E, A
C = 1nF, RS = 0Ω, VS = 0V
VX_, VY_, VZ_ = 0V; f = 1MHz; Figure 7
Off Isolation
40
TA = +25°C
CX_(OFF),
CY_(OFF),
CZ_(OFF)
200
200
VX_, VY_, VZ_ = 3V; RL = 300Ω; CL = 35pF;
Figure 4
Input Off Capacitance
Output On Capacitance
100
C, E, A
pF
12.5
TA = +25°C
-73
MAX4582
TA = +25°C
-96
MAX4583
TA = +25°C
-73
TA = +25°C
0.02
dB
pF
%
C, E, A
±2
±6
TA = +25°C
-1
1
C, E, A
-10
10
V
µA
Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.
Note 3: ∆RON = RON(MAX) - RON(MIN).
Note 4: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified
analog signal ranges; i.e., VX_, VY_, VZ_ = 3V to 0 and 0 to -3V.
Note 5: Leakage parameters are 100% tested at maximum-rated hot operating temperature, and guaranteed by correlation at TA = +25°C.
Note 6: Guaranteed by design, not production tested.
_______________________________________________________________________________________
3
MAX4581/MAX4582/MAX4583
ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
ELECTRICAL CHARACTERISTICS—Single +5V Supply
(VCC = 4.5V to 5.5V, VEE = 0V, V_H = 2.4V, V_L = 0.8V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)
PARAMETER
SYMBOL
CONDITIONS
TEMP
MIN
TYP
MAX
UNITS
(Note 2)
ANALOG SWITCH
Analog-Signal Range
VX_, VY_, VZ_,
VX, VY, VZ
Switch On-Resistance
RON
VCC = 4.5V; IX, IY, IZ = 1mA;
VX, VY, VZ = 3.5V
TA = +25°C
C, E, A
Switch On-Resistance
Match Between
Channels (Note 3)
∆RON
VCC = 4.5V; IX, IY, IZ = 1mA;
VX, VY, VZ = 3.5V
TA = +25°C
TA = +25°C
-1
1
C, E, A
-10
10
TA = +25°C
C, E, A
TA = +25°C
C, E, A
TA = +25°C
C, E, A
TA = +25°C
C, E, A
-2
-100
-1
-50
-2
-100
-1
-50
2
100
1
50
2
100
1
50
C, E, A
VEE
VCC
V
90
150
200
Ω
2
8
C, E, A
X_, Y_, Z_ Off
Leakage (Note 5)
IX_(OFF),
IY_(OFF),
IZ_(OFF)
VCC = 5.5V; VX_, VY_, VZ_ = 1V, 4.5V;
VX, VY, VZ = 4.5V, 1V
X, Y, Z Off Leakage
(Note 5)
IX(OFF),
IY(OFF),
IZ(OFF)
VCC = 5.5V;
VX_, VY_, VZ_ = 1V, 4.5V;
VX, VY, VZ = 4.5V, 1V
X, Y, Z On Leakage
(Note 5)
IX(ON),
IY(ON),
IZ(ON)
VCC = 5.5V;
VX, VY, VZ = 4.5V, 1V
MAX4581
MAX4582
MAX4583
MAX4581
MAX4582
MAX4583
Ω
10
nA
nA
nA
DIGITAL I/O
Logic Input Logic
Threshold High
VAH, VBH, VCH,
VEnableH
C, E, A
Logic Input Logic
Threshold Low
VAL, VBL, VCL,
VEnableL
C, E, A
0.8
Input Current High
IAH, IBH, ICH,
IEnableH
VAL, VBL, VCL, VEnableL = 2.4V
C, E, A
-1
1
µA
Input Current Low
IAL, IBL, ICL,
IEnableL
VAL, VBL, VCL, VEnableL = 0.8V
C, E, A
-1
1
µA
5
200
250
100
150
200
250
pC
SWITCH DYNAMIC CHARACTERISTICS
C = 1nF, RS = 0Ω, VS = 2.5V
Charge Injection (Note 6)
Q
Enable Turn-On Time
t(ON)
VX_, VY_, VZ_ = 3V, RL = 300Ω, CL = 35pF,
Figure 3
Enable Turn-Off Time
t(OFF)
VX_, VY_, VZ_ = 3V, RL = 300Ω, CL = 35pF,
Figure 3
Address Transition
Time
tTRANS
VX_, VY_, VZ_ = 3V/0V, RL = 300Ω,
CL = 35pF, Figure 2
TA = +25°C
TA = +25°C
C, E, A
TA = +25°C
C, E, A
TA = +25°C
C, E, A
Break-Before-Make
Time
tBBM
VX_, VY_, VZ_ = 3V, RL = 300Ω, CL = 35pF,
Figure 4
TA = +25°C
1.5
1.5
0.8
100
40
80
10
2.4
30
V
V
ns
ns
ns
ns
Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.
