Actel A3P060-FGG144T Automotive proasic3 flash family fpgas Datasheet

v1.0
®
Automotive ProASIC3 Flash Family FPGAs
Features and Benefits
Low Power
• 1.5 V Core Voltage
• Support for 1.5-V-Only Systems
• Low-Impedance Flash Switches
High-Temperature AEC-Q100–Qualified Devices
• Grade 2 105°C TA (115°C TJ)
• Grade 1 125°C TA (135°C TJ)
• PPAP Documentation
High-Performance Routing Hierarchy
• Segmented, Hierarchical Routing and Clock Structure
• High-Performance, Low-Skew Global Network
• Architecture Supports Ultra-High Utilization
Firm-Error Immune
• Only Automotive FPGAs to Offer Firm-Error Immunity
• Can Be Used without Configuration Upset Risk
Advanced I/O
•
•
•
•
High Capacity
• 60 k to 1 M System Gates
• Up to 144 kbits of SRAM
• Up to 300 User I/Os
Reprogrammable Flash Technology
• 130-nm, 7-Layer Metal (6 Copper), Flash-Based CMOS
Automotive Process
• Live-at-Power-Up (LAPU) Level 0 Support
• Single-Chip Solution
• Retains Programmed Design when Powered Off
•
•
•
•
•
•
•
On-Chip User Nonvolatile Memory
• 1 kbit of FlashROM with Synchronous Interface
High Performance
• 350 MHz System Performance
• 3.3 V, 66 MHz 64-Bit PCI
700 Mbps DDR, LVDS-Capable I/Os
1.5 V, 1.8 V, 2.5 V, and 3.3 V Mixed-Voltage Operation
Bank-Selectable I/O Voltages—up to 4 Banks per Chip
Single-Ended I/O Standards: LVTTL, LVCMOS 3.3 V /
2.5 V / 1.8 V / 1.5 V, 3.3 V PCI / 3.3 V PCI-X, and LVCMOS
2.5 V / 5.0 V Input
Differential I/O Standards: LVPECL, LVDS, B-LVDS, and
M-LVDS (A3P250 and A3P1000)
I/O Registers on Input, Output, and Enable Paths
Hot-Swappable and Cold-Sparing I/Os
Programmable Output Slew Rate and Drive Strength
Weak Pull-Up/-Down
IEEE 1149.1 (JTAG) Boundary Scan Test
Pin-Compatible Packages across the Automotive ProASIC®3
Family
Clock Conditioning Circuit (CCC) and PLL
• Six CCC Blocks, One with an Integrated PLL
• Configurable
Phase
Shift, Multiply/Divide,
Delay
Capabilities, and External Feedback
• Wide Input Frequency Range (1.5 MHz up to 350 MHz)
In-System Programming (ISP) and Security
• Secure ISP Using On-Chip 128-Bit Advanced Encryption
Standard (AES) Decryption via JTAG (IEEE 1532–compliant)
• FlashLock® to Secure FPGA Contents (anti-tampering)
SRAMs
• Variable-Aspect-Ratio 4,608-Bit RAM Blocks (×1, ×2, ×4, ×9,
and ×18 organizations available)
Automotive ProASIC3 Product Family
ProASIC3 Devices
A3P060
A3P125
A3P250
A3P1000
System Gates
60 k
125 k
250 k
1M
VersaTiles (D-flip-flops)
1,536
3,072
6,144
24,576
RAM kbits (1,024 bits)
18
36
36
144
4,608-Bit Blocks
4
8
8
32
FlashROM Bits
1k
1k
1k
1k
Secure (AES) ISP
Yes
Yes
Yes
Yes
Integrated PLL in CCCs
1
1
1
1
VersaNet Globals*
18
18
18
18
I/O Banks
2
2
4
4
Maximum User I/Os
96
133
157
300
VQ100
FG144
VQ100
FG144
VQ100
FG144, FG256
FG144, FG256, FG484
Package Pins
VQFP
FBGA
Note: *Six chip-wide (main) globals and three additional global networks in each quadrant are available.
January 2008
© 2008 Actel Corporation
I
I/Os Per Package
ProASIC3 Devices
A3P060
A3P125
A3P250
A3P1000
Package
Single-Ended I/O
Single-Ended I/O
Single-Ended I/O 2
Differential I/O Pairs
Single-Ended I/O 2
Differential I/O Pairs
I/O Type
VQ100
71
71
68
13
–
–
FG144
96
97
97
24
97
25
FG256
–
–
157
38
177
44
FG484
–
–
–
–
300
74
Notes:
1. When considering migrating your design to a lower- or higher-density device, refer to the ProASIC3 Flash Family FPGAs
handbook to ensure complying with design and board migration requirements.
2. Each used differential I/O pair reduces the number of available single-ended I/Os by two.
3. FG256 and FG484 are footprint-compatible packages.
Automotive ProASIC3 Ordering Information
A3P1000
_
1
FG
G
144
T
Application (Temperature Range)
T = Grade 2 and Grade 1 AECQ100
Grade 2 = 105°C TA and 115°C TJ
Grade 1 = 125°C TA and 135°C TJ
Package Lead Count
Lead-Free Packaging
Blank = Standard Packaging
G = RoHS-Compliant (Green) Packaging
Package Type
VQ = Very Thin Quad Flat Pack (0.5 mm pitch)
FG = Fine Pitch Ball Grid Array (1.0 mm pitch)
Speed Grade
Blank = Standard
1 = 15% Faster than Standard
Part Number
Automotive ProASIC3 Devices
A3P060 = 60,000 System Gates
A3P125 = 125,000 System Gates
A3P250 = 250,000 System Gates
A3P1000 = 1,000,000 System Gates
Note: Minimum order quantities apply. Contact your local Actel sales office for details.
II
v1.0
Automotive ProASIC3 Flash Family FPGAs
Temperature Grade Offerings
Package
A3P060
A3P125
A3P250
A3P1000
VQ100
C, I, T
C, I, T
C, I, T
–
FG144
C, I, T
C, I, T
C, I, T
C, I, T
FG256
–
–
C, I, T
C, I, T
FG484
–
–
–
C, I, T
Notes:
1. C = Commercial temperature range: 0°C to 70°C
2. I = Industrial temperature range: –40°C to 85°C
3. T = Automotive temperature range: Grade 2 and Grade 1 AEC-Q100
Grade 2 = 105°C TA and 115°C TJ
Grade 1 = 125°C TA and 135°C TJ
4. Specifications for Commercial and Industrial grade devices can be found in the ProASIC3 Flash Family FPGAs handbook.
Speed Grade and Temperature Grade Matrix
Temperature Grade
T (Grade 1 and Grade 2), Commercial, Industrial
Std.
–1
✓
✓
Notes:
1. T = Automotive temperature range: Grade 2 and Grade 1 AEC-Q100
Grade 2 = 105°C TA and 115°C TJ
Grade 1 = 125°C TA and 135°C TJ
2. Specifications for Commercial and Industrial grade devices can be found in the ProASIC3 Flash Family FPGAs handbook.
Contact your local Actel representative for device availability:
http://www.actel.com/contact/default.aspx.
v1.0
III
1 – Automotive ProASIC3 Device Family Overview
General Description
Automotive ProASIC3 nonvolatile flash technology gives automotive system designers the
advantage of a secure, low-power, single-chip solution that is live at power-up (LAPU). Automotive
ProASIC3 is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost. These
features enable designers to create high-density systems using existing ASIC or FPGA design flows
and tools.
Automotive ProASIC3 devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM
storage as well as clock conditioning circuitry based on an integrated phase-locked loop (PLL).
Automotive ProASIC3 devices have up to 1 million system gates, supported with up to 144 kbits of
SRAM and up to 300 user I/Os.
Automotive ProASIC3 devices are the only firm-error-immune automotive grade FPGAs. Firm-error
immunity makes them ideally suited for demanding applications in powertrain, safety, and
telematics-based subsystems, where firm-error failure is not an option.
Firm errors in SRAM-based FPGAs can result in high defect levels in field-deployed systems. These
unavoidable defects must be considered separately from standard defects and failure mechanisms
when looking at overall system quality and reliability.
Flash Advantages
Reduced Cost of Ownership
Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike
SRAM-based FPGAs, flash-based Automotive ProASIC3 devices allow all functionality to be live at
power-up; no external boot PROM is required. On-board security mechanisms prevent access to all
the programming information and enable secure remote updates of the FPGA logic. Flash-based
FPGAs are LAPU Class 0 devices, offering the lowest available power in a single-chip device and
providing firm-error immunity. The Automotive ProASIC3 family device architecture mitigates the
need for ASIC migration at high user volumes. This makes the Automotive ProASIC3 family a costeffective ASIC replacement solution, especially for automotive applications.
Security
The nonvolatile, flash-based Automotive ProASIC3 devices do not require a boot PROM, so there is
no vulnerable external bitstream that can be easily copied. Automotive ProASIC3 devices
incorporate FlashLock, which provides a unique combination of reprogrammability and design
security without external overhead, advantages that only an FPGA with nonvolatile flash
programming can offer.
Automotive ProASIC3 devices utilize a 128-bit flash-based lock and a separate AES key to secure
programmed intellectual property and configuration data. In addition, all FlashROM data in
Automotive ProASIC3 devices can be encrypted prior to loading, using the industry-leading AES128 (FIPS192) bit block cipher encryption standard. The AES was adopted by the National Institute
of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. Automotive
ProASIC3 devices have a built-in AES decryption engine and a flash-based AES key that make them
the most comprehensive programmable logic device security solution available today. Automotive
ProASIC3 devices with AES-based security allow for secure, remote field updates over public
networks such as the Internet, and ensure that valuable IP remains out of the hands of system
overbuilders, system cloners, and IP thieves. The contents of a programmed Automotive ProASIC3
device cannot be read back, although secure design verification is possible. Additionally, security
features of Automotive ProASIC3 devices provide anti-tampering protection.
Security, built into the FPGA fabric, is an inherent component of the Automotive ProASIC3 family.
The flash cells are located beneath seven metal layers, and many device design and layout
v1.0
1-1
Automotive ProASIC3 Device Family Overview
techniques have been used to make invasive attacks extremely difficult. The Automotive ProASIC3
family, with FlashLock and AES security, is unique in being highly resistant to both invasive and
noninvasive attacks. Your valuable IP is protected and secure. An Automotive ProASIC3 device
provides the most impenetrable security for programmable logic designs.
Single Chip
Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed,
the configuration data is an inherent part of the FPGA structure, and no external configuration
data needs to be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based
Automotive ProASIC3 FPGAs do not require system configuration components such as EEPROMs or
microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB
area, and increases security and system reliability.
Live at Power-Up
The Actel flash-based Automotive ProASIC3 devices support Level 0 of the LAPU classification
standard. This feature helps in system component initialization, execution of critical tasks before
the processor wakes up, setup and configuration of memory blocks, clock generation, and bus
activity management. The LAPU feature of flash-based Automotive ProASIC3 devices greatly
simplifies total system design and reduces total system cost, often eliminating the need for CPLDs
and external clock generation PLLs. In addition, glitches and brownouts in system power will not
corrupt the Automotive ProASIC3 device's flash configuration, and unlike SRAM-based FPGAs, the
device will not have to be reloaded when system power is restored. This enables the reduction or
complete removal of the configuration PROM, expensive voltage monitor, brownout detection,
and clock generator devices from the PCB design. Flash-based Automotive ProASIC3 devices
simplify total system design and reduce cost and design risk while increasing system reliability and
improving system initialization time.
Firm-Error Immunity
Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere,
strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the
configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way.
These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be
a complete system failure. Firm errors do not exist in the configuration memory of Automotive
ProASIC3 flash-based FPGAs. Once it is programmed, the flash cell configuration element of
Automotive ProASIC3 FPGAs cannot be altered by high-energy neutrons and is therefore immune
to them. Recoverable (or soft) errors occur in the user data SRAM of all FPGA devices. These can
easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA
fabric.
Low Power
Flash-based Automotive ProASIC3 devices exhibit very low power characteristics, similar to those of
an ASIC, making them an ideal choice for power-sensitive applications. Automotive ProASIC3
devices have only a very limited power-on current surge and no high-current transition period,
both of which occur on many FPGAs.
Automotive ProASIC3 devices also have low dynamic power consumption to further maximize
power savings.
1 -2
v1.0
Automotive ProASIC3 Flash FPGAs
Advanced Flash Technology
The Automotive ProASIC3 family offers many benefits, including nonvolatility and
reprogrammability, through an advanced flash-based, 130-nm LVCMOS process with seven layers of
metal. Standard CMOS design techniques are used to implement logic and control functions. The
combination of fine granularity, enhanced flexible routing resources, and abundant flash switches
allows for very high logic utilization without compromising device routability or performance.
Logic functions within the device are interconnected through a four-level routing hierarchy.
Advanced Architecture
The proprietary Automotive ProASIC3 architecture provides granularity comparable to standardcell ASICs. The Automotive ProASIC3 device consists of five distinct and programmable architectural
features (Figure 1-1 on page 1-4 and Figure 1-2 on page 1-4):
•
FPGA VersaTiles
•
Dedicated FlashROM
•
Dedicated SRAM memory
•
Extensive CCCs and PLLs
•
Advanced I/O structure
The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input
logic function, a D-flip-flop (with or without enable), or a latch by programming the appropriate
flash switch interconnections. The versatility of the Automotive ProASIC3 core tile as either a threeinput lookup table (LUT) equivalent or a D-flip-flop/latch with enable allows for efficient use of the
FPGA fabric. The VersaTile capability is unique to the Actel ProASIC family of third-generationarchitecture flash FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy.
Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable
interconnect programming. Maximum core utilization is possible for virtually any design.
In addition, extensive on-chip programming circuitry allows for rapid, single-voltage (3.3 V)
programming of Automotive ProASIC3 devices via an IEEE 1532 JTAG interface.
v1.0
1-3
Automotive ProASIC3 Device Family Overview
Bank 0
RAM Block
4,608-Bit SRAM
or FIFO Block
Bank 0
Bank 1
CCC
I/Os
ISP AES
Decryption
Bank 0
Bank 1
VersaTile
User Nonvolatile
FlashROM
Charge Pumps
Bank 1
Figure 1-1 • Automotive ProASIC3 Device Architecture Overview with Two I/O Banks (A3P060 and A3P125)
Bank 0
Bank 1
Bank 3
CCC
RAM Block
4,608-Bit SRAM
or FIFO Block
I/Os
VersaTile
Bank 3
Bank 1
ISP AES
Decryption
User Nonvolatile
FlashROM
Charge Pumps
RAM Block
4,608-Bit SRAM
or FIFO Block
(A3P600 and A3P1000)
Bank 2
Figure 1-2 • Automotive ProASIC3 Device Architecture Overview with Four I/O Banks (A3P600 and A3P1000)
1 -4
v1.0
Automotive ProASIC3 Flash FPGAs
VersaTiles
The Automotive ProASIC3 core consists of VersaTiles, which have been enhanced beyond the
ProASICPLUS® core tiles. The Automotive ProASIC3 VersaTile supports the following:
•
All 3-input logic functions—LUT-3 equivalent
•
Latch with clear or set
•
D-flip-flop with clear or set
•
Enable D-flip-flop with clear or set
Refer to Figure 1-3 for VersaTile configurations.
