TI CD54HC192 High-speed cmos logic presettable synchronous 4-bit up/down counter Datasheet

[ /Title
(CD74
HC192
,
CD74
HC193
,
CD74
HCT19
3)
/Subject
(High
Speed
CMOS
Logic
Preset-
CD54/74HC192,
CD54/74HC193, CD54/74HCT193
Data sheet acquired from Harris Semiconductor
SCHS163F
September 1997 - Revised October 2003
High-Speed CMOS Logic
Presettable Synchronous 4-Bit Up/Down Counters
Features
Presetting the counter to the number on the preset data inputs
(P0-P3) is accomplished by a LOW asynchronous parallel
load input (PL). The counter is incremented on the low-to-high
transition of the Clock-Up input (and a high level on the ClockDown input) and decremented on the low to high transition of
the Clock-Down input (and a high level on the Clock-up input).
A high level on the MR input overrides any other input to clear
the counter to its zero state. The Terminal Count up (carry)
goes low half a clock period before the zero count is reached
and returns to a high level at the zero count. The Terminal
Count Down (borrow) in the count down mode likewise goes
low half a clock period before the maximum count (9 in the
192 and 15 in the 193) and returns to high at the maximum
count. Cascading is effected by connecting the carry and
borrow outputs of a less significant counter to the Clock-Up
and Clock-Down inputs, respectively, of the next most
significant counter.
• Synchronous Counting and Asynchronous
Loading
• Two Outputs for N-Bit Cascading
• Look-Ahead Carry for High-Speed Counting
• Fanout (Over Temperature Range)
- Standard Outputs . . . . . . . . . . . . . . . 10 LSTTL Loads
- Bus Driver Outputs . . . . . . . . . . . . . 15 LSTTL Loads
• Wide Operating Temperature Range . . . -55oC to 125oC
• Balanced Propagation Delay and Transition Times
• Significant Power Reduction Compared to LSTTL
Logic ICs
• HC Types
- 2V to 6V Operation
- High Noise Immunity: NIL = 30%, NIH = 30% of VCC
at VCC = 5V
If a decade counter is preset to an illegal state or assumes an
illegal state when power is applied, it will return to the normal
sequence in one count as shown in state diagram.
• HCT Types
- 4.5V to 5.5V Operation
- Direct LSTTL Input Logic Compatibility,
VIL= 0.8V (Max), VIH = 2V (Min)
- CMOS Input Compatibility, Il ≤ 1µA at VOL, VOH
Ordering Information
PART NUMBER
Description
The ’HC192, ’HC193 and ’HCT193 are asynchronously
presettable BCD Decade and Binary Up/Down synchronous
counters, respectively.
Pinout
CD54HC192, CD54HC193, CD54HCT193 (CERDIP)
CD74HC192 (PDIP, SOP, TSSOP)
CD74HC193 (PDIP, SOIC)
CD74HCT193 (PDIP)
TOP VIEW
P1 1
16 VCC
Q1 2
15 P0
Q0 3
14 MR
CPD 4
13 TCD
CPU 5
12 TCU
Q2 6
11 PL
Q3 7
10 P2
GND 8
9 P3
© 2003, Texas Instruments Incorporated
PACKAGE
CD54HC192F3A
-55 to 125
16 Ld CERDIP
CD54HC193F3A
-55 to 125
16 Ld CERDIP
CD54HCT193F3A
-55 to 125
16 Ld CERDIP
CD74HC192E
-55 to 125
16 Ld PDIP
CD74HC192NSR
-55 to 125
16 Ld SOP
CD74HC192PW
-55 to 125
16 Ld TSSOP
CD74HC192PWR
-55 to 125
16 Ld TSSOP
CD74HC192PWT
-55 to 125
16 Ld TSSOP
CD74HC193E
-55 to 125
16 Ld PDIP
CD74HC193M
-55 to 125
16 Ld SOIC
CD74HC193MT
-55 to 125
16 Ld SOIC
CD74HC193M96
-55 to 125
16 Ld SOIC
CD74HCT193E
-55 to 125
16 Ld PDIP
NOTE: When ordering, use the entire part number. The suffixes 96
and R denote tape and reel. The suffix T denotes a small-quantity
reel of 250.