Note 3: ∆RON = RON(MAX) - RON(MIN).
Note 4: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified
analog signal ranges; i.e., VX_, VY_, VZ_ = 3V to 0 and 0 to -3V.
Note 5: Leakage parameters are 100% tested at maximum-rated hot operating temperature, and guaranteed by correlation at TA = +25°C.
Note 6: Guaranteed by design, not production tested.
4
_______________________________________________________________________________________
Low-Voltage, CMOS Analog
Multiplexers/Switches
(VCC = 2.7V to 3.6V, VEE = 0V, V_H = 2.0V, V_L = 0.5V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)
PARAMETER
SYMBOL
POWER SUPPLY
Power-Supply Range
Power-Supply Current
CONDITIONS
TEMP
VCC, VEE
ICC, IEE
VCC = 3.6V;
VA, VB, VC, VEnable = V+ or 0
MIN
TYP
MAX
UNITS
(Note 2)
C, E, A
TA = +25°C
C, E, A
2
-1
-10
12
1
10
V
C, E, A
VEE
VCC
V
450
550
Ω
µA
ANALOG SWITCH
Analog-Signal Range
VX_, VY_, VZ_,
VX, VY, VZ
Switch On-Resistance
RON
X_, Y_, Z_ Off Leakage
(Note 5)
VCC = 2.7V; IX, IY, IZ = 0.1mA;
VX, VY, VZ = 1.5V
TA = +25°C
C, E, A
IX_(OFF),
IY_(OFF),
IZ_(OFF)
VCC = 3.6V; VX_, VY_, VZ_ = 1V, 3V;
VX, VY, VZ = 3V, 1V
TA = +25°C
-1
1
C, E, A
-10
10
X, Y, Z Off Leakage
(Note 6)
IX(OFF),
IY(OFF),
IZ(OFF)
VCC = 3.6V;
VX_, VY_, VZ_ = 1V, 3.0V;
VX, VY, VZ = 3.0V, 1V
X, Y, Z On Leakage
(Note 6)
IX(ON),
IY(ON),
IZ(ON)
VCC = 3.6V;
VX, VY, VZ = 3.0V, 1V
TA = +25°C
C, E, A
TA = +25°C
C, E, A
TA = +25°C
C, E, A
TA = +25°C
C, E, A
-2
-100
-1
-50
-2
-100
-1
-50
2
100
1
50
2
100
1
50
MAX4581
MAX4582
MAX4583
MAX4581
MAX4582
MAX4583
190
nA
nA
nA
DIGITAL I/O
Logic Input Logic
Threshold High
VAH, VBH, VCH,
VEnableH
C, E, A
Logic Input Logic
Threshold Low
VAL, VBL, VCL,
VEnableL
C, E, A
0.5
Input Current High
IAH, IBH, ICH,
IEnableH
VA, VB, VC = VEnable = 2.0V
C, E, A
-1
1
µA
Input Current Low
IAL, IBL, ICL,
IEnableL
VA, VB, VC = VEnable = 0.5V
C, E, A
-1
1
µA
1.0
SWITCH DYNAMIC CHARACTERISTICS (Note 6)
SWITCH DYNAMIC CHARACTERISTICS
VX_, VY_, VZ_ = 1.5V; RL = 300Ω;
Enable Turn-On Time
t(ON)
CL = 35pF; Figure 3
Enable Turn-Off Time
t(OFF)
Address Transition
Time
tTRANS
Break-Before-Make Time
POWER SUPPLY
Power-Supply Current
tBBM
ICC, IEE
TA = +25°C
C, E, A
TA = +25°C
VX_, VY_, VZ_ = 1.5V; RL = 300Ω;
CL = 35pF; Figure 3
C, E, A
TA = +25°C
VX_, VY_, VZ_ = 1.5V/0V; RL = 300Ω;
CL = 35pF; Figure 2
C, E, A
VX_, VY_, VZ_ = 1.5V; RL = 300Ω; CL = 35pF TA = +25°C
15
TA = +25°C
C, E, A
-1
-10
VCC = 3.6V,
VA, VB, VC, VEnable = V+ or 0
2.0
1.0
170
50
130
V
V
300
400
200
300
300
400
40
ns
ns
ns
ns
1
10
µA
Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.