LUT-3 Equivalent
X1
X2
X3
LUT-3
D-Flip-Flop with Clear or Set
Y
Data
CLK
CLR
Y
Enable D-Flip-Flop with Clear or Set
Data
CLK
D-FF
Y
D-FF
Enable
CLR
Figure 1-3 • VersaTile Configurations
User Nonvolatile FlashROM
Actel Automotive ProASIC3 devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM.
The FlashROM can be used in diverse system applications:
•
Unique protocol addressing (wireless or fixed)
•
System calibration settings
•
Device serialization and/or inventory control
•
Subscription-based business models (for example, infotainment systems)
•
Secure key storage for secure communications algorithms
•
Asset management/tracking
•
Date stamping
•
Version management
The FlashROM is written using the standard Automotive ProASIC3 IEEE 1532 JTAG programming
interface.
The FlashROM can be programmed via the JTAG programming interface, and its contents can be
read back either through the JTAG programming interface or via direct FPGA core addressing. Note
that the FlashROM can only be programmed from the JTAG interface and cannot be programmed
from the internal logic array.
The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-bybyte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8
banks and which of the 16 bytes within that bank are being read. The three most significant bits
(MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of
the FlashROM address define the byte.
The Actel Automotive ProASIC3 development software solutions, Libero® Integrated Design
Environment (IDE) and Designer, have extensive support for the FlashROM. One such feature is
auto-generation of sequential programming files for applications requiring a unique serial number
in each part. Another feature allows the inclusion of static data for system version control. Data for
the FlashROM can be generated quickly and easily using Actel Libero IDE and Designer software
tools. Comprehensive programming file support is also included to allow for easy programming of
large numbers of parts with differing FlashROM contents.
v1.0
1-5
Automotive ProASIC3 Device Family Overview
SRAM
Automotive ProASIC3 devices have embedded SRAM blocks along their north and south sides. Each
variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18,
512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that
can be configured with different bit widths on each port. For example, data can be sent through a
4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the
device JTAG port (ROM emulation mode) using the UJTAG macro.
PLL and CCC
Automotive ProASIC3 devices provide designers with very flexible clock conditioning circuit (CCC)
capabilities. Each member of the Automotive ProASIC3 family contains six CCCs. One CCC (center
west side) has a PLL.
The six CCC blocks are located at the four corners and the centers of the east and west sides. One
CCC (center west side) has a PLL.
All six CCC blocks are usable; the four corner CCCs and the east CCC allow simple clock delay
operations as well as clock spine access.
The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs
located near the CCC that have dedicated connections to the CCC block.
The CCC block has these key features:
•
Wide input frequency range (fIN_CCC) = 1.5 MHz to 350 MHz
•
Output frequency range (fOUT_CCC) = 0.75 MHz to 350 MHz
•
Clock delay adjustment via programmable and fixed delays from –7.56 ns to +11.12 ns
•
2 programmable delay types for clock skew minimization
•
Clock frequency synthesis (for PLL only)
Additional CCC specifications:
•
Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output
divider configuration (for PLL only).
•
Output duty cycle = 50% ± 1.5% or better (for PLL only)
•
Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single
global network used (for PLL only)
•
Maximum acquisition time is 300 µs (for PLL only)
•
Low power consumption of 5 mW
•
Exceptional tolerance to input period jitter— allowable input jitter is up to 1.5 ns (for PLL
only)
•
Four precise phases; maximum misalignment between adjacent phases of 40 ps × 350 MHz /
fOUT_CCC (for PLL only)
Global Clocking
Automotive ProASIC3 devices have extensive support for multiple clocking domains. In addition to
the CCC and PLL support described above, there is a comprehensive global clock distribution
network.
Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three
quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the
core via multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for
rapid distribution of high-fanout nets.
I/Os with Advanced I/O Standards
The Automotive ProASIC3 family of FPGAs features a flexible I/O structure, supporting a range of
voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V). Automotive ProASIC3 FPGAs support many different I/O
standards—single-ended and differential.
The I/Os are organized into banks, with two or four banks per device. The configuration of these
banks determines the I/O standards supported.
1 -6
v1.0
Automotive ProASIC3 Flash FPGAs
Each I/O module contains several input, output, and enable registers. These registers allow the
implementation of the following:
•
Single-Data-Rate applications
•
Double-Data-Rate applications—DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point
communications
Automotive ProASIC3 banks for the A3P250 and A3P1000 devices support LVPECL, LVDS, B-LVDS,
and M-LVDS. B-LVDS and M-LVDS can support up to 20 loads.
Part Number and Revision Date
Part Number 51700099-001-0
Revised January 2008
v1.0
1-7
Automotive ProASIC3 Device Family Overview
Datasheet Categories
Categories
In order to provide the latest information to designers, some datasheets are published before data
has been fully characterized. Datasheets are designated as "Product Brief," "Advance,"
"Preliminary," and "Production." The definition of these categories are as follows:
Product Brief
The product brief is a summarized version of a datasheet (advance or production) and contains
general product information. This document gives an overview of specific device and family
information.
Advance
This version contains initial estimated information based on simulation, other products, devices, or
speed grades. This information can be used as estimates, but not for production. This label only
applies to the DC and Switching Characteristics chapter of the datasheet and will only be used
when the data has not been fully characterized.
Preliminary
The datasheet contains information based on simulation and/or initial characterization. The
information is believed to be correct, but changes are possible.
Unmarked (production)
This version contains information that is considered to be final.
Export Administration Regulations (EAR)
The products described in this document are subject to the Export Administration Regulations
(EAR). They could require an approved export license prior to export from the United States. An
export includes release of product or disclosure of technology to a foreign national inside or
outside the United States.
Actel Safety Critical, Life Support, and High-Reliability
Applications Policy
The Actel products described in this advance status document may not have completed Actel’s
qualification process. Actel may amend or enhance products during the product introduction and
qualification process, resulting in changes in device functionality or performance. It is the
responsibility of each customer to ensure the fitness of any Actel product (but especially a new
product) for a particular purpose, including appropriateness for safety-critical, life-support, and
other high-reliability applications. Consult Actel’s Terms and Conditions for specific liability
exclusions relating to life-support applications. A reliability report covering all of Actel’s products is
available on the Actel website at http://www.actel.com/documents/ORT_Report.pdf. Actel also
offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your
local Actel sales office for additional reliability information.
1 -8
v1.0
Automotive ProASIC3 DC and Switching Characteristics
2 – Automotive ProASIC3 DC and Switching
Characteristics
General Specifications
Operating Conditions
Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Absolute Maximums are stress ratings only; functional operation of the device at these or any other
conditions beyond those listed under the Recommended Operating Conditions specified in Table 22 on page 2-2 is not implied.
Table 2-1 •
Symbol
Absolute Maximum Ratings
Parameter
Limits
Units
VCC
DC core supply voltage
–0.3 to 1.65
V
VJTAG
JTAG DC voltage
–0.3 to 3.75
V
VPUMP
Programming voltage
–0.3 to 3.75
V
VCCPLL
Analog power supply (PLL)
–0.3 to 1.65
V
VCCI
DC I/O output buffer supply voltage
–0.3 to 3.75
V
VMV
DC I/O input buffer supply voltage
–0.3 to 3.75
V
VI
I/O input voltage
–0.3 V to 3.6 V (when I/O hot insertion mode is enabled)
V
–0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower
(when I/O hot-insertion mode is disabled)
TSTG 2
Storage temperature
–65 to +150
°C
2
Junction temperature
+150
°C
TJ
Notes:
1. The device should be operated within the limits specified by the datasheet. During transitions, the input
signal may undershoot or overshoot according to the limits shown in Table 2-3 on page 2-3.
2. For flash programming and retention maximum limits, refer to Figure 2-1 on page 2-2. For recommended
operating limits, refer to Table 2-2 on page 2-2.
v1.0
2-1
Automotive ProASIC3 DC and Switching Characteristics
Table 2-2 •
Recommended Operating Conditions
Symbol
Parameter
Automotive Grade 1 Automotive Grade 2 Units
TJ
Junction temperature
–40 to +135
–40 to +115
°C
VCC
1.5 V DC core supply voltage
1.425 to 1.575
1.425 to 1.575
V
VJTAG
JTAG DC voltage
1.4 to 3.6
1.4 to 3.6
V
VPUMP
Programming voltage Programming Mode
3.0 to 3.6
3.0 to 3.6
V
0 to 3.6
0 to 3.6
V
1.4 to 1.6
1.4 to 1.6
V
1.425 to 1.575
1.425 to 1.575
V
1.8 V DC supply voltage
1.7 to 1.9
1.7 to 1.9
V
2.5 V DC supply voltage
2.3 to 2.7
2.3 to 2.7
V
3.3 V DC supply voltage
3.0 to 3.6
3.0 to 3.6
V
2.375 to 2.625
2.375 to 2.625
V
3.0 to 3.6
3.0 to 3.6
V
3
Operation
VCCPLL
Analog power supply (PLL)
VCCI and VMV 1.5 V DC supply voltage
LVDS/B-LVDS/M-LVDS differential I/O
LVPECL differential I/O
Notes:
1. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each
I/O standard are given in Table 2-14 on page 2-16. VMV and VCCI should be at the same voltage within a
given I/O bank.
2. All parameters representing voltages are measured with respect to GND unless otherwise specified.
3. VPUMP can be left floating during operation (not programming mode).
70
102.7
85
100
43.8
20.0
105
15.6
110
12.3
115
9.7
120
125
7.7
6.2
130
5.0
135
140
4.0
3.3
145
150
2.7
2.2
110
100
90
80
70
60
50
40
30
20
10
0
Years
Tj (°C)
HTR
Lifetime
(yrs)
70
85 100 105 110 115 120 125 130 135 140 145 150
Temperature (ºC)
Note: HTR time is the period during which you would not expect a verify failure due to flash cell leakage.
Figure 2-1 • High-Temperature Data Retention (HTR)
2 -2
v1.0
Automotive ProASIC3 DC and Switching Characteristics
Table 2-3 •
Overshoot and Undershoot Limits (as measured on quiet I/Os)
VCCI and VMV
Average VCCI–GND Overshoot or Undershoot
Duration as a Percentage of Clock Cycle
2.7 V or less
3V
3.3 V
3.6 V
Maximum Overshoot/ Maximum Overshoot/
Undershoot (115°C)
Undershoot (135°C)
10%
0.81 V
0.72 V
5%
0.90 V
0.82 V
10%
0.80 V
0.72 V
5%
0.90 V
0.81 V
10%
0.79 V
0.69 V
5%
0.88 V
0.79 V
10%
N/A
N/A
5%
N/A
N/A
Notes:
1. The duration is allowed at one out of six clock cycles (estimated SSO density over cycles). If the
overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be
reduced by 0.15 V.
2. This table refers only to overshoot/undershoot limits for simultaneously switching I/Os and does not
provide PCI overshoot/undershoot limits.
I/O Power-Up and Supply Voltage Thresholds for Power-On Reset
(Commercial and Industrial)
Sophisticated power-up management circuitry is designed into every ProASIC®3 device. These
circuits ensure easy transition from the powered-off state to the powered-up state of the device.
The many different supplies can power up in any sequence with minimized current spikes or surges.
In addition, the I/O will be in a known state through the power-up sequence. The basic principle is
shown in Figure 2-2 on page 2-4.
There are five regions to consider during power-up.
ProASIC3 I/Os are activated only if ALL of the following three conditions are met:
1. VCC and VCCI are above the minimum specified trip points (Figure 2-2 on page 2-4).
2. VCCI > VCC – 0.75 V (typical)
3. Chip is in the operating mode.
VCCI Trip Point:
Ramping up: 0.6 V < trip_point_up < 1.2 V
Ramping down: 0.5 V < trip_point_down < 1.1 V
VCC Trip Point:
Ramping up: 0.6 V < trip_point_up < 1.1 V
Ramping down: 0.5 V < trip_point_down < 1 V
VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This
specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note
the following:
•
During programming, I/Os become tristated and weakly pulled up to VCCI.
•
JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O
behavior.
Internal Power-Up Activation Sequence
1. Core
2. Input buffers
3. Output buffers, after 200 ns delay from input buffer activation
v1.0
2-3
Automotive ProASIC3 DC and Switching Characteristics
VCC = VCCI + VT
where VT can be from 0.58 V to 0.9 V (typically 0.75 V)
VCC
VCC = 1.575 V
Region 4: I/O
buffers are ON.
I/Os are functional
(except differential inputs)
but slower because VCCI is
below specification. For the
same reason, input buffers do not
meet VIH/VIL levels, and output
buffers do not meet VOH/VOL levels.
Region 1: I/O Buffers are OFF
Region 5: I/O buffers are ON
and power supplies are within
specification.
I/Os meet the entire datasheet
and timer specifications for
speed, VIH/VIL , VOH/VOL , etc.
VCC = 1.425 V
Region 2: I/O buffers are ON.
I/Os are functional (except differential inputs)
but slower because VCCI/VCC are below
specification. For the same reason, input
buffers do not meet VIH/VIL levels, and
output buffers do not meet VOH/VOL levels.
Activation trip point:
Va = 0.85 V ± 0.25 V
Deactivation trip point:
Vd = 0.75 V ± 0.25 V
Region 3: I/O buffers are ON.
I/Os are functional; I/O DC
specifications are met,
but I/Os are slower because
the VCC is below specification.
Region 1: I/O buffers are OFF
Activation trip point:
Va = 0.9 V ± 0.3 V
Deactivation trip point:
Vd = 0.8 V ± 0.3 V
Min VCCI datasheet specification
voltage at a selected I/O
standard; i.e., 1.425 V or 1.7 V
or 2.3 V or 3.0 V
VCCI
Figure 2-2 • I/O State as a Function of VCCI and VCC Voltage Levels
Thermal Characteristics
Introduction
The temperature variable in the Actel Designer software refers to the junction temperature, not
the ambient temperature. This is an important distinction because dynamic and static power
consumption cause the chip junction to be higher than the ambient temperature.
EQ 2-1 can be used to calculate junction temperature.