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright
TEMP. RANGE
(oC)
1
CD54/74HC192, CD54/74HC193, CD54/74HCT193
Functional Diagram
BCD/BINARY
PRESET
P0
15
ASYN.
PARALLEL
LOAD
ENABLE
PL
P1
1
P2
10
P3
9
3
11
Q0
2
MASTER 14
RESET
CLOCK UP
CLOCK DOWN
Q1
6
Q2
7
5
BCD (192)
BINARY (193)
OUTPUTS
Q3
12 TERMINAL
COUNT UP
13
TERMINAL
COUNT DOWN
4
TRUTH TABLE
CLOCK UP
CLOCK
DOWN
RESET
PARALLEL
LOAD
↑
H
L
H
Count Up
H
↑
L
H
Count Down
X
X
H
X
Reset
X
X
L
L
Load Preset Inputs
FUNCTION
H = High Voltage Level, L = Low Voltage Level, X = Don’t Care, ↑ = Transition from Low to
High Level
2
CD54/74HC192, CD54/74HC193, CD54/74HCT193
Absolute Maximum Ratings
Thermal Information
DC Supply Voltage, VCC . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to 7V
DC Input Diode Current, IIK
For VI < -0.5V or VI > VCC + 0.5V . . . . . . . . . . . . . . . . . . . . . .±20mA
DC Output Diode Current, IOK
For VO < -0.5V or VO > VCC + 0.5V . . . . . . . . . . . . . . . . . . . .±20mA
DC Output Source or Sink Current per Output Pin, IO
For VO > -0.5V or VO < VCC + 0.5V . . . . . . . . . . . . . . . . . . . .±25mA
DC VCC or Ground Current, ICC or IGND . . . . . . . . . . . . . . . . . .±50mA
Package Thermal Impedance, θJA (see Note 1):
E (PDIP) Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67oC/W
M (SOIC) Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73oC/W
NS (SOP) Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64oC/W
PW (TSSOP) Package . . . . . . . . . . . . . . . . . . . . . . . . . 108oC/W
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . 150oC
Maximum Storage Temperature Range . . . . . . . . . .-65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . 300oC
(SOIC - Lead Tips Only)
Operating Conditions
Temperature Range (TA) . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC
Supply Voltage Range, VCC
HC Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2V to 6V
HCT Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.5V to 5.5V
DC Input or Output Voltage, VI, VO . . . . . . . . . . . . . . . . . 0V to VCC
Input Rise and Fall Time
2V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000ns (Max)
4.5V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500ns (Max)
6V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400ns (Max)
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. The package thermal impedance is calculated in accordance with JESD 51-7.