Note 5: Leakage parameters are 100% tested at maximum-rated hot operating temperature, and guaranteed by correlation at TA = +25°C.
Note 6: Guaranteed by design, not production tested.
_______________________________________________________________________________________
5
MAX4581/MAX4582/MAX4583
ELECTRICAL CHARACTERISTICS—Single +3V Supply
Typical Operating Characteristics
(VCC = 5V, VEE = -5V, GND = 0V, TA = +25°C, unless otherwise noted.)
ON-RESISTANCE vs.
VX, VY, VZ AND TEMPERATURE
(DUAL SUPPLIES)
TA = +85°C
55
VCC = 2.7V,
VEE = -2.7V
VCC = 1.2V
TA = +70°C
35
TA = +25°C
25
VCC = 3.3V,
VEE = -3.3V
VCC = 5V,
VEE = -5V
VCC = 2.7V
VCC = 3.3V
VCC = 5V
100
VCC = 10V
10
5
-3 -2
-1
0
1
2
3
4
-5
5
-4
-3
-2
-1
0
1
2
3
4
0
5
3
4
TA = +85°C
TA = +70°C
110
5
6
7
OFF LEAKAGE vs.
TEMPERATURE
100
MAX4581toc04
130
VCC = 5.5V
VEE = -5.5V
10
TA = +25°C
OFF LEAKAGE (nA)
RON (Ω)
2
VX, VY, VZ (V)
ON-RESISTANCE vs.
VX, VY, VZ AND TEMPERATURE
(SINGLE SUPPLY)
90
1
VX, VY, VZ (V)
VX, VY, VZ (V)
MAX4581/2/3-05
-4
VCC = 7.5V
TA = 0°C
TA = -40°C
15
10
-5
VCC = 2V
1000
RON (Ω)
45
RON (Ω)
VCC = 2V,
VEE = -2V
10,000
MAX4581toc02
VCC = 1.2V,
VEE = -1.2V
100
65
MAX4581/2/3 toc01
1000
ON-RESISTANCE vs. VX, VY, VZ
(SINGLE SUPPLY)
MAX4581 toc03
ON-RESISTANCE vs. VX, VY, VZ
(DUAL SUPPLIES)
RON (Ω)
70
50
TA = -40°C
TA = 0°C
1
IX, IY, IZ
0.1
30
IX_, IY_, IZ_
10
0
0.01
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
-50
-25
VX, VY, VZ (V)
ON LEAKAGE vs.
TEMPERATURE
0
25
50
75
TEMPERATURE (°C)
100
125
CHARGE INJECTION vs. VX, VY, VZ
VCC = 5.5V
VEE = -5.5V
10,000
MAX4581-07
1.5
MAX4581/2/3-toc-6
100,000
1.0
0.5
0
1,000
Q (pC)
ON LEAKAGE (pA)
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
100
-0.5
VCC = 5V
VEE = 0V
-1.0
VCC = 5V
VEE = -5V
-1.5
10
-2.0
-2.5
1
-50
6
-25
0
25
50
75
TEMPERATURE (°C)
100
125
-5
-4
-3
-2
-1
0
1
2
3
VX, VY, VZ (V)
_______________________________________________________________________________________
4
5
8
9
10
Low-Voltage, CMOS Analog
Multiplexers/Switches
SUPPLY CURRENT vs.