TJ = Junction Temperature = ΔT + TA
EQ 2-1
where:
TA = Ambient Temperature
ΔT = Temperature gradient between junction (silicon) and ambient ΔT = θja * P
θja = Junction-to-ambient of the package. θja numbers are located in Table 2-4 on
page 2-5.
P = Power dissipation
2 -4
v1.0
Automotive ProASIC3 DC and Switching Characteristics
Package Thermal Characteristics
The device junction-to-case thermal resistivity is θjc and the junction-to-ambient air thermal
resistivity is θja. The thermal characteristics for θja are shown for two air flow rates. The absolute
maximum junction temperature is 110°C. EQ 2-2 shows a sample calculation of the absolute
maximum power dissipation allowed for a 484-pin FBGA package at commercial temperature and
in still air.
110°C – 70°C
Max. junction temp. (°C) – Max. ambient temp. (°C)
Maximum Power Allowed = --------------------------------------------------------------------------------------------------------------------------------------- = ------------------------------------ = 1.951 W
20.5°C/W
θ ja (°C/W)
EQ 2-2
Table 2-4 •
Package Thermal Resistivities
θja
Device
Pin
Count
θjc
Still
Air
200
ft./min.
500
ft./min.
Units
Very Thin Quad Flat Pack (VQFP)
All devices
100
10.0
35.3
29.4
27.1
°C/W
Fine Pitch Ball Grid Array (FBGA)
See note*
144
3.8
26.9
22.9
21.5
°C/W
See note*
256
3.8
26.6
22.8
21.5
°C/W
See note*
484
3.2
20.5
17.0
15.9
°C/W
A3P1000
144
6.3
31.6
26.2
24.2
°C/W
A3P1000
256
6.6
28.1
24.4
22.7
°C/W
A3P1000
484
8.0
23.3
19.0
16.7
°C/W
Package Type
* This information applies to all ProASIC3 devices except the A3P1000. Detailed device/package
thermal information will be available in future revisions of the datasheet.
Temperature and Voltage Derating Factors
Table 2-5 •
Temperature and Voltage Derating Factors for Timing Delays
(normalized to TJ = 115°C, VCC = 1.425 V)
Array Voltage VCC (V)
–40°C
0°C
25°C
70°C
85°C
115°C
125°C
135°C
1.425
0.83
0.88
0.90
0.95
0.97
1.00
1.01
1.02
1.5
0.79
0.83
0.85
0.90
0.92
0.95
0.96
0.97
1.575
0.76
0.80
0.82
0.87
0.88
0.91
0.93
0.94
v1.0
2-5
Automotive ProASIC3 DC and Switching Characteristics
Calculating Power Dissipation
Quiescent Supply Current
Table 2-6 •
Quiescent Supply Current Characteristics
A3P060
A3P125
A3P250
A3P1000
Typical (25°C)
2 mA
2 mA
3 mA
8 mA
Maximum (Automotive Grade 1) – 135°C
53 mA
53 mA
106 mA
265 mA
Maximum (Automotive Grade 2) – 115°C
26 mA
26 mA
53 mA
131 mA
Note: IDD Includes VCC, VPUMP, VCCI, and VMV currents. Values do not include I/O static
contribution, which is shown in Table 2-7 and Table 2-10 on page 2-8.
Power per I/O Pin
Table 2-7 •
Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings1
Applicable to Advanced I/O Banks
VMV (V)
Static Power
PDC2 (mW)1
Dynamic Power
PAC9 (µW/MHz)2
3.3 V LVTTL / 3.3 V LVCMOS
3.3
–
16.69
2.5 V LVCMOS
2.5
–
5.12
1.8 V LVCMOS
1.8
–
2.13
1.5 V LVCMOS (JESD8-11)
1.5
–
1.45
3.3 V PCI
3.3
–
18.11
3.3 V PCI-X
3.3
–
18.11
LVDS
2.5
2.26
1.20
LVPECL
3.3
5.72
1.87
Single-Ended
Differential
Notes:
1. PDC2 is the static power (where applicable) measured on VMV.
2. PAC9 is the total dynamic power measured on VCC and VMV.
2 -6
v1.0
Automotive ProASIC3 DC and Switching Characteristics
Table 2-8 •
Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings1
Applicable to Standard Plus I/O Banks
VMV (V)
Static Power
PDC2 (mW)1
Dynamic Power
PAC9 (µW/MHz)2
3.3 V LVTTL / 3.3 V LVCMOS
3.3
–
16.72
2.5 V LVCMOS
2.5
–
5.14
1.8 V LVCMOS
1.8
–
2.13
1.5 V LVCMOS (JESD8-11)
1.5
–
1.48
3.3 V PCI
3.3
–
18.13
3.3 V PCI-X
3.3
–
18.13
Single-Ended
Notes:
1. PDC2 is the static power (where applicable) measured on VMV.
2. PAC9 is the total dynamic power measured on VCC and VMV.
Table 2-9 •
Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1
Applicable to Advanced I/O Banks
CLOAD (pF)
VCCI (V)
Static Power
PDC3 (mW)2
Dynamic Power
PAC10 (µW/MHz)3
3.3 V LVTTL /
3.3 V LVCMOS
35
3.3
–
468.67
2.5 V LVCMOS
35
2.5
–
267.48
1.8 V LVCMOS
35
1.8
–
149.46
1.5 V LVCMOS
(JESD8-11)
35
1.5
–
103.12
3.3 V PCI
10
3.3
–
201.02
3.3 V PCI-X
10
3.3
–
201.02
LVDS
–
2.5
7.74
88.92
LVPECL
–
3.3
19.54
166.52
Single-Ended
Differential
Notes:
1. Dynamic power consumption is given for standard load and software default drive strength
and output slew.
2. PDC3 is the static power (where applicable) measured on VMV.
3. PAC10 is the total dynamic power measured on VCCI and VMV.
v1.0
2-7
Automotive ProASIC3 DC and Switching Characteristics
Table 2-10 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1
Applicable to Standard Plus I/O Banks
CLOAD (pF)
VCCI (V)
Static Power
PDC3 (mW)2
Dynamic Power
PAC10 (µW/MHz)3
3.3 V LVTTL /
3.3 V LVCMOS
35
3.3
–
452.67
2.5 V LVCMOS
35
2.5
–
258.32
1.8 V LVCMOS
35
1.8
–
133.59
1.5 V LVCMOS
(JESD8-11)
35
1.5
–
92.84
3.3 V PCI
10
3.3
–
184.92
3.3 V PCI-X
10
3.3
–
184.92
Single-Ended
Notes:
1. Dynamic power consumption is given for standard load and software default drive strength
and output slew.
2. PDC3 is the static power (where applicable) measured on VMV.
3. PAC10 is the total dynamic power measured on VCCI and VMV.
2 -8
v1.0
Automotive ProASIC3 DC and Switching Characteristics
Power Consumption of Various Internal Resources
Table 2-11 • Different Components Contributing to Dynamic Power Consumption in ProASIC3 Devices
Device Specific Dynamic Power
(µW/MHz)
Parameter
Definition
A3P1000 A3P250 A3P125 A3P060
PAC1
Clock contribution of a Global Rib
14.50
11.00
11.00
9.30
PAC2
Clock contribution of a Global Spine
2.48
1.58
0.81
0.81
PAC3
Clock contribution of a VersaTile row
0.81
PAC4
Clock contribution of a VersaTile used as a sequential
module
0.12
PAC5
First contribution of a VersaTile used as a sequential module
0.07
PAC6
Second contribution of a VersaTile used as a sequential
module
0.29
PAC7
Contribution of a VersaTile used as a combinatorial module
0.29
PAC8
Average contribution of a routing net
0.70
PAC9
Contribution of an I/O input pin (standard-dependent)
PAC10
Contribution of an I/O output pin (standard-dependent)
PAC11
Average contribution of a RAM block during a read
operation
25.00
PAC12
Average contribution of a RAM block during a write
operation
30.00
PAC13
Static PLL contribution
PAC14
Dynamic contribution for PLL
See Table 2-7 on page 2-6.
See Table 2-7 and Table 2-10 on
page 2-8.
2.55 mW
2.60
* For a different output load, drive strength, or slew rate, Actel recommends using the Actel power spreadsheet
calculator or SmartPower tool in Actel Libero® Integrated Design Environment (IDE).
Power Calculation Methodology
This section describes a simplified method to estimate power consumption of an application. For
more accurate and detailed power estimations, use the SmartPower tool in Actel Libero IDE
software.
The power calculation methodology described below uses the following variables:
•
The number of PLLs as well as the number and the frequency of each output clock
generated
•
The number of combinatorial and sequential cells used in the design
•
The internal clock frequencies
•
The number and the standard of I/O pins used in the design
•
The number of RAM blocks used in the design
•
Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-12 on
page 2-11.
•
Enable rates of output buffers—guidelines are provided for typical applications in Table 213 on page 2-12.
•
Read rate and write rate to the memory—guidelines are provided for typical applications in
Table 2-13 on page 2-12. The calculation should be repeated for each clock domain defined
in the design.
v1.0
2-9
Automotive ProASIC3 DC and Switching Characteristics
Methodology
Total Power Consumption—PTOTAL
PTOTAL = PSTAT + PDYN
PSTAT is the total static power consumption.
PDYN is the total dynamic power consumption.
Total Static Power Consumption—PSTAT
PSTAT = PDC1 + NINPUTS * PDC2 + NOUTPUTS * PDC3
NINPUTS is the number of I/O input buffers used in the design.
NOUTPUTS is the number of I/O output buffers used in the design.
Total Dynamic Power Consumption—PDYN
PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL
Global Clock Contribution—PCLOCK
PCLOCK = (PAC1 + NSPINE*PAC2 + NROW * PAC3 + NS-CELL * PAC4) * FCLK
NSPINE is the number of global spines used in the user design—guidelines are provided in Table 2-12
on page 2-11.
NROW is the number of VersaTile rows used in the design—guidelines are provided in Table 2-12 on
page 2-11.
FCLK is the global clock signal frequency.
NS-CELL is the number of VersaTiles used as sequential modules in the design.
PAC1, PAC2, PAC3, and PAC4 are device-dependent.
Sequential Cells Contribution—PS-CELL
PS-CELL = NS-CELL * (PAC5 + α1 / 2 * PAC6) * FCLK
NS-CELL is the number of VersaTiles used as sequential modules in the design. When a multi-tile
sequential cell is used, it should be accounted for as 1.
α1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-12 on page 2-11.
FCLK is the global clock signal frequency.
Combinatorial Cells Contribution—PC-CELL
PC-CELL = NC-CELL* α1 / 2 * PAC7 * FCLK
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.
α1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-12 on page 2-11.
FCLK is the global clock signal frequency.
Routing Net Contribution—PNET
PNET = (NS-CELL + NC-CELL) * α1 / 2 * PAC8 * FCLK
NS-CELL is the number VersaTiles used as sequential modules in the design.
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.
α1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-12 on page 2-11.
FCLK is the global clock signal frequency.
I/O Input Buffer Contribution—PINPUTS
PINPUTS = NINPUTS * α2 / 2 * PAC9 * FCLK
NINPUTS is the number of I/O input buffers used in the design.
α2 is the I/O buffer toggle rate—guidelines are provided in Table 2-12 on page 2-11.
FCLK is the global clock signal frequency.
2 -1 0
v1.0
Automotive ProASIC3 DC and Switching Characteristics
I/O Output Buffer Contribution—POUTPUTS
POUTPUTS = NOUTPUTS * α2 / 2 * β1 * PAC10 * FCLK
NOUTPUTS is the number of I/O output buffers used in the design.
α2 is the I/O buffer toggle rate—guidelines are provided in Table 2-12.
β1 is the I/O buffer enable rate—guidelines are provided in Table 2-13 on page 2-12.
FCLK is the global clock signal frequency.
RAM Contribution—PMEMORY
PMEMORY = PAC11 * NBLOCKS * FREAD-CLOCK * β2 + PAC12 * NBLOCK * FWRITE-CLOCK * β3
NBLOCKS is the number of RAM blocks used in the design.
FREAD-CLOCK is the memory read clock frequency.
β2 is the RAM enable rate for read operations.
FWRITE-CLOCK is the memory write clock frequency.
β3
is the RAM enable rate for write operations—guidelines are provided in Table 2-13 on
page 2-12.
PLL Contribution—PPLL
PPLL = PAC13 + PAC14 * FCLKOUT
FCLKIN is the input clock frequency.
FCLKOUT is the output clock frequency.1
Guidelines
Toggle Rate Definition
A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage.
If the toggle rate of a net is 100%, this means that this net switches at half the clock frequency.
Below are some examples:
•
The average toggle rate of a shift register is 100% because all flip-flop outputs toggle at
half of the clock frequency.
•
The average toggle rate of an 8-bit counter is 25%:
–
Bit 0 (LSB) = 100%
–
Bit 1
= 50%
–
Bit 2
= 25%
–
…
–
Bit 7 (MSB) = 0.78125%
–
Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8
Enable Rate Definition
Output enable rate is the average percentage of time during which tristate outputs are enabled.
When nontristate output buffers are used, the enable rate should be 100%.
Table 2-12 • Toggle Rate Guidelines Recommended for Power Calculation
Component
α1
α2
1.