DC Electrical Specifications
TEST
CONDITIONS
PARAMETER
SYMBOL
VI (V)
VIH
-
25oC
IO (mA) VCC (V)
-40oC TO 85oC
-55oC TO 125oC
MIN
TYP
MAX
MIN
MAX
MIN
MAX
UNITS
2
1.5
-
-
1.5
-
1.5
-
V
4.5
3.15
-
-
3.15
-
3.15
-
V
6
4.2
-
-
4.2
-
4.2
-
V
HC TYPES
High Level Input
Voltage
Low Level Input
Voltage
High Level Output
Voltage
CMOS Loads
VIL
VOH
-
VIH or
VIL
High Level Output
Voltage
TTL Loads
Low Level Output
Voltage
CMOS Loads
VOL
VIH or
VIL
Low Level Output
Voltage
TTL Loads
Input Leakage
Current
Quiescent Device
Current
-
-
2
-
-
0.5
-
0.5
-
0.5
V
4.5
-
-
1.35
-
1.35
-
1.35
V
6
-
-
1.8
-
1.8
-
1.8
V
-0.02
2
1.9
-
-
1.9
-
1.9
-
V
-0.02
4.5
4.4
-
-
4.4
-
4.4
-
V
-0.02
6
5.9
-
-
5.9
-
5.9
-
V
-4
4.5
3.98
-
-
3.84
-
3.7
-
V
-5.2
6
5.48
-
-
5.34
-
5.2
-
V
0.02
2
-
-
0.1
-
0.1
-
0.1
V
0.02
4.5
-
-
0.1
-
0.1
-
0.1
V
0.02
6
-
-
0.1
-
0.1
-
0.1
V
4
4.5
-
-
0.26
-
0.33
-
0.4
V
5.2
6
-
-
0.26
-
0.33
-
0.4
V
II
VCC or
GND
-
6
-
-
±0.1
-
±1
-
±1
µA
ICC
VCC or
GND
0
6
-
-
8
-
80
-
160
µA
3
CD54/74HC192, CD54/74HC193, CD54/74HCT193
DC Electrical Specifications
(Continued)
TEST
CONDITIONS
SYMBOL
VI (V)
High Level Input
Voltage
VIH
-
-
Low Level Input
Voltage
VIL
-
High Level Output
Voltage
CMOS Loads
VOH
VIH or
VIL
PARAMETER
25oC
IO (mA) VCC (V)
-40oC TO 85oC
-55oC TO 125oC
MIN
TYP
MAX
MIN
MAX
MIN
MAX
UNITS
4.5 to
5.5
2
-
-
2
-
2
-
V
-
4.5 to
5.5
-
-
0.8
-
0.8
-
0.8
V
-0.02
4.5
4.4
-
-
4.4
-
4.4
-
V
-4
4.5
3.98
-
-
3.84
-
3.7
-
V
0.02
4.5
-
-
0.1
-
0.1
-
0.1
V
4
4.5
-
-
0.26
-
0.33
-
0.4
V
HCT TYPES
High Level Output
Voltage
TTL Loads
Low Level Output
Voltage
CMOS Loads
VOL
VIH or
VIL
Low Level Output
Voltage
TTL Loads
Input Leakage
Current
Quiescent Device
Current
Additional Quiescent
Device Current Per
Input Pin: 1 Unit Load
II
VCC to
GND
-
5.5
-
-
±0.1
-
±1
-
±1
µA
ICC
VCC or
GND
-
5.5
-
-
8
-
80
-
160
µA
∆ICC
(Note 2)
VCC
- 2.1
-
4.5 to
5.5
-
100
360
-
450
-
490
µA
NOTE:
2. For dual-supply systems theoretical worst case (VI = 2.4V, VCC = 5.5V) specification is 1.8mA.
HCT Input Loading Table
INPUT
UNIT LOADS
P0-P3
0.4
MR
1.45
PL
0.85
CPU, CPD
1.45
NOTE: Unit Load is ∆ICC limit specified in DC Electrical
Specifications table, e.g. 360µA max at 25oC.
4
CD54/74HC192, CD54/74HC193, CD54/74HCT193
Prerequisite For Switching Specifications
PARAMETER
SYMBOL
HC TYPES
Pulse Width
tW
CPU, CPD
192
tW
CPU, CPD
193
PL
tW
MR
tW
Set-up Time
tSU
Pn to PL
Hold Time
tH
Pn to PL
Hold Time
tH
CPD to CPU or