TEMPERATURE
FREQUENCY RESPONSE
VCC = 5V
VEE = -5V
VA, VB,VC,VEnable = 0V, 5V
LOSS (dB)
IEE
1
0.1
0.01
0
25
50
75
TEMPERATURE (°C)
100
60
40
OFF LOSS
20
0
-50
-60
-70
-80
-20
-40
ON PHASE
-90
-100
-60
-80
-110
-120
-110
-120
125
0.1
1
10
PHASE (DEGREES)
ICC, IEE (nA)
80
-30
-40
ICC
-25
120
100
ON LOSS
-20
10
-50
MAX4581-09
0
-10
MAX4581/2/3-08
100
100
FREQUENCY (MHz)
VCC CURRENT vs. LOGIC LEVEL
(VA, VB, VC, VEnable)
TOTAL HARMONIC DISTORTION
vs. FREQUENCY
600Ω IN AND OUT
MAX4581-11
1
MAX4581-10
100
10-1
10-2
10
VCC = 12V
10-3
ICC (A)
1
10-5
10-6
VCC = 5V
10-7
10-8
0.1
10-9
10-10
10-11
0.01
100
1k
10k
0
100k
1
2
3
4
5
6
7
8
9 10 11 12
VA, VB, VC, VEnable
FREQUENCY (Hz)
LOGIC-LEVEL THRESHOLD vs. VCC
3.0
MAX4581toc12
10
2.5
VA, VB, VC, VEnable (V)
THD (%)
10-4
2.0
1.5
1.0
0.5
0
0
1
2
3
4
5
6
7
8
9 10 11 12
VCC (V)
_______________________________________________________________________________________
7
MAX4581/MAX4582/MAX4583
Typical Operating Characteristics (continued)
(VCC = 5V, VEE = -5V, GND = 0V, TA = +25°C, unless otherwise noted.)
Low-Voltage, CMOS Analog
Multiplexers/Switches
MAX4581/MAX4582/MAX4583
Pin Description
PIN
NAME
FUNCTION
MAX4581
MAX4582
MAX4583
13, 14, 15,
12, 1, 5, 2, 4
—
—
X0–X7
3
—
—
—
—
—
—
—
12, 14, 15, 11
13
—
—
—
—
—
—
14
13
12
1
2
X
X0, X1, X2, X3
X
X1
X0
Y1
Y0
6
6
6
Enable
7
7
7
VEE
Negative Analog Supply-Voltage Input. Connect to GND for
single-supply operation.
8
8
8
GND
Ground. Connect to digital ground. (Analog signals have no
ground reference; they are limited to VCC and VEE.)
11
10
9
—
—
—
—
—
16
10
9
—
1, 5, 2, 4
3
—
—
—
16
11
10
9
—
15
5
3
4
16
A
B
C
Y0, Y1, Y2, Y3
Y
Z0
Z1
Z
VCC
Analog Switch Inputs 0–7
Analog Switch Output
Analog Switch “X” Inputs 0–3
Analog Switch “X” Output
Analog Switch “X” Normally Open Input
Analog Switch “X” Normally Closed Input
Analog Switch “Y” Normally Open Input
Analog Switch “Y” Normally Closed Input
Digital Enable Input. Normally connect to GND. Can be driven
to logic high to set all switches off.
Digital Address “A” Input
Digital Address “B” Input
Digital Address “C” Input
Analog Switch “Y” Inputs 0–3
Analog Switch “Y” Output
Analog Switch “Z” Normally Closed Input
Analog Switch “Z” Normally Open Input
Analog Switch “Z” Output
Positive Analog and Digital Supply Voltage Input
Note: Input and output pins are identical and interchangeable. Any may be considered an input or output; signals pass equally well
in both directions.