Definition
Guideline
Toggle rate of VersaTile outputs
10%
I/O buffer toggle rate
10%
The PLL dynamic contribution depends on the input clock frequency, the number of output clock signals generated
by the PLL, and the frequency of each output clock. If a PLL is used to generate more than one output clock, include
each output clock in the formula by adding its corresponding contribution (PAC14 * FCLKOUT product) to the total PLL
contribution.
v1.0
2 - 11
Automotive ProASIC3 DC and Switching Characteristics
Table 2-13 • Enable Rate Guidelines Recommended for Power Calculation
Component
Definition
β1
β2
β3
Guideline
I/O output buffer enable rate
100%
RAM enable rate for read operations
12.5%
RAM enable rate for write operations
12.5%
User I/O Characteristics
Timing Model
I/O Module
(non-registered)
Combinational Cell
Combinational Cell
Y
LVPECL (applicable to
Advanced I/O banks only)
Y
tPD = 0.67 ns
tPD = 0.58 ns
tDP = 1.66 ns
I/O Module
(non-registered)
Combinational Cell
Y
LVTTL Output Drive Strength = 12 mA
High Slew Rate
tDP = 3.25 ns (Advanced I/O banks)
tPD = 1.04 ns
Combinational Cell
I/O Module
(registered)
I/O Module
(non-registered)
Y
LVTTL Output drive Strength = 8 mA
High Slew Rate
tDP = 4.52 ns (Advanced I/O banks)
tPY = 1.29 ns
LVPECL
(applicable
to Advanced
I/O banks only)
D
tPD = 0.60 ns
Q
Combinational Cell
I/O Module
(non-registered)
Y
tICLKQ = 0.29 ns
tISUD = 0.31 ns
LVCMOS 1.5 V Output Drive Strength = 4 mA
High Slew Rate
tDP = 4.89 ns (Advanced I/O banks)
tPD = 0.56 ns
Input LVTTL
Clock
Register Cell
tPY = 0.94 ns (Advanced I/O banks)
D
Combinational Cell
Y
Q
I/O Module
(non-registered)
LVDS,
BLVDS,
M-LVDS
(Applicable for
Advanced I/O
Banks only)
D
Q
D
tPD = 0.56 ns
tCLKQ = 0.66 ns
tSUD = 0.51 ns
tPY = 1.47 ns
I/O Module
(registered)
Register Cell
tCLKQ = 0.66 ns
tSUD = 0.51 ns
Q
LVTTL 3.3 V Output Drive
Strength = 12 mA
tDP = 3.25 ns High Slew Rate
(Advanced I/O banks)
tOCLKQ = 0.70 ns
tOSUD = 0.37 ns
Input LVTTL
Clock
Input LVTTL
Clock
tPY = 0.94 ns
(Advanced I/O banks)
tPY = 0.94 ns
(Advanced I/O banks)
Figure 2-3 • Timing Model
Operating Conditions: –1 Speed, Automotive Grade 2 Temp. Range (TJ = 115°C), Worst Case
VCC = 1.425 V
2 -1 2
v1.0
Automotive ProASIC3 DC and Switching Characteristics
tPY
tDIN
D
PAD
Q
DIN
Y
CLK
tPY = MAX(tPY(R), tPY(F))
tDIN = MAX(tDIN(R), tDIN(F))
To Array
I/O Interface
VIH
PAD
Vtrip
Vtrip
VIL
VCC
50%
50%
Y
GND
tPY
(F)
tPY
(R)
VCC
50%
DIN
GND
50%
tDOUT
tDOUT
(R)
(F)
Figure 2-4 • Input Buffer Timing Model and Delays (example)
v1.0
2 - 13
Automotive ProASIC3 DC and Switching Characteristics
tDOUT
tDP
D Q
D
PAD
DOUT
Std
Load
CLK
From Array
tDP = MAX(tDP(R), tDP(F))
tDOUT = MAX(tDOUT(R), tDOUT(F))
I/O Interface
tDOUT
tDOUT
(R)
D
50%
VCC
(F)
50%
0V
VCC
DOUT
50%
50%
0V
VOH
Vtrip
Vtrip
VOL
PAD
tDP
(R)
Figure 2-5 • Output Buffer Model and Delays (example)
2 -1 4
v1.0
tDP
(F)
Automotive ProASIC3 DC and Switching Characteristics
tEOUT
D
Q
CLK
E
tZL, tZH, tHZ, tLZ, tZLS, tZHS
EOUT
D
Q
PAD
DOUT
CLK
D
tEOUT = MAX(tEOUT(r), tEOUT(f))
I/O Interface
VCC
D
VCC
50%
E
50%
tEOUT (F)
tEOUT (R)
VCC
50%
50%
EOUT
tZL
50%
tZH
tHZ
Vtrip
VCCI
90% VCCI
PAD
50%
tLZ
Vtrip
VOL
10% VCCI
VCC
D
VCC
E
50%
50%
tEOUT (R)
tEOUT (F)
VCC
EOUT
50%
50%
tZLS
VOH
PAD
Vtrip
50%
tZHS
Vtrip
VOL
Figure 2-6 • Tristate Output Buffer Timing Model and Delays (example)
v1.0
2 - 15
Automotive ProASIC3 DC and Switching Characteristics
Overview of I/O Performance
Summary of I/O DC Input and Output Levels – Default I/O Software
Settings
Table 2-14 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and
Industrial Conditions—Software Default Settings
Applicable to Advanced I/O Banks
I/O Standard
VIL
Drive
Slew
Strength Rate Min, V
Max, V
VIH
VOL
VOH
Min, V
Max, V
Max, V
Min, V
IOL
IOH
mA mA
3.3 V LVTTL /
3.3 V LVCMOS
12 mA
High
–0.3
0.8
2
3.6
0.4
2.4
12
12
2.5 V LVCMOS
12 mA
High
–0.3
0.7
1.7
3.6
0.7
1.7
12
12
1.8 V LVCMOS
12 mA
High
–0.3
0.35 * VCCI 0.65 * VCCI
3.6
0.45
VCCI – 0.45
12
12
1.5 V LVCMOS
12 mA
High
–0.3
0.30 * VCCI
0.7 * VCCI
3.6
0.25 * VCCI 0.75 * VCCI
12
12
3.3 V PCI
Per PCI specifications
3.3 V PCI-X
Per PCI-X specifications
Note: Currents are measured at 125°C junction temperature.
Table 2-15 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and
Industrial Conditions—Software Default Settings
Applicable to Standard Plus I/O Banks
I/O Standard
VIH
VIL
Drive
Slew
Max, V
Strength Rate Min, V
VOL
VOH
Min, V
Max, V
Max, V
Min, V
IOL IOH
mA mA
3.3 V LVTTL /
3.3 V LVCMOS
12 mA
High
–0.3
0.8
2
3.6
0.4
2.4
12
12
2.5 V LVCMOS
12 mA
High
–0.3
0.7
1.7
3.6
0.7
1.7
12
12
1.8 V LVCMOS
8 mA
High
–0.3
0.35 * VCCI
0.65 * VCCI
3.6
0.45
VCCI – 0.45
8
8
1.5 V LVCMOS
4 mA
High
–0.3
0.30 * VCCI
0.7 * VCCI
3.6
0.25 * VCCI
0.75 * VCCI
4
4
3.3 V PCI
Per PCI specifications
3.3 V PCI-X
Per PCI-X specifications
Note: Currents are measured at 125°C junction temperature.
Table 2-16 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and
Industrial Conditions—Software Default Settings
Applicable to Standard I/O Banks
I/O Standard
3.3 V LVTTL /
3.3 V LVCMOS
VOL
VOH
Min, V
Max, V
Max, V
Min, V
0.8
2
3.6
0.4
2.4
8
8
0.7
1.7
VIL
Drive
Slew
Max, V
Strength Rate Min, V
8 mA
High
–0.3
VIH
IOL
IOH
mA mA
2.5 V LVCMOS
8 mA
High
–0.3
3.6
0.7
1.7
8
8
1.8 V LVCMOS
4 mA
High
–0.3
0.35 * VCCI 0.65 * VCCI
3.6
0.45
VCCI – 0.45
4
4
1.5 V LVCMOS
2 mA
High
–0.3
0.30 * VCCI
0.7 * VCCI
3.6
0.25 * VCCI 0.75 * VCCI
2
2
Note: Currents are measured at 125°C junction temperature.
2 -1 6
v1.0
Automotive ProASIC3 DC and Switching Characteristics
Table 2-17 • Summary of Maximum and Minimum DC Input Levels Applicable to Automotive
Grade 1 and Grade 2
Automotive Grade 11
Automotive Grade 2 2
IIL
IIH
IIL
IIH
DC I/O Standards
µA
µA
µA
µA
3.3 V LVTTL / 3.3 V LVCMOS
10
10
15
15
2.5 V LVCMOS
10
10
15
15
1.8 V LVCMOS
10
10
15
15
1.5 V LVCMOS
10
10
15
15
3.3 V PCI
10
10
15
15
3.3 V PCI-X
10
10
15
15
Notes:
1. Automotive range Grade 1 (–40°C < TJ < 135°C)
2. Automotive range Grade 2 (–40°C < TJ < 115°C)
Summary of I/O Timing Characteristics – Default I/O Software Settings
Table 2-18 • Summary of AC Measuring Points
Standard
Measuring Trip Point (Vtrip)
3.3 V LVTTL / 3.3 V LVCMOS
1.4 V
2.5 V LVCMOS
1.2 V
1.8 V LVCMOS
0.90 V
1.5 V LVCMOS
0.75 V
0.285 * VCCI (RR)
3.3 V PCI
0.615 * VCCI (FF)
0.285 * VCCI (RR)
3.3 V PCI-X
0.615 * VCCI (FF)
Table 2-19 • I/O AC Parameter Definitions
Parameter
Parameter Definition
tDP
Data-to-Pad delay through the Output Buffer
tPY
Pad-to-Data delay through the Input Buffer
tDOUT
Data–to–Output Buffer delay through the I/O interface
tEOUT
Enable–to–Output Buffer Tristate Control delay through the I/O interface
tDIN
Input Buffer–to–Data delay through the I/O interface
tHZ
Enable-to-Pad delay through the Output Buffer—HIGH to Z
tZH
Enable-to-Pad delay through the Output Buffer—Z to HIGH
tLZ
Enable-to-Pad delay through the Output Buffer—LOW to Z
tZL
Enable-to-Pad delay through the Output Buffer—Z to LOW
tZHS
Enable-to-Pad delay through the Output Buffer with delayed enable—Z to HIGH
tZLS
Enable-to-Pad delay through the Output Buffer with delayed enable—Z to LOW
v1.0
2 - 17
Automotive ProASIC3 DC and Switching Characteristics
Units
tZHS (ns)
tZLS (ns)
tHZ (ns)
tLZ (ns)
tZH (ns)
tZL (ns)
tE OU T (ns)
tPY (ns)
tDIN (ns)
tDP (ns)
tDOUT (ns)
External Resistor (Ω)
Capacitive Load (pF)
Slew Rate
I/O Standard
Drive Strength (mA)
Table 2-20 • Summary of I/O Timing Characteristics—Software Default Settings
–1 Speed Grade, Automotive-Case Conditions: TJ = 115°C, Worst Case VCC = 1.425 V, Worst Case
VCCI = 3.0 V
Advanced I/O Banks
3.3 V LVTTL /
3.3 V LVCMOS
12 mA
High 35 pF
–
0.53 3.25 0.04 0.94 0.38 3.31 1.51 2.96 1.88 5.37 2.71 ns
2.5 V LVCMOS
12 mA
High 35 pF
–
0.53 3.28 0.04 1.19 0.38 3.34 3.16 1.77 1.80 5.39 5.22 ns
1.8 V LVCMOS
12 mA
High 35 pF
–
0.53 3.25 0.04 1.12 0.38 1.89 1.63 3.41 3.75 3.06 2.82 ns
1.5 V LVCMOS
12 mA
High 35 pF
–
3.3 V PCI
3.3 V PCI-X
Per PCI
spec
High 10 pF 25
0.53 3.75 0.04 1.32 0.38 2.18 1.91 3.63 3.87 3.35 3.11 ns
2
0.53 2.12 0.04 0.78 0.38 1.23 0.91 2.57 2.96 2.41 2.11 ns
Per PCI-X High 10 pF 25 2 0.53 2.47 0.04 0.77 0.38 1.23 0.91 2.57 2.96 2.41 2.11 ns
spec
LVDS
24 mA
High
–
–
0.53 1.68 0.04 1.47
–
–
–
–
–
–
–
ns
LVPECL
24 mA
High
–
–
0.53 1.66 0.04 1.29
–
–
–
–
–
–
–
ns
Notes:
1. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-11 on
page 2-47 for connectivity. This resistor is not required during normal operation.
2 -1 8
v1.0
Automotive ProASIC3 DC and Switching Characteristics
Units
tZHS
tZLS
tHZ
tLZ
tZH
tZL
tEO UT
tPY
tDIN
tDP
tDOUT
External Resistor
Capacitive Load (pF)
Slew Rate
I/O Standard
Drive Strength (mA)
Table 2-21 • Summary of I/O Timing Characteristics—Software Default Settings
–1 Speed Grade, Automotive-Case Conditions: TJ = 115°C, Worst Case VCC = 1.425 V, Worst Case
VCCI = 3.0 V
Standard Plus I/O Banks
3.3 V LVTTL /
3.3 V LVCMOS
12 mA
High 35 pF
–
0.55 3.01 0.04 0.95 0.39 1.74 1.43 2.65 3.06 1.74 1.43 ns
2.5 V LVCMOS
12 mA
High 35 pF
–
0.55 3.05 0.04 1.23 0.39 3.11 2.99 1.56 1.69 5.23 5.11 ns
1.8 V LVCMOS
8 mA
High 35 pF
–
0.55 3.73 0.04 1.16 0.39 3.65 3.86 1.62 1.68 5.78 5.99 ns
1.5 V LVCMOS
4 mA
High 35 pF
–
3.3 V PCI
3.3 V PCI-X
Per PCI
spec
High 10 pF 25
0.55 4.60 0.04 1.35 0.39 4.61 5.05 2.07 1.85 6.74 7.18 ns
2
0.55 2.19 0.04 0.81 0.39 1.27 0.94 2.65 3.06 1.27 0.94 ns
Per PCI-X High 10 pF 25 2 0.55 2.19 0.04 0.79 0.39 1.27 0.94 2.65 3.06 1.27 0.94 ns
spec
Notes:
1. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-11 on
page 2-47 for connectivity. This resistor is not required during normal operation.
v1.0
2 - 19
Automotive ProASIC3 DC and Switching Characteristics
Units
tZHS (ns)
tZLS (ns)
tHZ (ns)
tLZ (ns)
tZH (ns)
tZL (ns)
tE OU T (ns)
tPY (ns)
tDIN (ns)
tDP (ns)
tDOUT (ns)
External Resistor (Ω)
Capacitive Load (pF)
Slew Rate
I/O Standard
Drive Strength (mA)
Table 2-22 • Summary of I/O Timing Characteristics—Software Default Settings
–1 Speed Grade, Automotive-Case Conditions: TJ = 135°C, Worst Case VCC = 1.425 V, Worst Case
VCCI = 3.0 V
Advanced I/O Banks
3.3 V LVTTL /
3.3 V LVCMOS
12 mA
High 35 pF
–
0.55 3.36 0.04 0.97 0.39 3.42 1.56 3.05 1.94 5.55 2.80 ns
2.5 V LVCMOS
12 mA
High 35 pF
–
0.55 3.39 0.04 1.23 0.39 3.45 3.27 1.83 1.86 5.58 5.39 ns
1.8 V LVCMOS
12 mA
High 35 pF
–
0.55 3.36 0.04 1.16 0.39 1.95 1.68 3.52 3.88 3.16 2.92 ns
1.5 V LVCMOS
12 mA
High 35 pF
–
3.3 V PCI
3.3 V PCI-X
Per PCI
spec
High 10 pF 25
0.55 3.88 0.04 1.37 0.39 2.25 1.98 3.75 4.00 3.46 3.21 ns
2
0.55 2.19 0.04 0.81 0.39 1.27 0.94 2.65 3.06 2.49 2.18 ns
Per PCI-X High 10 pF 25 2 0.55 2.55 0.04 0.79 0.39 1.27 0.94 2.65 3.06 2.49 2.18 ns
spec
LVDS
24 mA
High
–
–
0.55 1.74 0.04 1.52
–
–
–
–
–
–
–
ns
LVPECL
24 mA
High
–
–
0.55 1.71 0.04 1.34
–
–
–
–
–
–
–
ns
Notes:
1. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-11 on
page 2-47 for connectivity. This resistor is not required during normal operation.