CPU to CPD
Recovery Time
tREC
PL to CPU, CPD
MR to CPU, CPD
tREC
Maximum Frequency
fMAX
CPU, CPD
192
fMAX
CPU, CPD
193
HCT TYPES
Pulse Width
tW
CPU, CPD
192
CPU, CPD
tW
193
25oC
-40oC TO 85oC
-55oC TO 125oC
VCC
(V)
MIN
TYP
MAX
MIN
MAX
MIN
MAX
UNITS
2
115
-
-
145
-
175
-
ns
4.5
23
-
-
29
-
35
-
ns
6
20
-
-
25
-
30
-
ns
2
100
-
-
125
-
150
-
ns
4.5
20
-
-
25
-
30
-
ns
6
17
-
-
21
-
26
-
ns
2
80
-
-
100
-
120
-
ns
4.5
16
-
-
20
-
24
-
ns
6
14
-
-
17
-
20
-
ns
2
100
-
-
125
-
150
-
ns
4.5
20
-
-
25
-
30
-
ns
6
17
-
-
21
-
26
-
ns
2
80
-
-
100
-
120
-
ns
4.5
16
-
-
20
-
24
-
ns
6
14
-
-
17
-
20
-
ns
2
0
-
-
0
-
0
-
ns
4.5
0
-
-
0
-
0
-
ns
6
0
-
-
0
-
0
-
ns
2
80
-
-
100
-
120
-
ns
4.5
16
-
-
20
-
24
-
ns
6
14
-
-
17
-
20
-
ns
2
80
-
-
100
-
120
-
ns
4.5
16
-
-
20
-
24
-
ns
6
14
-
-
17
-
20
-
ns
2
5
-
-
5
-
5
-
ns
4.5
5
-
-
5
-
5
-
ns
6
5
-
-
5
-
5
-
ns
2
5
-
-
4
-
3
-
MHz
4.5
22
-
-
18
-
15
-
MHz
6
24
-
-
21
-
18
-
MHz
2
5
-
-
4
-
3
-
MHz
4.5
25
-
-
20
-
17
-
MHz
6
29
-
-
24
-
20
-
MHz
2
-
-
-
-
-
-
-
ns
4.5
23
-
-
29
-
35
-
ns
6
-
-
-
-
-
-
-
ns
2
-
-
-
-
-
-
-
ns
4.5
23
-
-
29
-
35
-
ns
6
-
-
-
-
-
-
-
ns
5
CD54/74HC192, CD54/74HC193, CD54/74HCT193
Prerequisite For Switching Specifications
PARAMETER
SYMBOL
PL
VCC
(V)
tW
MR
Hold Time
Hold Time
MR to CPU, CPD
-
-
-
-
ns
-
24
-
ns
6
-
-
-
-
-
-
-
ns
2
-
-
-
-
-
-
-
ns
4.5
20
-
-
25
-
30
-
ns
6
-
-
-
-
-
-
-
ns
2
-
-
-
-
-
-
-
ns
4.5
15
-
-
19
-
22
-
ns
6
-
-
-
-
-
-
-
ns
2
-
-
-
-
-
-
-
ns
4.5
0
-
-
0
-
0
-
ns
6
-
-
-
-
-
-
-
ns
2
-
-
-
-
-
-
-
ns
4.5
16
-
-
20
-
24
-
ns
6
-
-
-
-
-
-
-
ns
2
-
-
-
-
-
-
-
ns
4.5
15
-
-
19
-
22
-
ns
6
-
-
-
-
-
-
-
ns
2
-
-
-
-
-
-
-
ns
4.5
5
-
-
5
-
5
-
ns
6
-
-
-
-
-
-
-
ns
2
-
-
-
-
-
-
-
MHz
4.5
22
-
-
18
-
15
-
MHz
6
-
-
-
-
-
-
-
MHz
fMAX
193
Switching Specifications
PARAMETER
HC TYPES
Propagation Delay
CPU to Qn
2
-
-
-
-
-
-
-
MHz
4.5
22
-
-
18
-
15
-
MHz
6
-
-
-
-
-
-
-
MHz
Input tr, tf = 6ns
SYMBOL
tPLH, tPHL
CPU to TCU
CPD to TCD
UNITS
20
192
CPU, CPD
MAX
-
fMAX
CPU, CPD
MIN
-
tREC
Maximum Frequency
MAX
-
tREC
PL to CPU, CPD
MIN
-
CPU to CPD
Recovery Time
MAX
-
tH
CPD to CPU or
TYP
-55oC TO 125oC
16
tH
Pn to PL
MIN
-40oC TO 85oC
2
tSU
Pn to PL
25oC
4.5
tW
Set-up Time
(Continued)
tPLH, tPHL
tPLH, tPHL
TEST
CONDITIONS
25oC
-40oC TO 85oC -55oC TO 125oC
VCC
(V)
MIN
TYP
MAX
MIN
MAX
MIN
MAX
UNITS
CL = 50pF
2
-
-
125
-
155
-
190
ns
CL = 50pF
4.5
-
-
25
-
31
-
38
ns
CL = 15pF
5
-
10
-
-
-
-
-