__________Applications Information
Power-Supply Considerations
Overview
The MAX4581/MAX4582/MAX4583 construction is typical of most CMOS analog switches. They have three
supply pins: VCC, VEE, and GND. VCC and VEE are used
to drive the internal CMOS switches and set the limits of
the analog voltage on any switch. Reverse ESDprotection diodes are internally connected between
each analog-signal pin and both VCC and VEE. If any
analog signal exceeds VCC or VEE, one of these diodes
will conduct. During normal operation, these and other
reverse-biased ESD diodes leak, forming the only current drawn from VCC or VEE.
8
Virtually all the analog leakage current comes from the
ESD diodes. Although the ESD diodes on a given signal
pin are identical and therefore fairly well balanced, they
are reverse biased differently. Each is biased by either
VCC or VEE and the analog signal. This means their
leakages will vary as the signal varies. The difference in
the two diode leakages to the VCC and VEE pins constitutes the analog-signal-path leakage current. All analog
leakage current flows between each pin and one of the
supply terminals, not to the other switch terminal. This is
why both sides of a given switch can show leakage currents of either the same or opposite polarity.
There is no connection between the analog-signal
paths and GND.
_______________________________________________________________________________________
Low-Voltage, CMOS Analog
Multiplexers/Switches
SELECT INPUTS
MAX4581/MAX4582/MAX4583
Table 1. Truth Table/Switch Programming
ON SWITCHES
ENABLE
INPUT
C*
B
A
MAX4581
MAX4582
MAX4583
H
X
X
X
All switches open
All switches open
All switches open
L
L
L
L
X–X0
X–X0,
Y–Y0
X–X0,
Y–Y0,
Z–Z0
L
L
L
H
X–X1
X–X1,
Y–Y1
X–X1,
Y–Y0,
Z–Z0
L
L
H
L
X–X2
X–X2,
Y–Y2
X–X0,
Y–Y1,
Z–Z0
L
L
H
H
X–X3
X–X3,
Y–Y3
X–X1,
Y–Y1,
Z–Z0
L
H
L
L
X–X4
X–X0,
Y–Y0
X–X0,
Y–Y0,
Z–Z1
L
H
L
H
X–X5
X–X1,
Y–Y1
X–X1,
Y–Y0,
Z–Z1
L
H
H
L
X–X6
X–X2,
Y–Y2
X–X0,
Y–Y1,
Z–Z1
L
H
H
H
X–X7
X–X3,
Y–Y3
X–X1,
Y–Y1,
Z–Z1
X = Don’t care
*C not present on MAX4582.
Note: Input and output pins are identical and interchangeable. Either may be considered an input or output; signals pass equally
well in either direction.
VCC and GND power the internal logic and logic-level
translators, and set the input logic limits. The logic-level
translators convert the logic levels into switched VCC
and VEE signals to drive the gates of the analog signals. This drive signal is the only connection between
the logic supplies and signals and the analog supplies.
VCC and VEE have ESD-protection diodes to GND.
The logic-level thresholds are TTL/CMOS compatible
when VCC is +5V. As VCC rises, the threshold increases
slightly, so when VCC reaches +12V the threshold is
about 3.1V (above the TTL-guaranteed high-level minimum of 2.8V, but still compatible with CMOS outputs).
Bipolar Supplies
These devices operate with bipolar supplies between
±2V and ±5V. The VCC and VEE supplies need not be
symmetrical, but their sum cannot exceed the +13V
absolute maximum rating
Single Supply
These devices operate from a single supply between
+2V and +12V when VEE is connected to GND. All of
the bipolar precautions must be observed. At room
temperature, they actually “work” with a single supply
near or below +1.7V, although as supply voltage
decreases, switch on-resistance and switching times
become very high.
_______________________________________________________________________________________
9
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
Overvoltage Protection
Proper power-supply sequencing is recommended for
all CMOS devices. Do not exceed the absolute maximum ratings because stresses beyond the listed ratings can cause permanent damage to the devices.