2 -2 0
v1.0
Automotive ProASIC3 DC and Switching Characteristics
Units
tZHS (ns)
tZLS (ns)
tHZ (ns)
tLZ (ns)
tZH (ns)
tZL (ns)
tEO UT (ns)
tPY (ns)
tDIN (ns)
tDP (ns)
tDOUT (ns)
External Resistor
Capacitive Load (pF)
Slew Rate
I/O Standard
Drive Strength (mA)
Table 2-23 • Summary of I/O Timing Characteristics—Software Default Settings
–1 Speed Grade, Automotive-Case Conditions: TJ = 115°C, Worst Case VCC = 1.425 V, Worst Case
VCCI = 3.0 V
Standard Plus I/O Banks
3.3 V LVTTL /
3.3 V LVCMOS
12 mA
High 35 pF
–
0.55 3.36 0.04 0.97 0.39 3.42 1.56 3.05 1.94 5.55 2.80 ns
2.5 V LVCMOS
12 mA
High 35 pF
–
0.55 3.05 0.04 1.23 0.39 3.11 2.99 1.56 1.69 5.23 5.11 ns
1.8 V LVCMOS
8 mA
High 35 pF
–
0.55 3.73 0.04 1.16 0.39 3.65 3.86 1.62 1.68 5.78 5.99 ns
1.5 V LVCMOS
4 mA
High 35 pF
–
3.3 V PCI
3.3 V PCI-X
Per PCI
spec
High 10 pF 25
0.55 4.60 0.04 1.35 0.39 4.61 5.05 2.07 1.85 6.74 7.18 ns
2
0.55 2.55 0.04 0.82 0.39 1.27 0.94 2.65 3.06 2.49 2.18 ns
Per PCI-X High 10 pF 25 2 0.55 2.55 0.04 0.79 0.39 1.27 0.94 2.65 3.06 2.49 2.18 ns
spec
Notes:
1. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-11 on
page 2-47 for connectivity. This resistor is not required during normal operation.
v1.0
2 - 21
Automotive ProASIC3 DC and Switching Characteristics
Detailed I/O DC Characteristics
Table 2-24 • Input Capacitance
Symbol
Definition
Conditions
Min.
Max.
Units
CIN
Input capacitance
VIN = 0, f = 1.0 MHz
8
pF
CINCLK
Input capacitance on the clock pin
VIN = 0, f = 1.0 MHz
8
pF
Table 2-25 • I/O Output Buffer Maximum Resistances1
Applicable to Advanced I/O Banks
Standard
Drive Strength
RPULL-DOWN
(Ω)2
RPULL-UP
(Ω)3
2 mA
100
300
4 mA
100
300
6 mA
50
150
8 mA
50
150
12 mA
25
75
16 mA
17
50
3.3 V LVTTL / 3.3 V LVCMOS
24 mA
11
33
2 mA
100
200
6 mA
50
100
12 mA
25
50
16 mA
20
40
24 mA
11
22
2 mA
200
225
4 mA
100
112
6 mA
50
56
8 mA
50
56
12 mA
20
22
16 mA
20
22
2 mA
200
224
4 mA
100
112
6 mA
67
75
8 mA
33
37
12 mA
33
37
Per PCI/PCI-X specification
25
75
2.5 V LVCMOS
1.8 V LVCMOS
1.5 V LVCMOS
3.3 V PCI/PCI-X
Notes:
1. These maximum values are provided for informational reasons only. Minimum output buffer
resistance values depend on VCCI , drive strength selection, temperature, and process. For
board design considerations and detailed output buffer resistances, use the corresponding
IBIS models located on the Actel website at http://www.actel.com/download/ibis/default.aspx.
2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec
3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHs pe c
2 -2 2
v1.0
Automotive ProASIC3 DC and Switching Characteristics
Table 2-26 • I/O Output Buffer Maximum Resistances1
Applicable to Standard Plus I/O Banks
Drive Strength
RPULL-DOWN
(Ω)2
RPULL-UP
(Ω)3
2 mA
100
300
4 mA
100
300
6 mA
50
150
8 mA
50
150
12 mA
25
75
16 mA
25
75
2 mA
100
200
6 mA
50
100
12 mA
25
50
2 mA
200
225
4 mA
100
112
6 mA
50
56
8 mA
50
56
2 mA
200
224
4 mA
100
112
Per PCI/PCI-X specification
0
0
Standard
3.3 V LVTTL / 3.3 V LVCMOS
2.5 V LVCMOS
1.8 V LVCMOS
1.5 V LVCMOS
3.3 V PCI/PCI-X
Notes:
1. These maximum values are provided for informational reasons only. Minimum output buffer
resistance values depend on VCCI, drive strength selection, temperature, and process. For
board design considerations and detailed output buffer resistances, use the corresponding
IBIS models located on the Actel website at http://www.actel.com/download/ibis/default.aspx.
2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec
3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHs pe c
Table 2-27 • I/O Weak Pull-Up/Pull-Down Resistances
Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values
R(WEAK PULL-UP)1
(Ω)
R(WEAK PULL-DOWN)2
(Ω)
VCCI
Min.
Max.
Min.
Max.
3.3 V
10 k
45 k
10 k
45 k
2.5 V
11 k
55 k
12 k
74 k
1.8 V
18 k
70 k
17 k
110 k
1.5 V
19 k
90 k
19 k
140 k
Notes:
1. R(WEAK PULL-UP-MAX) = (VOLspec) / I(WEAK PULL-UP-MIN)
2. R(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I(WEAK PULL-UP-MIN)
v1.0
2 - 23
Automotive ProASIC3 DC and Switching Characteristics
Table 2-28 • I/O Short Currents IOSH/IOSL
Applicable to Advanced I/O Banks
Drive Strength
IOSL (mA)*
IOSH (mA)*
2 mA
27
25
4 mA
27
25
6 mA
54
51
8 mA
54
51
12 mA
109
103
16 mA
127
132
24 mA
181
268
2 mA
27
25
4 mA
27
25
6 mA
54
51
8 mA
54
51
12 mA
109
103
16 mA
127
132
24 mA
181
268
2 mA
18
16
6 mA
37
32
12 mA
74
65
16 mA
87
83
24 mA
124
169
2 mA
11
9
4 mA
22
17
6 mA
44
35
8 mA
51
45
12 mA
74
91
16 mA
74
91
2 mA
16
13
4 mA
33
25
6 mA
39
32
8 mA
55
66
12 mA
55
66
Per PCI/PCI-X specification
109
103
3.3 V LVTTL / 3.3 V LVCMOS
3.3 V LVCMOS
2.5 V LVCMOS
1.8 V LVCMOS
1.5 V LVCMOS
3.3 V PCI/PCI-X
* TJ = 100°C
2 -2 4
v1.0
Automotive ProASIC3 DC and Switching Characteristics
Table 2-29 • I/O Short Currents IOSH/IOSL
Applicable to Standard Plus I/O Banks
Drive Strength
IOSL (mA)*
IOSH (mA)*
2 mA
27
25
4 mA
27
25
6 mA
54
51
8 mA
54
51
12 mA
109
103
16 mA
109
103
2 mA
18
16
6 mA
37
32
12 mA
74
65
2 mA
11
9
4 mA
22
17
6 mA
44
35
8 mA
44
35
2 mA
16
13
4 mA
33
25
Per PCI/PCI-X specification
109
103
3.3 V LVTTL / 3.3 V LVCMOS
2.5 V LVCMOS
1.8 V LVCMOS
1.5 V LVCMOS
3.3 V PCI/PCI-X
* TJ = 100°C
The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The
reliability data below is based on a 3.3 V, 12 mA I/O setting, which is the worst case for this type of
analysis.
For example, at 110°C, the short current condition would have to be sustained for more than three
months to cause a reliability concern. The I/O design does not contain any short circuit protection,
but such protection would only be needed in extremely prolonged stress conditions.
Table 2-30 • Duration of Short Circuit Event before Failure
Temperature
Time before Failure
–40°C
> 20 years
0°C
> 20 years
25°C
> 20 years
70°C
5 years
85°C
2 years
100°C
6 months
110°C
3 months
125°C
25 days
135°
12 days
v1.0
2 - 25
Automotive ProASIC3 DC and Switching Characteristics
Table 2-31 • I/O Input Rise Time, Fall Time, and Related I/O Reliability
Input Rise/Fall Time
(min.)
Input Rise/Fall Time
(max.)
Reliability
LVTTL/LVCMOS
No requirement
10 ns *
20 years (110°C)
LVDS/B-LVDS/M-LVDS/LVPECL
No requirement
10 ns *
10 years (100°C)
Input Buffer
* The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low,
the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the
rise/fall times, the more susceptible the input signal is to the board noise. Actel recommends signal integrity
evaluation/characterization of the system to ensure there is no excessive noise coupling into input signals.
Single-Ended I/O Characteristics
3.3 V LVTTL / 3.3 V LVCMOS
Low-Voltage Transistor–Transistor Logic (LVTTL) is a general-purpose standard (EIA/JESD) for 3.3 V
applications. It uses an LVTTL input buffer and push-pull output buffer.
Table 2-32 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks
3.3 V LVTTL /
3.3 V LVCMOS
Drive
Strength
VIL
VIH
VOL
VOH
IOL IOH
IOSL
IOSH
IIL
IIH
Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1 Max., mA1 µA2 µA2
2 mA
–0.3
0.8
2
3.6
0.4
2.4
2
2
27
25
10
10
4 mA
–0.3
0.8
2
3.6
0.4
2.4
4
4
27
25
10
10
6 mA
–0.3
0.8
2
3.6
0.4
2.4
6
6
54
51
10
10
8 mA
–0.3
0.8
2
3.6
0.4
2.4
8
8
54
51
10
10
12 mA
–0.3
0.8
2
3.6
0.4
2.4
12 12
109
103
10
10
16 mA
–0.3
0.8
2
3.6
0.4
2.4
16 16
127
132
10
10
24 mA
–0.3
0.8
2
3.6
0.4
2.4
24 24
181
268
10
10
Notes:
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
2. Currents are measured at 125°C junction temperature.
3. Software default selection highlighted in gray.
2 -2 6
v1.0
Automotive ProASIC3 DC and Switching Characteristics
Table 2-33 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O Banks
3.3 V LVTTL /
3.3 V LVCMOS
Drive
Strength
VIL
VIH
VOL
VOH
IOL IOH
IOSL
IOSH
IIL
IIH
Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1 Max., mA1 µA2 µA2
2 mA
–0.3
0.8
2
3.6
0.4
2.4
2
2
27
25
10
10
4 mA
–0.3
0.8
2
3.6
0.4
2.4
4
4
27
25
10
10
6 mA
–0.3
0.8
2
3.6
0.4
2.4
6
6
54
51
10
10
8 mA
–0.3
0.8
2
3.6
0.4
2.4
8
8
54
51
10
10
12 mA
–0.3
0.8
2
3.6
0.4
2.4
12 12
109
103
10
10
16 mA
–0.3
0.8
2
3.6
0.4
2.4
16 16
109
103
10
10
Notes:
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
2. Currents are measured at 125°C junction temperature.
3. Software default selection highlighted in gray.
Test Point
Datapath
35 pF
R=1k
Test Point
Enable Path
R to VCCI for tLZ/tZL/tZLS
R to GND for tHZ/tZH/tZHS
35 pF for tZH/tZHS/tZL/tZLS
5 pF for tHZ/tLZ
Figure 2-7 • AC Loading
Table 2-34 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V)
0
Input HIGH (V)
Measuring Point* (V)
CLOAD (pF)
3.3
1.4
35
* Measuring point = Vtrip. See Table 2-18 on page 2-17 for a complete table of trip points.