ns
CL = 50pF
6
-
21
-
26
-
32
ns
CL = 50pF
2
-
-
125
-
155
-
190
ns
CL = 50pF
4.5
-
-
25
-
31
-
38
ns
CL = 15pF
5
-
10
-
-
-
-
-
ns
CL = 50pF
6
-
-
21
-
26
-
32
ns
CL = 50pF
2
-
-
220
-
270
-
325
ns
CL = 50pF
4.5
-
-
43
-
54
-
65
ns
CL = 15pF
5
-
18
-
-
-
-
-
ns
CL = 50pF
6
-
-
37
-
46
-
55
ns
6
CD54/74HC192, CD54/74HC193, CD54/74HCT193
Switching Specifications
PARAMETER
CPD to Qn
PL to Qn
MR to Qn
Transition Time
Input tr, tf = 6ns (Continued)
SYMBOL
tPLH, tPHL
CL = 50pF
2
CL = 50pF
4.5
CL = 15pF
5
-
CL = 50pF
6
-
CL = 50pF
2
-
CL = 50pF
4.5
CL = 15pF
5
CL = 50pF
6
tPLH, tPHL
tPHL
tTLH, tTHL
VCC
(V)
25oC
TEST
CONDITIONS
MIN
-40oC TO 85oC -55oC TO 125oC
TYP
MAX
MIN
MAX
MIN
MAX
UNITS
-
-
220
-
270
-
325
ns
-
-
43
-
54
-
65
ns
18
-
-
-
-
-
37
-
46
-
55
ns
-
220
-
275
-
330
ns
-
-
44
-
55
-
66
ns
-
18
-
-
-
-
-
ns
-
-
37
-
47
-
56
ns
ns
CL = 50pF
2
-
-
200
-
250
-
300
ns
CL = 50pF
4.5
-
-
40
-
50
-
60
ns
CL = 15pF
5
-
17
-
-
-
-
-
ns
CL = 50pF
6
-
-
34
-
43
-
51
ns
CL = 50pF
2
-
-
75
-
95
-
110
ns
4.5
-
-
15
-
19
-
22
ns
6
-
-
13
-
16
-
19
ns
Q, TCU, TCD
Input Capacitance
CIN
CL = 50pF
-
-
-
10
-
10
-
10
pF
Power Dissipation Capacitance
(Notes 3, 4)
CPD
CL = 15pF
5
-
40
-
-
-
-
-
pF
CL = 50pF
4.5
-
-
27
-
34
-
41
ns
CL = 15pF
5
-
11
-
-
-
-
-
ns
CL = 50pF
4.5
-
-
27
-
34
-
41
ns
HCT TYPES
Propagation Delay
tPLH, tPHL
CPU to TCU
CPU to TCD
tPLH, tPHL
CPU to Qn
tPLH, tPHL
CPD to Qn
tPLH, tPHL
PL to Qn
MR to Qn
Transition Time
tPLH, tPHL
tPHL
tTLH, tTHL
CL = 15pF
5
-
11
-
-
-
-
-
ns
CL = 50pF
4.5
-
-
40
-
50
-
60
ns
CL = 15pF
5
-
17
-
-
-
-
-
ns
CL = 50pF
4.5
-
-
40
-
50
-
60
ns
CL = 15pF
5
-
17
-
-
-
-
-
ns
CL = 50pF
4.5
-
-
46
-
58
-
69
ns
CL = 15pF
5
-
21
-
-
-
-
-
ns
CL = 50pF
4.5
-
-
43
-
54
-
65
ns
CL = 15pF
5
-
18
-
-
-
-
-
ns
CL = 50pF
4.5
-
-
15
-
19
-
22
ns
Input Capacitance
Q, TCU, TCD
CIN
CL = 50pF
-
-
-
10
-
10
-
10
pF
Power Dissipation Capacitance
(Notes 3, 4)
CPD
CL = 15pF
5
-
50
-
-
-
-
-
pF
NOTES:
3. CPD is used to determine the dynamic power consumption, per gate.
4. PD = VCC2 fi + ∑ (CL VCC2) where fi = Input Frequency, CL = Output Load Capacitance, VCC = Supply Voltage.
7
CD54/74HC192, CD54/74HC193, CD54/74HCT193
Test Circuits and Waveforms
MASTER RESET
ASYNCHRONOUS PARALLEL LOAD
P0
PRESET DATA
P1
P2
P3
SEQUENCES:
1. RESET OUTPUTS TO ZERO.
CLOCK UP
2. LOAD (PRESET) TO BCD SEVEN.
3. COUNT UP TO EIGHT, NINE,
CLOCK DOWN
TERMINAL COUNT UP, ZERO,
ONE AND TWO.