Always sequence VCC on first, then VEE, followed by
the logic inputs and analog signals. If power-supply
sequencing is not possible, add two small signal diodes
(D1, D2) in series with the supply pins for overvoltage
protection (Figure 1).
Adding diodes reduces the analog-signal range to one
diode drop below VCC and one diode drop above VEE,
but does not affect the devices’ low switch resistance
and low leakage characteristics. Device operation is
unchanged, and the difference between VCC and VEE
should not exceed 13V. These protection diodes are
not recommended when using a single supply if signal
levels must extend to ground.
High-Frequency Performance
In 50Ω systems, signal response is reasonably flat up
to 50MHz (see Typical Operating Characteristics ).
Above 20MHz, the on response has several minor
peaks which are highly layout dependent. The problem
is not turning the switch on, but turning it off. The offstate switch acts like a capacitor and passes higher
frequencies with less attenuation. At 10MHz, off isolation is about -50dB in 50Ω systems, becoming worse
(approximately 20dB per decade) as frequency increases. Higher circuit impedances also degrade off
isolation. Adjacent channel attenuation is about 3dB
above that of a bare IC socket and is entirely due to
capacitive coupling.
Pin Nomenclature
The MAX4581/MAX4582/MAX4583 are pin-compatible
with the industry-standard 74HC4051/74HC4052/
74HC4053 and the MAX4051/MAX4052/MAX4053.
They function identically and have identical logic diagrams, although these parts differ electrically.
10
VCC
D1
EXTERNAL
BLOCKING DIODE
MAX4581
MAX4582
MAX4583
VCC
X, Y, Z
*
*
*
*
X_, Y_, Z_
VEE
D2
EXTERNAL
BLOCKING DIODE
VEE
*INTERNAL PROTECTION DIODES
Figure 1. Overvoltage Protection Using External Blocking
Diodes
The pin designations and logic diagrams in this data
sheet conform to the original 1972 specifications published by RCA for the CD4051/CD4052/CD4053. These
designations differ from the standard Maxim switch and
mux designations as found all other Maxim data sheets
(including the MAX4051/MAX4052/MAX4053) and may
cause confusion. Designers who feel more comfortable
with Maxim’s standard designations are advised that
the pin designations and logic diagrams on the
MAX4051/MAX4052/MAX4053 data sheet may be freely
applied to the MAX4581/MAX4582/MAX4583.
______________________________________________________________________________________
Low-Voltage, CMOS Analog
Multiplexers/Switches
VCC
VA, VB, VC
50Ω
A
VA, VB, VC
VCC
X0
B
VCC
X1–X6
VX0
X7
Enable
90%
VEE
VOUT
X
GND
50%
0V
C
MAX4581
VCC
VEE
0V
VOUT
35pF
90%
VX7
300Ω
VEE
tTRANS
tTRANS
VCC
VA, VB
50Ω
A
B
VA, VB
VCC
X0, Y0
VCC
VX0,
VY0
MAX4582 X3, Y3
90%
VEE
X, Y
GND
50%
0V
X1, X2, Y1, Y2
Enable
VCC
VOUT
VEE
35pF
0V
VOUT
90%
VX3,
VY3
300Ω
VEE
tTRANS
tTRANS
VCC
VA, VB, VC
VCC
VA, VB, VC
X1, Y1, Z1
A, B, C
VEE
VX0,
VY0,
VZ0
MAX4583
Enable
GND
VCC
X, Y, Z
VEE
VOUT
35pF
300Ω
VEE
50%
0V
50Ω
X2, Y2, Z2
VCC
90%
0V
VOUT
90%
VX1,
VY1,
VZ1
tTRANS
tTRANS
VEE = 0V FOR SINGLE-SUPPLY OPERATION.
TEST EACH SECTION INDIVIDUALLY.