v1.0
2 - 27
Automotive ProASIC3 DC and Switching Characteristics
Timing Characteristics
Table 2-35 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
Drive
Strength
4 mA
6 mA
8 mA
12 mA
16 mA
24 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
STD
0.64
8.56
0.05
1.14
0.46
8.72
7.37
1.46
1.42
11.22
9.866
ns
-1
0.55
7.28
0.04
0.97
0.39
7.42
6.27
1.46
1.42
9.54
8.393
ns
STD
0.64
5.49
0.05
1.14
0.46
5.59
4.55
1.65
1.74
8.09
7.05
ns
-1
0.55
4.67
0.04
0.97
0.39
4.75
3.87
1.65
1.74
6.88
5.997
ns
STD
0.64
5.49
0.05
1.14
0.46
5.59
4.55
1.65
1.74
8.09
7.05
ns
-1
0.55
4.67
0.04
0.97
0.39
4.75
3.87
1.65
1.74
6.88
5.997
ns
STD
0.64
3.95
0.05
1.14
0.46
4.02
1.56
3.59
1.94
6.52
2.795
ns
-1
0.55
3.36
0.04
0.97
0.39
3.42
1.56
3.05
1.94
5.55
2.797
ns
STD
0.64
3.73
0.05
1.14
0.46
1.84
1.42
3.65
4.11
3.05
2.651
ns
-1
0.55
3.17
0.04
0.97
0.39
1.84
1.42
3.10
3.50
3.05
2.653
ns
STD
0.64
3.44
0.05
1.14
0.46
1.70
1.17
3.72
4.54
2.91
2.405
ns
-1
0.55
2.92
0.04
0.97
0.39
1.70
1.17
3.16
3.86
2.91
2.407
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
Table 2-36 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
Drive
Strength
4 mA
6 mA
8 mA
12 mA
16 mA
24 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
STD
0.64
11.47
0.05
1.14
0.46
11.68
9.95
1.46
1.33
14.18
12.449
ns
-1
0.55
9.75
0.04
0.97
0.39
9.94
8.46
1.46
1.33
12.06
10.59
ns
STD
0.64
8.13
0.05
1.14
0.46
8.28
7.03
1.65
1.65
10.79
9.526
ns
-1
0.55
6.92
0.04
0.97
0.39
7.05
5.98
1.65
1.65
9.17
8.103
ns
STD
0.64
8.13
0.05
1.14
0.46
8.28
7.03
1.65
1.65
10.79
9.526
ns
-1
0.55
6.92
0.04
0.97
0.39
7.05
5.98
1.65
1.65
9.17
8.103
ns
STD
0.64
6.24
0.05
1.14
0.46
6.36
5.45
1.77
1.85
8.86
7.946
ns
-1
0.55
5.31
0.04
0.97
0.39
5.41
4.63
1.77
1.85
7.53
6.76
ns
STD
0.64
5.82
0.05
1.14
0.46
5.93
5.10
1.80
1.90
8.43
7.604
ns
-1
0.55
4.95
0.04
0.97
0.39
5.04
4.34
1.80
1.90
7.17
6.468
ns
STD
0.64
5.42
0.05
1.14
0.46
5.52
5.08
1.83
2.10
8.02
7.581
ns
-1
0.55
4.61
0.04
0.97
0.39
4.70
4.32
1.83
2.11
6.82
6.449
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
2 -2 8
v1.0
Automotive ProASIC3 DC and Switching Characteristics
Table 2-37 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus I/O Banks
Drive
Strength
4 mA
6 mA
8 mA
12 mA
16 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
STD
0.64
8.06
0.05
1.12
0.46
8.20
7.03
1.26
1.27
8.20
7.027
ns
-1
0.55
6.85
0.04
.095
0.39
6.98
5.98
1.26
1.27
6.98
5.978
ns
STD
0.64
5.03
0.05
1.12
0.46
5.13
4.27
1.42
1.56
5.13
4.267
ns
-1
0.55
4.28
0.04
0.95
0.39
4.36
3.63
1.42
1.56
4.36
3.63
ns
STD
0.64
5.03
0.05
1.12
0.46
5.13
4.27
1.42
1.56
5.13
4.267
ns
-1
0.55
4.28
0.04
0.95
0.39
4.36
3.63
1.42
1.56
4.36
3.63
ns
STD
0.64
3.53
0.05
1.12
0.46
1.74
1.43
3.12
3.60
1.74
1.427
ns
-1
0.55
3.01
0.04
0.95
0.39
1.74
1.43
2.65
3.06
1.74
1.428
ns
STD
0.64
3.53
0.05
1.12
0.46
1.74
1.43
3.12
3.60
1.74
1.427
ns
-1
0.55
3.01
0.04
0.95
0.39
1.74
1.43
2.65
3.06
1.74
1.428
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
Table 2-38 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus I/O Banks
Drive
Strength
4 mA
6 mA
8 mA
12 mA
16 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
STD
0.64
10.82
0.05
1.12
0.46
11.02
9.42
1.26
1.20
11.02
9.419
ns
-1
0.55
9.21
0.04
0.95
0.39
9.38
8.01
1.26
1.20
9.38
8.012
ns
STD
0.64
7.49
0.05
1.12
0.46
7.63
6.58
1.43
1.48
7.63
6.58
ns
-1
0.55
6.37
0.04
0.95
0.39
6.49
5.60
1.43
1.49
6.49
5.598
ns
STD
0.64
7.49
0.05
1.12
0.46
7.63
6.58
1.43
1.48
7.63
6.58
ns
-1
0.55
6.37
0.04
0.95
0.39
6.49
5.60
1.43
1.49
6.49
5.598
ns
STD
0.64
5.64
0.05
1.12
0.46
5.75
5.04
1.54
1.67
5.75
5.042
ns
-1
0.55
4.80
0.04
0.95
0.39
4.89
4.29
1.54
1.67
4.89
4.289
ns
STD
0.64
5.64
0.05
1.12
0.46
5.75
5.04
1.54
1.67
5.75
5.042
ns
-1
0.55
4.80
0.04
0.95
0.39
4.89
4.29
1.54
1.67
4.89
4.289
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
v1.0
2 - 29
Automotive ProASIC3 DC and Switching Characteristics
Table 2-39 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
Drive
Strength
4 mA
6 mA
8 mA
12 mA
16 mA
24 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
STD
0.63
8.28
0.05
1.10
0.45
8.44
7.13
1.42
1.37
10.85
9.55
ns
-1
0.53
7.05
0.04
0.94
0.38
7.18
6.06
1.42
1.37
9.23
8.12
ns
STD
0.63
5.31
0.05
1.10
0.45
5.41
4.40
1.60
1.68
7.83
6.82
ns
-1
0.53
4.52
0.04
0.94
0.38
4.60
3.74
1.60
1.68
6.66
5.80
ns
STD
0.63
5.31
0.05
1.10
0.45
5.41
4.40
1.60
1.68
7.83
6.82
ns
-1
0.53
4.52
0.04
0.94
0.38
4.60
3.74
1.60
1.68
6.66
5.80
ns
STD
0.63
3.82
0.05
1.10
0.45
3.89
1.51
3.47
1.88
6.31
2.70
ns
-1
0.53
3.25
0.04
0.94
0.38
3.31
1.51
2.96
1.88
5.37
2.71
ns
STD
0.63
3.60
0.05
1.10
0.45
1.78
1.37
3.53
3.98
2.95
2.57
ns
-1
0.53
3.07
0.04
0.94
0.38
1.78
1.37
3.00
3.38
2.95
2.57
ns
STD
0.63
3.33
0.05
1.10
0.45
1.64
1.13
3.60
4.39
2.81
2.33
ns
-1
0.53
2.83
0.04
0.94
0.38
1.64
1.13
3.06
3.74
2.82
2.33
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
Table 2-40 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
Drive
Strength
4 mA
6 mA
8 mA
12 mA
16 mA
24 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
STD
0.63
11.09
0.05
1.10
0.45
11.30
9.63
1.41
1.29
13.72
12.04
ns
-1
0.53
9.44
0.04
0.94
0.38
9.61
8.19
1.41
1.29
11.67
10.25
ns
STD
0.63
7.87
0.05
1.10
0.45
8.02
6.80
1.59
1.59
10.43
9.22
ns
-1
0.53
6.69
0.04
0.94
0.38
6.82
5.78
1.59
1.60
8.88
7.84
ns
STD
0.63
7.87
0.05
1.10
0.45
8.02
6.80
1.59
1.59
10.43
9.22
ns
-1
0.53
6.69
0.04
0.94
0.38
6.82
5.78
1.59
1.60
8.88
7.84
ns
STD
0.63
6.04
0.05
1.10
0.45
6.15
5.27
1.71
1.79
8.57
7.69
ns
-1
0.53
5.14
0.04
0.94
0.38
5.23
4.48
1.71
1.79
7.29
6.54
ns
STD
0.63
5.63
0.05
1.10
0.45
5.74
4.94
1.74
1.84
8.16
7.36
ns
-1
0.53
4.79
0.04
0.94
0.38
4.88
4.20
1.74
1.84
6.94
6.26
ns
STD
0.63
5.25
0.05
1.10
0.45
5.34
4.92
1.77
2.04
7.76
7.34
ns
-1
0.53
4.46
0.04
0.94
0.38
4.55
4.18
1.77
2.04
6.60
6.24
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
2 -3 0
v1.0
Automotive ProASIC3 DC and Switching Characteristics
Table 2-41 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus I/O Banks
Drive
Strength
4 mA
6 mA
8 mA
12 mA
16 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
STD
0.63
7.79
0.05
1.08
0.45
7.94
6.80
1.22
1.23
7.94
6.80
ns
-1
0.55
6.85
0.04
0.95
0.39
6.98
5.98
1.26
1.27
6.98
5.98
ns
STD
0.63
4.87
0.05
1.08
0.45
4.96
4.13
1.38
1.51
4.96
4.13
ns
-1
0.55
4.28
0.04
0.95
0.39
4.36
3.63
1.42
1.56
4.36
3.63
ns
STD
0.63
4.87
0.05
1.08
0.45
4.96
4.13
1.38
1.51
4.96
4.13
ns
-1
0.55
4.28
0.04
0.95
0.39
4.36
3.63
1.42
1.56
4.36
3.63
ns
STD
0.63
3.42
0.05
1.08
0.45
1.69
1.38
3.02
3.48
1.69
1.38
ns
-1
0.55
3.01
0.04
0.95
0.39
1.74
1.43
2.65
3.06
1.74
1.43
ns
STD
0.63
3.42
0.05
1.08
0.45
1.69
1.38
3.02
3.48
1.69
1.38
ns
-1
0.55
3.01
0.04
0.95
0.39
1.74
1.43
2.65
3.06
1.74
1.43
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
Table 2-42 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus I/O Banks
Drive
Strength
4 mA
6 mA
8 mA
12 mA
16 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
STD
0.63
10.47
0.05
1.08
0.45
10.66
9.11
1.22
1.16
10.66
9.11
ns
-1
0.55
9.21
0.04
0.95
0.39
9.38
8.01
1.26
1.20
9.38
8.01
ns
STD
0.63
7.25
0.05
1.08
0.45
7.38
6.37
1.38
1.44
7.38
6.37
ns
-1
0.55
6.37
0.04
0.95
0.39
6.49
5.60
1.43
1.49
6.49
5.60
ns
STD
0.63
7.25
0.05
1.08
0.45
7.38
6.37
1.38
1.44
7.38
6.37
ns
-1
0.55
6.37
0.04
0.95
0.39
6.49
5.60
1.43
1.49
6.49
5.60
ns
STD
0.63
5.46
0.05
1.08
0.45
5.56
4.88
1.49
1.61
5.56
4.88
ns
-1
0.55
4.80
0.04
0.95
0.39
4.89
4.29
1.54
1.67
4.89
4.29
ns
STD
0.63
5.46
0.05
1.08
0.45
5.56
4.88
1.49
1.61
5.56
4.88
ns
-1
0.55
4.80
0.04
0.95
0.39
4.89
4.29
1.54
1.67
4.89
4.29
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
v1.0
2 - 31
Automotive ProASIC3 DC and Switching Characteristics
2.5 V LVCMOS
Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 2.5 V applications. It uses a 5 V–tolerant input buffer and push-pull output buffer.
Table 2-43 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks
2.5 V
LVCMOS
Drive
Strength
VIH
VIL
VOL
VOH
IOL IOH
IOSL
Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1
IOSH
IIL
IIH
Max., mA1 µA2 µA2
2 mA
–0.3
0.7
1.7
3.6
0.7
1.7
2
2
18
16
10
10
6 mA
–0.3
0.7
1.7
3.6
0.7
1.7
6
6
37
32
10
10
12 mA
–0.3
0.7
1.7
3.6
0.7
1.7
12
12
74
65
10
10
16 mA
–0.3
0.7
1.7
3.6
0.7
1.7
16
16
87
83
10
10
24 mA
–0.3
0.7
1.7
3.6
0.7
1.7
24
24
124
169
10
10
IIL
IIH
Notes:
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
2. Currents are measured at 125°C junction temperature.
3. Software default selection highlighted in gray.
Table 2-44 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O Banks
2.5 V
LVCMOS
Drive
Strength
VIH
VIL
VOL
VOH
IOL IOH
IOSL
Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1
IOSH
Max., mA1 µA2 µA2
2 mA
–0.3
0.7
1.7
3.6
0.7
1.7
2
2
18
16
10
10
6 mA
–0.3
0.7
1.7
3.6
0.7
1.7
6
6
37
32
10
10
12 mA
–0.3
0.7
1.7
3.6
0.7
1.7
12
12
74
65
10
10
Notes:
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
2. Currents are measured at 125°C junction temperature.
3. Software default selection highlighted in gray.
Test Point
Datapath
35 pF
R=1k
Test Point
Enable Path
R to VCCI for tLZ/tZL/tZLS
R to GND for tHZ/tZH/tZHS
35 pF for tZH/tZHS/tZL/tZLS
5 pF for tHZ/tLZ
Figure 2-8 • AC Loading
Table 2-45 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V)
0
Input HIGH (V)
Measuring Point* (V)
CLOAD (pF)
2.5
1.2
35
* Measuring point = Vtrip. See Table 2-18 on page 2-17 for a complete table of trip points.