Q0
4. COUNT DOWN TO ONE, ZERO,
TERMINAL COUNT DOWN, NINE,
Q1
EIGHT AND SEVEN.
OUTPUTS
Q2
Q3
TERMINAL COUNT UP
TERMINAL COUNT DOWN
0
8
7
RESET PRESET
9
0
1
COUNT UP
2
1
0
9
8
7
COUNT DOWN
FIGURE 1. ’HC192 SYNCHRONOUS DECADE COUNTERS, TYPICAL RESET, PRESET AND COUNT SEQUENCES
8
CD54/74HC192, CD54/74HC193, CD54/74HCT193
Test Circuits and Waveforms
(Continued)
MASTER RESET
ASYNCHRONOUS PARALLEL LOAD
P0
P1
PRESET DATA
P2
P3
SEQUENCES:
1. RESET OUTPUTS TO ZERO.
2. LOAD (PRESET) TO BINARY THIRTEEN.
CLOCK UP
3. COUNT UP TO FOURTEEN,
CLOCK DOWN
FIFTEEN, TERMINAL COUNT UP,
ZERO, ONE AND TWO.
4. COUNT DOWN TO ONE, ZERO,
Q0
TERMINAL COUNT DOWN,
FIFTEEN, FOURTEEN AND
Q1
THIRTEEN.
OUTPUTS
Q2
Q3
TERMINAL COUNT UP
TERMINAL COUNT DOWN
0
NOTES:
1. Master reset overrides load data and clock inputs.
14
13
RESET PRESET
15
0
1
2
1
COUNT UP
0
15
14
13
COUNT DOWN
2. When counting up, clock-down input must be high.
When counting down, clock-up input must be high.
FIGURE 2. ’HC193 SYNCHRONOUS BINARY COUNTERS, TYPICAL RESET, PRESET AND COUNT SEQUENCES
l/fMAX
CPU OR CPD
VS
VS
VS
INPUT LEVEL
INPUT LEVEL
CPU OR CPD
VS
VS
tW
tPHL
VS
Qn
VS
FIGURE 4. CLOCK TO TERMINAL COUNT DELAYS
INPUT LEVEL
Pn
tW
VS
tW
VS
VS
VS
tREC
CPU OR CPD
Qn
VS
TCU OR TCD
VS
FIGURE 3. CLOCK TO OUTPUT DELAYS AND CLOCK PULSE
WIDTH
PL
tPLH
tPHL
tPLH
MR
INPUT LEVEL
VS
VS
VS
CPU OR CPD
INPUT LEVEL
VS
tPHL
Qn
VS
FIGURE 5. PARALLEL LOAD PULSE WIDTH, PARALLEL
LOAD TO OUTPUT DELAYS, AND PARALLEL
LOAD TO CLOCK RECOVERY TIME
INPUT LEVEL
tREC
tW
tPHL
tPLH
VS
VS
INPUT LEVEL
FIGURE 6. MASTER RESET PULSE WIDTH, MASTER RESET
TO OUTPUT DELAY AND MASTER RESET TO
CLOCK RECOVERY TIME
9
Test Circuits and Waveforms
(Continued)
VS
Pn
tSU(H)
PL
Qn
tH
tSU(L)
VS
INPUT LEVEL
tH
VS
INPUT LEVEL
Q=p
Q=p
FIGURE 7. SET-UP AND HOLD TIMES DATA TO PARALLEL LOAD (PL)
DATA INPUT
UP CLOCK
DOWN CLOCK
ASYNCHRONOUS,
PARALLEL LOAD
P0 P1 P2 P3
TCU
CPU
TCD
CPD
PL
MR
Q0 Q1 Q2 Q3
P0 P1 P2 P3
TCU
CPU
TCD
CPD
PL
MR
Q0 Q1 Q2 Q3
BORROW
CARRY
RESET
OUTPUT
FIGURE 8. CASCADED UP/DOWN COUNTER WITH PARALLEL LOAD
0
4
0
15
5
15
5
14
6
14
6
13
7
13
7
8
12
12
1
11
2
10
3
9
1
11
2
10
3
9
4
8
COUNT DOWN
COUNT UP
NOTE: Illegal states in BCD counters corrected in one count.