Figure 2. Address Transition Times
______________________________________________________________________________________
11
MAX4581/MAX4582/MAX4583
______________________________________________Test Circuits/Timing Diagrams
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
_________________________________Test Circuits/Timing Diagrams (continued)
VCC
A
VEnable
VCC
X0
B
VCC
VCC
50%
0V
X1–X7
VX0
C
90%
MAX4581
VEnable
Enable
VOUT
X
GND
50Ω
VEE
VOUT
90%
35pF
0V
300Ω
VEE
tOFF
tON
VCC
A
B
VEnable
VCC
X0, Y0
VCC
VCC
50%
0V
X1–X3, Y1–Y3
VX0,
VY0
90%
MAX4582
VEnable
Enable
X, Y
GND
VOUT
VEE
50Ω
35pF
VOUT
90%
0V
300Ω
VEE
tOFF
tON
VCC
A
B
C
VCC
VEnable
X1, Y1, Z1
VCC
0V
VEE
VX0,
VY0,
VZ0
MAX4583
X0, Y0, Z0
VEnable
Enable
X, Y, Z
GND
VOUT
VEE
50Ω
35pF
300Ω
VEE
VCC
50%
90%
VOUT
90%
VX1,
VY1,
VZ1
tON
VEE = 0V FOR SINGLE-SUPPLY OPERATION.
TEST EACH SECTION INDIVIDUALLY.
Figure 3. Inhibit Switching Times
12
______________________________________________________________________________________
tOFF
Low-Voltage, CMOS Analog
Multiplexers/Switches
VCC
VCC
VA, VB, VC
VCC
A
50Ω
VA, VB
X0–X7
B
VCC
A
VCC
X0–X3,
Y0–Y3
B
50Ω
VCC
C
MAX4582
MAX4581
Enable
VOUT
X
GND
VEE
Enable
X, Y
GND
35pF
VOUT
VEE
35pF
300Ω
300Ω
VEE
VEE
VCC
VA, VB, VC
VCC
X0, X1, Y0,
Y1, Z0, Z1
A, B, C
tR < 20ns
tF < 20ns
V+
VA, VB, VC
VCC
0V
50Ω
VX, VY, VZ
MAX4583
Enable
80%
X, Y, Z
GND
50%
VOUT
VEE
35pF
300Ω
VEE
VOUT
0V
VEE = 0V FOR SINGLE-SUPPLY OPERATION.
TEST EACH SECTION INDIVIDUALLY.
tBBM
Figure 4. Break-Before-Make Interval
VCC
VCC
X_, Y_, Z_
A
CHANNEL
SELECT
VEnable
VCC
0V
B
C
VEnable
MAX4581
MAX4582
MAX4583
Enable
GND
50Ω
X, Y, Z
VEE
VEE
VEE = 0V FOR SINGLE-SUPPLY OPERATION.
TEST EACH SECTION INDIVIDUALLY.
VOUT
∆ VOUT
VOUT
CL = 1000pF
∆ VOUT IS THE MEASURED VOLTAGE DUE TO CHARGE
TRANSFER ERROR Q WHEN THE CHANNEL TURNS OFF.
Q = ∆ VOUT X CL
Figure 5. Charge Injection
______________________________________________________________________________________
13
MAX4581/MAX4582/MAX4583
_________________________________Test Circuits/Timing Diagrams (continued)
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
_________________________________Test Circuits/Timing Diagrams (continued)
VCC 10nF
VCC
A
CHANNEL
SELECT
VIN
NETWORK
ANALYZER
50Ω
50Ω
X_, Y_, Z_
OFF ISOLATION = 20log
VIN
B
C
MAX4581
MAX4582
MAX4583
Enable
GND
ON LOSS = 20log
VOUT
X, Y, Z
VEE
MEAS.
REF.
CROSSTALK = 20log
50Ω
50Ω
10nF
VEE
MEASUREMENTS ARE STANDARDIZED AGAINST SHORT AT SOCKET TERMINALS.
OFF ISOLATION IS MEASURED BETWEEN COM AND "OFF" NO TERMINAL ON EACH SWITCH.
ON LOSS IS MEASURED BETWEEN COM AND "ON" NO TERMINAL ON EACH SWITCH.
CROSSTALK (MAX4582/MAX4583) IS MEASURED FROM ONE CHANNEL (A, B, C) TO ALL OTHER CHANNELS.