2 -3 2
v1.0
Automotive ProASIC3 DC and Switching Characteristics
Timing Characteristics
Table 2-46 • 2.5 V LVCMOS High Slew
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Drive
Strength
2 mA
6 mA
12 mA
16 mA
24 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
STD
0.64
9.69
0.05
1.45
0.46
8.76
9.69
1.48
1.25
11.26
12.187
ns
-1
0.55
8.24
0.04
1.23
0.39
7.45
8.24
1.48
1.25
9.58
10.367
ns
STD
0.64
5.78
0.05
1.45
0.46
5.63
5.78
1.68
1.62
8.13
8.277
ns
-1
0.55
4.91
0.04
1.23
0.39
4.79
4.91
1.69
1.63
6.92
7.04
ns
STD
0.64
3.98
0.05
1.45
0.46
4.05
3.84
1.82
1.86
6.55
6.338
ns
-1
0.55
3.39
0.04
1.23
0.39
3.45
3.27
1.83
1.86
5.58
5.392
ns
STD
0.64
3.75
0.05
1.45
0.46
1.85
1.69
3.76
3.97
3.06
2.926
ns
-1
0.55
3.19
0.04
1.23
0.39
1.85
1.69
3.20
3.38
3.06
2.929
ns
STD
0.64
3.45
0.05
1.45
0.46
1.70
1.35
3.84
4.47
2.92
2.585
ns
-1
0.55
2.94
0.04
1.23
0.39
1.71
1.35
3.27
3.80
2.92
2.586
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
Table 2-47 • 2.5 V LVCMOS Low Slew
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Drive
Strength
2 mA
6 mA
12 mA
16 mA
24 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
STD
0.64
12.12
0.05
1.45
0.46
12.54
12.74
1.48
1.19
15.04
15.243
ns
-1
0.55
10.31
0.04
1.23
0.39
10.67
10.84
1.48
1.20
12.80
12.966
ns
STD
0.64
8.24
0.05
1.45
0.46
9.07
8.74
1.68
1.57
11.57
11.237
ns
-1
0.55
7.01
0.04
1.23
0.39
7.71
7.43
1.69
1.57
9.84
9.559
ns
STD
0.64
6.91
0.05
1.45
0.46
7.04
6.62
1.82
1.80
9.54
9.117
ns
-1
0.55
5.88
0.04
1.23
0.39
5.99
5.63
1.83
1.80
8.11
7.756
ns
STD
0.64
6.44
0.05
1.45
0.46
6.56
6.18
1.86
1.86
9.06
8.678
ns
-1
0.55
5.48
0.04
1.23
0.39
5.58
5.26
1.86
1.86
7.71
7.382
ns
STD
0.64
6.16
0.05
1.45
0.46
6.15
6.16
1.90
2.10
8.65
8.657
ns
-1
0.55
5.24
0.04
1.23
0.39
5.23
5.24
1.90
2.10
7.36
7.364
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
v1.0
2 - 33
Automotive ProASIC3 DC and Switching Characteristics
Table 2-48 • 2.5 V LVCMOS High Slew
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/O Banks
Drive
Strength
2 mA
6 mA
12 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
STD
0.64
9.26
0.05
1.45
0.46
8.28
9.26
1.24
1.12
10.78
11.756
ns
-1
0.55
7.87
0.04
1.23
0.39
7.05
7.87
1.24
1.13
9.17
10
ns
STD
0.64
5.43
0.05
1.45
0.46
5.19
5.43
1.43
1.47
7.69
7.926
ns
-1
0.55
4.62
0.04
1.23
0.39
4.42
4.62
1.43
1.47
6.55
6.743
ns
STD
0.64
3.59
0.05
1.45
0.46
3.65
3.51
1.56
1.69
6.15
6.012
ns
-1
0.55
3.05
0.04
1.23
0.39
3.11
2.99
1.56
1.69
5.23
5.114
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
Table 2-49 • 2.5 V LVCMOS Low Slew
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/O Banks
Drive
Strength
2 mA
6 mA
12 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
STD
0.64
12.12
0.05
1.45
0.46
11.89
12.12
1.25
1.08
14.39
14.622
ns
-1
0.55
10.31
0.04
1.23
0.39
10.12
10.31
1.25
1.08
12.24
12.438
ns
STD
0.64
8.24
0.05
1.45
0.46
8.39
8.23
1.43
1.42
10.89
10.73
ns
-1
0.55
7.01
0.04
1.23
0.39
7.14
7.00
1.43
1.42
9.26
9.128
ns
STD
0.64
6.30
0.05
1.45
0.46
6.41
6.16
1.56
1.63
8.91
8.656
ns
-1
0.55
5.35
0.04
1.23
0.39
5.45
5.24
1.56
1.63
7.58
7.364
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
2 -3 4
v1.0
Automotive ProASIC3 DC and Switching Characteristics
Table 2-50 • 2.5 V LVCMOS High Slew
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Drive
Strength
2 mA
6 mA
12 mA
16 mA
24 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
STD
0.63
9.37
0.05
1.40
0.45
8.47
9.37
1.43
1.21
10.89
11.79
ns
-1
0.53
7.97
0.04
1.19
0.38
7.21
7.97
1.43
1.21
9.27
10.03
ns
STD
0.63
5.59
0.05
1.40
0.45
5.45
5.59
1.63
1.57
7.87
8.01
ns
-1
0.53
4.75
0.04
1.19
0.38
4.63
4.75
1.63
1.57
6.69
6.81
ns
STD
0.63
3.85
0.05
1.40
0.45
3.92
3.71
1.77
1.80
6.34
6.13
ns
-1
0.53
3.28
0.04
1.19
0.38
3.34
3.16
1.77
1.80
5.39
5.22
ns
STD
0.63
3.63
0.05
1.40
0.45
1.79
1.64
3.64
3.84
2.96
2.83
ns
-1
0.53
3.08
0.04
1.19
0.38
1.79
1.64
3.09
3.27
2.96
2.83
ns
STD
0.63
3.34
0.05
1.40
0.45
1.65
1.31
3.72
4.32
2.82
2.50
ns
-1
0.53
2.84
0.04
1.19
0.38
1.65
1.31
3.16
3.68
2.82
2.50
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
Table 2-51 • 2.5 V LVCMOS Low Slew
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Drive
Strength
2 mA
6 mA
12 mA
16 mA
24 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
STD
0.63
11.73
0.05
1.40
0.45
12.14
12.33
1.43
1.16
14.55
14.75
ns
-1
0.53
9.98
0.04
1.19
0.38
10.32
10.49
1.43
1.16
12.38
12.55
ns
STD
0.63
7.97
0.05
1.40
0.45
8.77
8.45
1.63
1.51
11.19
10.87
ns
-1
0.53
6.78
0.04
1.19
0.38
7.46
7.19
1.63
1.52
9.52
9.25
ns
STD
0.63
6.68
0.05
1.40
0.45
6.81
6.40
1.77
1.74
9.23
8.82
ns
-1
0.53
5.69
0.04
1.19
0.38
5.79
5.45
1.77
1.74
7.85
7.50
ns
STD
0.63
6.24
0.05
1.40
0.45
6.35
5.98
1.80
1.80
8.77
8.40
ns
-1
0.53
5.30
0.04
1.19
0.38
5.40
5.08
1.80
1.80
7.46
7.14
ns
STD
0.63
5.96
0.05
1.40
0.45
5.95
5.96
1.84
2.03
8.37
8.38
ns
-1
0.53
5.07
0.04
1.19
0.38
5.06
5.07
1.84
2.03
7.12
7.12
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
v1.0
2 - 35
Automotive ProASIC3 DC and Switching Characteristics
Table 2-52 • 2.5 V LVCMOS High Slew
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/O Banks
Drive
Strength
2 mA
6 mA
12 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
STD
0.63
8.95
0.05
1.40
0.45
8.01
8.95
1.20
1.09
10.43
11.37
ns
-1
0.53
7.62
0.04
1.19
0.38
6.82
7.62
1.20
1.09
8.87
9.68
ns
STD
0.63
5.25
0.05
1.40
0.45
5.03
5.25
1.38
1.42
7.44
7.67
ns
-1
0.53
4.47
0.04
1.19
0.38
4.27
4.47
1.38
1.42
6.33
6.52
ns
STD
0.63
3.47
0.05
1.40
0.45
3.53
3.40
1.51
1.63
5.95
5.82
ns
-1
0.53
2.95
0.04
1.19
0.38
3.01
2.89
1.51
1.63
5.06
4.95
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
Table 2-53 • 2.5 V LVCMOS Low Slew
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/O Banks
Drive
Strength
2 mA
6 mA
12 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
STD
0.63
11.73
0.05
1.40
0.45
11.51
11.73
1.21
1.04
13.93
14.15
ns
-1
0.53
9.98
0.04
1.19
0.38
9.79
9.98
1.21
1.04
11.85
12.03
ns
STD
0.63
7.97
0.05
1.40
0.45
8.12
7.96
1.38
1.37
10.54
10.38
ns
-1
0.53
6.78
0.04
1.19
0.38
6.91
6.77
1.39
1.37
8.96
8.83
ns
STD
0.63
6.09
0.05
1.40
0.45
6.20
5.96
1.51
1.58
8.62
8.38
ns
-1
0.53
5.18
0.04
1.19
0.38
5.28
5.07
1.51
1.58
7.33
7.12
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
2 -3 6
v1.0
Automotive ProASIC3 DC and Switching Characteristics
1.8 V LVCMOS
Low-voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer.
Table 2-54 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks
1.8 V
LVCMOS
VIL
Drive
Strength Min., V
Max., V
VIH
Min., V
VOL
VOH
Max., V Max., V
Min., V
IOL IOH
IOSL
IOSH
IIL
IIH
mA mA Max., mA1 Max., mA1 µA2 µA2
2 mA
–0.3
0.35 * VCCI 0.65 * VCCI
3.6
0.45
VCCI – 0.45
2
2
11
9
10 10
4 mA
–0.3
0.35 * VCCI 0.65 * VCCI
3.6
0.45
VCCI – 0.45
4
4
22
17
10 10
6 mA
–0.3
0.35 * VCCI 0.65 * VCCI
3.6
0.45
VCCI – 0.45
6
6
44
35
10 10
8 mA
–0.3
0.35 * VCCI 0.65 * VCCI
3.6
0.45
VCCI – 0.45
8
8
51
45
10 10
12 mA
–0.3
0.35 * VCCI 0.65 * VCCI
3.6
0.45
VCCI – 0.45
12 12
74
91
10 10
16 mA
–0.3
0.35 * VCCI 0.65 * VCCI
3.6
0.45
VCCI – 0.45
16 16
74
91
10 10
Notes:
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
2. Currents are measured at 125°C junction temperature.
3. Software default selection highlighted in gray.
Table 2-55 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O I/O Banks
1.8 V
LVCMOS
VIL
Drive
Strength Min., V
Max., V
VIH
Min., V
VOL
VOH
Max., V Max., V
Min., V
IOL IOH
IOSL
IOSH
IIL
IIH
mA mA Max., mA1 Max., mA1 µA2 µA2
2 mA
–0.3
0.35 * VCCI 0.65 * VCCI
3.6
0.45
VCCI – 0.45
2
2
11
9
10 10
4 mA
–0.3
0.35 * VCCI 0.65 * VCCI
3.6
0.45
VCCI – 0.45
4
4
22
17
10 10
6 mA
–0.3
0.35 * VCCI 0.65 * VCCI
3.6
0.45
VCCI – 0.45
6
6
44
35
10 10
8 mA
–0.3
0.35 * VCCI 0.65 * VCCI
3.6
0.45
VCCI – 0.45
8
8
44
35
10 10
Notes:
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
2. Currents are measured at 125°C junction temperature.
3. Software default selection highlighted in gray.
Test Point
Datapath
35 pF
R=1k
Test Point
Enable Path
R to VCCI for tLZ/tZL/tZLS
R to GND for tHZ/tZH/tZHS
35 pF for tZH/tZHS/tZL/tZLS
5 pF for tHZ/tLZ
Figure 2-9 • AC Loading
v1.0
2 - 37
Automotive ProASIC3 DC and Switching Characteristics
Table 2-56 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V)
Input HIGH (V)
Measuring Point* (V)
CLOAD (pF)
1.8
0.9
35
0
* Measuring point = Vtrip. See Table 2-18 on page 2-17 for a complete table of trip points.
Timing Characteristics
Table 2-57 • 1.8 V LVCMOS High Slew
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
16 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
STD
0.64
13.26
0.05
1.36
0.46
10.22
13.26
1.53
0.90
12.72
15.764
ns
-1
0.55
11.28
0.04
1.16
0.39
8.69
11.28
1.53
0.90
10.82
13.41
ns
STD
0.64
7.73
0.05
1.36
0.46
6.55
7.73
1.78
1.54
9.05
10.232
ns
-1
0.55
6.58
0.04
1.16
0.39
5.58
6.58
1.78
1.54
7.70
8.704
ns
STD
0.64
4.97
0.05
1.36
0.46
4.67
4.97
1.95
1.83
7.17
7.472
ns
-1
0.55
4.23
0.04
1.16
0.39
3.98
4.23
1.95
1.83
6.10
6.356
ns
STD
0.64
4.39
0.05
1.36
0.46
4.39
4.39
1.99
1.91
6.89
6.888
ns
-1
0.55
3.73
0.04
1.16
0.39
3.74
3.73
1.99
1.91
5.86
5.859
ns
STD
0.64
3.95
0.05
1.36
0.46
1.95
1.68
4.14
4.56
3.16
2.915
ns
-1
0.55
3.36
0.04
1.16
0.39
1.95
1.68
3.52
3.88
3.16
2.918
ns
STD
0.64
3.95
0.05
1.36
0.46
1.95
1.68
4.14
4.56
3.16
2.915
ns
-1
0.55
3.36
0.04
1.16
0.39
1.95
1.68
3.52
3.88
3.16
2.918
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
2 -3 8
v1.0
Automotive ProASIC3 DC and Switching Characteristics
Table 2-58 • 1.8 V LVCMOS Low Slew
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
16 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
STD
0.64
17.36
0.05
1.45
0.46
15.78
17.36
1.53
0.87
18.28
19.864
ns
-1
0.55
14.77
0.04
1.23
0.39
13.42
14.77
1.54
0.87
15.55
16.897
ns
STD
0.64
11.71
0.05
1.45
0.46
11.64
11.71
1.78
1.48
14.14
14.214
ns
-1
0.55
9.96
0.04
1.23
0.39
9.90
9.96
1.78
1.48
12.03
12.091
ns
STD
0.64
9.00
0.05
1.45
0.46
9.17
8.77
1.95
1.77
11.67
11.267
ns
-1
0.55
7.66
0.04
1.23
0.39
7.80
7.46
1.95
1.77
9.92
9.585
ns
STD
0.64
8.39
0.05
1.45
0.46
8.54
8.16
1.99
1.85
11.04
10.66
ns
-1
0.55
7.14
0.04
1.23
0.39
7.27
6.94
1.99
1.85
9.40
9.068
ns
STD
0.64
8.15
0.05
1.45
0.46
8.09
8.15
2.05
2.14
10.59
10.654
ns
-1
0.55
6.94
0.04
1.23
0.39
6.88
6.94
2.05
2.14
9.01
9.063
ns
STD
0.64
8.15
0.05
1.45
0.46
8.09
8.15
2.05
2.14
10.59
10.654
ns
-1
0.55
6.94
0.04
1.23
0.39
6.88
6.94
2.05
2.14
9.01
9.063
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
Table 2-59 • 1.8 V LVCMOS High Slew
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
STD
0.64
13.26
0.05
1.36
0.46
9.75
12.67
1.24
0.82
12.26
15.17
ns
-1
0.55
11.28
0.04
1.16
0.39
8.30
10.78
1.24
0.83
10.43
12.905
ns
STD
0.64
7.73
0.05
1.36
0.46
6.13
7.25
1.46
1.41
8.63
9.749
ns
-1
0.55
6.58
0.04
1.16
0.39
5.21
6.17
1.46
1.41
7.34
8.293
ns
STD
0.64
4.97
0.05
1.36
0.46
4.29
4.54