NOTE: Illegal states in BCD counters corrected in one or two counts.
FIGURE 9. ’HC192, ’HCT193 STATE DIAGRAMS
10
PACKAGE OPTION ADDENDUM
www.ti.com
9-Oct-2007
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
Lead/Ball Finish
MSL Peak Temp (3)
5962-8780801EA
ACTIVE
CDIP
J
16
1
TBD
A42 SNPB
N / A for Pkg Type
5962-9084801MEA
ACTIVE
CDIP
J
16
1
TBD
A42 SNPB
N / A for Pkg Type
9084801MEAS2035
OBSOLETE
CDIP
J
16
TBD
Call TI
CD54HC192F3A
ACTIVE
CDIP
J
16
1
TBD
A42 SNPB
N / A for Pkg Type
CD54HC193F3A
ACTIVE
CDIP
J
16
1
TBD
A42 SNPB
N / A for Pkg Type
CD54HCT193F3A
ACTIVE
CDIP
J
16
1
TBD
A42 SNPB
N / A for Pkg Type
CD74HC192E
ACTIVE
PDIP
N
16
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
CD74HC192EE4
ACTIVE
PDIP
N
16
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
CD74HC192NSR
ACTIVE
SO
NS
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC192NSRE4
ACTIVE
SO
NS
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC192NSRG4
ACTIVE
SO
NS
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC192PW
ACTIVE
TSSOP
PW
16
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC192PWE4
ACTIVE
TSSOP
PW
16
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC192PWG4
ACTIVE
TSSOP
PW
16
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC192PWR
ACTIVE
TSSOP
PW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC192PWRE4
ACTIVE
TSSOP
PW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC192PWRG4
ACTIVE
TSSOP
PW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC192PWT
ACTIVE
TSSOP
PW
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC192PWTE4
ACTIVE
TSSOP
PW
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC192PWTG4
ACTIVE
TSSOP
PW
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC193E
ACTIVE
PDIP
N
16
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
CD74HC193EE4
ACTIVE
PDIP
N
16
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
CD74HC193M
ACTIVE
SOIC
D
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC193M96
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC193M96E4
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC193M96G4
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC193ME4
ACTIVE
SOIC
D
16
CU NIPDAU
Level-1-260C-UNLIM
40
Addendum-Page 1
Green (RoHS &
no Sb/Br)
Call TI
PACKAGE OPTION ADDENDUM
www.ti.com
9-Oct-2007
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
CD74HC193MG4
ACTIVE
SOIC
D
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC193MT
ACTIVE
SOIC
D
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC193MTE4
ACTIVE
SOIC
D
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC193MTG4
ACTIVE
SOIC
D
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT193E
ACTIVE
PDIP
N
16
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
CD74HCT193EE4
ACTIVE
PDIP
N
16
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
Lead/Ball Finish
MSL Peak Temp (3)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
19-Mar-2008
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
Diameter Width
(mm) W1 (mm)
A0 (mm)
B0 (mm)
K0 (mm)
P1
(mm)
W
Pin1
(mm) Quadrant
10.5
2.5
12.0
16.0
Q1
CD74HC192NSR
SO
NS
16
2000
330.0
16.4
8.2
CD74HC192PWR
TSSOP
PW
16
2000
330.0
12.4
7.0
5.6
1.6
8.0
12.0
Q1
CD74HC193M96
SOIC
D
16
2500
330.0
16.4
6.5
10.3
2.1
8.0
16.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
19-Mar-2008
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
CD74HC192NSR
SO
NS
16
2000
346.0
346.0
33.0
CD74HC192PWR
TSSOP
PW
16
2000
346.0
346.0
29.0
CD74HC193M96
SOIC
D
16
2500
333.2
345.9
28.6
Pack Materials-Page 2
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Amplifiers
Data Converters
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
RF/IF and ZigBee® Solutions
amplifier.ti.com
dataconverter.ti.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf
Applications
Audio
Automotive
Broadband
Digital Control
Medical
Military
Optical Networking
Security
Telephony
Video & Imaging
Wireless
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated
Similar pages