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.
Figure 6. Off Isolation, On Loss, and Crosstalk
VCC
A
CHANNEL
SELECT
VCC
X_, Y_, Z_
B
C
Enable
MAX4581
MAX4582
MAX4583
GND
X, Y, Z
VEE
1MHz
CAPACITANCE
ANALYZER
VEE
Figure 7. Capacitance
14
VOUT
______________________________________________________________________________________
VOUT
VIN
VOUT
VIN
Low-Voltage, CMOS Analog
Multiplexers/Switches
PART
MAX4581CEE
MAX4581C/D
MAX4581EPE
MAX4581ESE
TEMP. RANGE
0°C to +70°C
0°C to +70°C
-40°C to +85°C
-40°C to +85°C
PIN-PACKAGE
16 QSOP
Dice*
16 Plastic DIP
16 Narrow SO
MAX4581EUE
MAX4581EEE
MAX4581ASE
MAX4581AUE
MAX4582CPE
-40°C to +85°C
-40°C to +85°C
-40°C to +125°C
-40°C to +125°C
0°C to +70°C
16 TSSOP
16 QSOP
16 Narrow SO
16 TSSOP
16 Plastic DIP
MAX4582CSE
0°C to +70°C
16 Narrow SO
MAX4582CUE
MAX4582CEE
MAX4582C/D
MAX4582EPE
MAX4582ESE
0°C to +70°C
0°C to +70°C
0°C to +70°C
-40°C to +85°C
-40°C to +85°C
16 TSSOP
16 QSOP
Dice*
16 Plastic DIP
16 Narrow SO
PART
TEMP. RANGE
PIN-PACKAGE
MAX4582EUE
MAX4582EEE
MAX4582ASE
MAX4582AUE
-40°C to +85°C
-40°C to +85°C
-40°C to +125°C
-40°C to +125°C
16 TSSOP
16 QSOP
16 Narrow SO
16 TSSOP
MAX4583CPE
MAX4583CSE
MAX4583CUE
MAX4583CEE
MAX4583C/D
MAX4583EPE
MAX4583ESE
0°C to +70°C
0°C to +70°C
0°C to +70°C
0°C to +70°C
0°C to +70°C
-40°C to +85°C
-40°C to +85°C
16 Plastic DIP
16 Narrow SO
16 TSSOP
16 QSOP
Dice*
16 Plastic DIP
16 Narrow SO
MAX4583EUE
-40°C to +85°C
16 TSSOP
MAX4583EEE
-40°C to +85°C
16 QSOP
MAX4583ASE
-40°C to +125°C
16 Narrow SO
MAX4583AUE
-40°C to +125°C
16 TSSOP
*Contact factory for availability.
__________________________________________________________Chip Topographies
MAX4581
X6
X4
VCC
MAX4582
X2
Y2
Y0
VCC
X2
X1
X
X1
Y
N.C.
X7
X
Y3
X0
X5
X0
Y1
X3
X3
0.069"
(1.75mm)
0.069"
(1.75mm)
A
A
Enable
Enable
VEE
GND
C
0.053"
(1.35mm)
VEE
B
GND B
0.053"
(1.35mm)
N.C.
N.C. = NO CONNECTION
TRANSISTOR COUNT: 219
SUBSTRATE CONNECTED TO V+.
TRANSISTOR COUNT: 219
SUBSTRATE CONNECTED TO V+.
______________________________________________________________________________________
15
MAX4581/MAX4582/MAX4583
_Ordering Information (continued)
____Chip Topographies (continued)
MAX4583
Y0
Y1
VCC
Y
X
Z1
N.C.
Z
X1
Z0
X0
0.069"
(1.75mm)
A
Enable
VEE
GND C
0.053"
(1.35mm)
B
N.C. = NO CONNECTION
TRANSISTOR COUNT: 219
SUBSTRATE CONNECTED TO V+.
________________________________________________________Package Information
TSSOP.EPS
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 1999 Maxim Integrated Products
Printed USA
is a registered trademark of Maxim Integrated Products.
Similar pages