1.62
1.68
6.79
7.039
ns
-1
0.55
4.23
0.04
1.16
0.39
3.65
3.86
1.62
1.68
5.78
5.987
ns
STD
0.64
4.39
0.05
1.36
0.46
4.29
4.54
1.62
1.68
6.79
7.039
ns
-1
0.55
3.73
0.04
1.16
0.39
3.65
3.86
1.62
1.68
5.78
5.987
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
v1.0
2 - 39
Automotive ProASIC3 DC and Switching Characteristics
Table 2-60 • 1.8 V LVCMOS Low Slew
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
STD
0.64
17.36
0.05
1.45
0.46
15.09
16.55
1.24
0.79
17.59
19.052
ns
-1
0.55
14.77
0.04
1.23
0.39
12.84
14.08
1.24
0.79
14.96
16.207
ns
STD
0.64
11.71
0.05
1.45
0.46
10.88
11.07
1.47
1.35
13.38
13.567
ns
-1
0.55
9.96
0.04
1.23
0.39
9.26
9.41
1.47
1.35
11.38
11.541
ns
STD
0.64
9.00
0.05
1.45
0.46
8.47
8.18
1.62
1.62
10.97
10.685
ns
-1
0.55
7.66
0.04
1.23
0.39
7.21
6.96
1.62
1.62
9.33
9.089
ns
STD
0.64
8.39
0.05
1.45
0.46
8.47
8.18
1.62
1.62
10.97
10.685
ns
-1
0.55
7.14
0.04
1.23
0.39
7.21
6.96
1.62
1.62
9.33
9.089
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
Table 2-61 • 1.8 V LVCMOS High Slew
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
16 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
STD
0.63
12.83
0.05
1.32
0.45
9.88
12.83
1.48
0.87
12.30
15.25
ns
-1
0.53
10.92
0.04
1.12
0.38
8.41
10.92
1.48
0.87
10.46
12.97
ns
STD
0.63
7.48
0.05
1.32
0.45
6.34
7.48
1.72
1.49
8.76
9.90
ns
-1
0.53
6.36
0.04
1.12
0.38
5.39
6.36
1.72
1.49
7.45
8.42
ns
STD
0.63
4.81
0.05
1.32
0.45
4.52
4.81
1.89
1.77
6.94
7.23
ns
-1
0.53
4.09
0.04
1.12
0.38
3.85
4.09
1.89
1.77
5.90
6.15
ns
STD
0.63
4.25
0.05
1.32
0.45
4.25
4.25
1.92
1.85
6.67
6.66
ns
-1
0.53
3.61
0.04
1.12
0.38
3.61
3.61
1.93
1.85
5.67
5.67
ns
STD
0.63
3.82
0.05
1.32
0.45
1.89
1.63
4.00
4.41
3.06
2.82
ns
-1
0.53
3.25
0.04
1.12
0.38
1.89
1.63
3.41
3.75
3.06
2.82
ns
STD
0.63
3.82
0.05
1.32
0.45
1.89
1.63
4.00
4.41
3.06
2.82
ns
-1
0.53
3.25
0.04
1.12
0.38
1.89
1.63
3.41
3.75
3.06
2.82
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
2 -4 0
v1.0
Automotive ProASIC3 DC and Switching Characteristics
Table 2-62 • 1.8 V LVCMOS Low Slew
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
16 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
STD
0.63
16.80
0.05
1.40
0.45
15.27
16.80
1.48
0.84
17.69
19.22
ns
-1
0.53
14.29
0.04
1.19
0.38
12.99
14.29
1.49
0.84
15.05
16.35
ns
STD
0.63
11.33
0.05
1.40
0.45
11.26
11.33
1.73
1.43
13.68
13.75
ns
-1
0.53
9.64
0.04
1.19
0.38
9.58
9.64
1.73
1.43
11.64
11.70
ns
STD
0.63
8.71
0.05
1.40
0.45
8.87
8.48
1.89
1.72
11.29
10.90
ns
-1
0.53
7.41
0.04
1.19
0.38
7.54
7.22
1.89
1.72
9.60
9.27
ns
STD
0.63
8.12
0.05
1.40
0.45
8.27
7.89
1.93
1.79
10.69
10.31
ns
-1
0.53
6.90
0.04
1.19
0.38
7.03
6.72
1.93
1.79
9.09
8.77
ns
STD
0.63
7.89
0.05
1.40
0.45
7.83
7.89
1.98
2.07
10.25
10.31
ns
-1
0.53
6.71
0.04
1.19
0.38
6.66
6.71
1.98
2.07
8.72
8.77
ns
STD
0.63
7.89
0.05
1.40
0.45
7.83
7.89
1.98
2.07
10.25
10.31
ns
-1
0.53
6.71
0.04
1.19
0.38
6.66
6.71
1.98
2.07
8.72
8.77
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
Table 2-63 • 1.8 V LVCMOS High Slew
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
STD
0.63
12.83
0.05
1.32
0.45
9.44
12.26
1.20
0.80
11.86
14.68
ns
-1
0.53
10.92
0.04
1.12
0.38
8.03
10.43
1.20
0.80
10.09
12.49
ns
STD
0.63
7.48
0.05
1.32
0.45
5.93
7.01
1.41
1.36
8.35
9.43
ns
-1
0.53
6.36
0.04
1.12
0.38
5.04
5.97
1.42
1.37
7.10
8.02
ns
STD
0.63
4.81
0.05
1.32
0.45
4.15
4.39
1.57
1.63
6.57
6.81
ns
-1
0.53
4.09
0.04
1.12
0.38
3.53
3.74
1.57
1.63
5.59
5.79
ns
STD
0.63
4.25
0.05
1.32
0.45
4.15
4.39
1.57
1.63
6.57
6.81
ns
-1
0.53
3.61
0.04
1.12
0.38
3.53
3.74
1.57
1.63
5.59
5.79
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
v1.0
2 - 41
Automotive ProASIC3 DC and Switching Characteristics
Table 2-64 • 1.8 V LVCMOS Low Slew
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
STD
0.63
16.80
0.05
1.40
0.45
14.60
16.01
1.20
0.77
17.02
18.43
ns
-1
0.53
14.29
0.04
1.19
0.38
12.42
13.62
1.20
0.77
14.48
15.68
ns
STD
0.63
11.33
0.05
1.40
0.45
10.53
10.71
1.42
1.31
12.95
13.13
ns
-1
0.53
9.64
0.04
1.19
0.38
8.96
9.11
1.42
1.31
11.01
11.17
ns
STD
0.63
8.71
0.05
1.40
0.45
8.19
7.92
1.57
1.57
10.61
10.34
ns
-1
0.53
7.41
0.04
1.19
0.38
6.97
6.74
1.57
1.57
9.03
8.79
ns
STD
0.63
8.12
0.05
1.40
0.45
8.19
7.92
1.57
1.57
10.61
10.34
ns
-1
0.53
6.90
0.04
1.19
0.38
6.97
6.74
1.57
1.57
9.03
8.79
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
1.5 V LVCMOS (JESD8-11)
Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.
Table 2-65 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks
1.5 V
LVCMOS
VIL
Drive
Strength Min., V
Max., V
VIH
Min., V Max., V
VOL
VOH
Max., V
Min., V
IOL IOH
IOSL
IOSH
IIL
IIH
mA mA Max., mA1 Max., mA1 µA2 µA2
2 mA
–0.3
0.30 * VCCI 0.7 * VCCI
3.6
0.25 * VCCI 0.75 * VCCI
2
2
16
13
10 10
4 mA
–0.3
0.30 * VCCI 0.7 * VCCI
3.6
0.25 * VCCI 0.75 * VCCI
4
4
33
25
10 10
6 mA
–0.3
0.30 * VCCI 0.7 * VCCI
3.6
0.25 * VCCI 0.75 * VCCI
6
6
39
32
10 10
8 mA
–0.3
0.30 * VCCI 0.7 * VCCI
3.6
0.25 * VCCI 0.75 * VCCI
8
8
55
66
10 10
12 mA
–0.3
0.30 * VCCI 0.7 * VCCI
3.6
0.25 * VCCI 0.75 * VCCI 12 12
55
66
10 10
Notes:
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
2. Currents are measured at 125°C junction temperature.
3. Software default selection highlighted in gray.
2 -4 2
v1.0
Automotive ProASIC3 DC and Switching Characteristics
Table 2-66 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O Banks
1.5 V
LVCMOS
VIL
Drive
Strength Min., V
Max., V
VIH
VOL
VOH
IOL IOH
Min., V Max., V
Max., V
Min., V
IOSL
IOSH
IIL
IIH
mA mA Max., mA1 Max., mA1 µA2 µA2
2 mA
–0.3
0.30 * VCCI 0.7 * VCCI
3.6
0.25 * VCCI 0.75 * VCCI 2
2
0
0
10 10
4 mA
–0.3
0.30 * VCCI 0.7 * VCCI
3.6
0.25 * VCCI 0.75 * VCCI 4
4
0
0
10 10
Notes:
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
2. Currents are measured at 125°C junction temperature.
3. Software default selection highlighted in gray.
Test Point
Datapath
35 pF
R=1k
Test Point
Enable Path
R to VCCI for tLZ/tZL/tZLS
R to GND for tHZ/tZH/tZHS
35 pF for tZH/tZHS/tZL/tZLS
5 pF for tHZ/tLZ
Figure 2-10 • AC Loading
Table 2-67 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V)
0
Input HIGH (V)
Measuring Point* (V)
CLOAD (pF)
1.5
0.75
35
* Measuring point = Vtrip. See Table 2-18 on page 2-17 for a complete table of trip points.
v1.0
2 - 43
Automotive ProASIC3 DC and Switching Characteristics
Timing Characteristics
Table 2-68 • 1.5 V LVCMOS High Slew
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
STD
0.64
9.35
0.05
1.61
0.46
7.63
9.35
1.87
1.50
10.13
11.851
ns
-1
0.55
7.95
0.04
1.37
0.39
6.49
7.95
1.87
1.50
8.62
10.081
ns
STD
0.64
5.94
0.05
1.61
0.46
5.42
5.94
2.07
1.84
7.92
8.442
ns
-1
0.55
5.05
0.04
1.37
0.39
4.61
5.05
2.07
1.85
6.74
7.181
ns
STD
0.64
5.22
0.05
1.61
0.46
5.09
5.22
2.11
1.93
7.59
7.718
ns
-1
0.55
4.44
0.04
1.37
0.39
4.33
4.44
2.11
1.93
6.45
6.566
ns
STD
0.64
4.56
0.05
1.61
0.46
2.25
1.98
4.41
4.70
3.46
3.211
ns
-1
0.55
3.88
0.04
1.37
0.39
2.25
1.98
3.75
4.00
3.46
3.213
ns
STD
0.64
4.56
0.05
1.61
0.46
2.25
1.98
4.41
4.70
3.46
3.211
ns
-1
0.55
3.88
0.04
1.37
0.39
2.25
1.98
3.75
4.00
3.46
3.213
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
Table 2-69 • 1.5 V LVCMOS Low Slew
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
STD
0.64
14.29
0.05
1.45
0.46
14.32
14.29
1.88
1.43
16.82
16.794
ns
-1
0.55
12.16
0.04
1.23
0.39
12.18
12.16
1.88
1.43
14.31
14.286
ns
STD
0.64
11.19
0.05
1.45
0.46
11.40
10.67
2.07
1.77
13.90
13.175
ns
-1
0.55
9.52
0.04
1.23
0.39
9.70
9.08
2.07
1.77
11.82
11.207
ns
STD
0.64
10.44
0.05
1.45
0.46
10.63
9.94
2.12
1.86
13.13
12.442
ns
-1
0.55
8.88
0.04
1.23
0.39
9.04
8.46
2.12
1.86
11.17
10.584
ns
STD
0.64
9.96
0.05
1.45
0.46
10.15
9.94
2.18
2.19
12.65
12.445
ns
-1
0.55
8.47
0.04
1.23
0.39
8.63
8.46
2.19
2.20
10.76
10.586
ns
STD
0.64
9.96
0.05
1.45
0.46
10.15
9.94
2.18
2.19
12.65
12.445
ns
-1
0.55
8.47
0.04
1.23
0.39
8.63
8.46
2.19
2.20
10.76
10.586
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
2 -4 4
v1.0
Automotive ProASIC3 DC and Switching Characteristics
Table 2-70 • 1.5 V LVCMOS High Slew
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/O Banks
Drive
Strength
2 mA
4 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
STD
0.64
8.76
0.05
1.59
0.46
7.63
9.35
1.87
1.50
10.13
11.851
ns
-1
0.55
7.45
0.04
1.35
0.39
6.49
7.95
1.87
1.50
8.62
10.081
ns
STD
0.64
5.41
0.05
1.59
0.46
5.42
5.94
2.07
1.84
7.92
8.442
ns
-1
0.55
4.60
0.04
1.35
0.39
4.61
5.05
2.07
1.85
6.74
7.181
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
Table 2-71 • 1.5 V LVCMOS Low Slew
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/O Banks
Drive
Strength
2 mA
4 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
STD
0.64
13.51
0.05
1.45
0.46
14.32
14.29
1.88
1.43
16.82
16.794
ns
-1
0.55
11.49
0.04
1.23
0.39
12.18
12.16
1.88
1.43
14.31
14.286
ns
STD
0.64
10.38
0.05
1.45
0.46
11.40
10.67
2.07
1.77
13.90
13.175
ns
-1
0.55
8.83
0.04
1.23
0.39
9.70
9.08
2.07
1.77
11.82
11.207
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
Table 2-72 • 1.5 V LVCMOS High Slew
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
STD
0.63
9.05
0.05
1.56
0.45
7.38
9.05
1.81
1.45
9.80
11.47
ns
-1
0.53
7.70
0.04
1.32
0.38
6.28
7.70
1.81
1.45
8.34
9.75
ns
STD
0.63
5.75
0.05
1.56
0.45
5.25
5.75
2.00
1.78
7.67
8.17
ns
-1
0.53
4.89
0.04
1.32
0.38
4.46
4.89
2.00
1.78
6.52
6.95
ns
STD
0.63
5.05
0.05
1.56
0.45
4.92
5.05
2.04
1.87
7.34
7.47
ns
-1
0.53
4.29
0.04
1.32
0.38
4.19
4.29
2.04
1.87
6.24
6.35
ns
STD
0.63
4.41
0.05
1.56
0.45
2.18
1.91
4.27
4.55
3.35
3.11
ns
-1
0.53
3.75
0.04
1.32
0.38
2.18
1.91
3.63
3.87
3.35
3.11
ns
STD
0.63
4.41
0.05
1.56
0.45
2.18
1.91
4.27
4.55
3.35
3.11
ns
-1
0.53
3.75
0.04
1.32
0.38
2.18
1.91
3.63
3.87
3.35
3.11
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
v1.0
2 - 45
Automotive ProASIC3 DC and Switching Characteristics
Table 2-73 • 1.5 V LVCMOS Low Slew
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
STD
0.63
13.83
0.05
1.40
0.45
13.86
13.83
1.82
1.39
16.28
16.25
ns
-1
0.53
11.76
0.04
1.19
0.38
11.79
11.76
1.82
1.39
13.85
13.82
ns
STD
0.63
10.83
0.05
1.40
0.45
11.03
10.33
2.00
1.71
13.45
12.75
ns
-1
0.53
9.21
0.04
1.19
0.38
9.38
8.79
2.01
1.72
11.44
10.84
ns
STD
0.63
10.10
0.05
1.40
0.45
10.28
9.62
2.05
1.80
12.70
12.04
ns
-1
0.53
8.59
0.04
1.19
0.38
8.75
8.18
2.05
1.80
10.81
10.24
ns
STD
0.63
9.64
0.05
1.40
0.45
9.82
9.62
2.11
2.12
12.23
12.04
ns
-1
0.53
8.20
0.04
1.19
0.38
8.35
8.18
2.11
2.12
10.41
10.24
ns
STD
0.63
9.64
0.05
1.40
0.45
9.82
9.62
2.11
2.12
12.23
12.04
ns
-1
0.53
8.20
0.04
1.19
0.38
8.35
8.18
2.11
2.12
10.41
10.24
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
Table 2-74 • 1.5 V LVCMOS High Slew
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/O Banks
Drive
Strength
2 mA
4 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
STD
0.63
8.47
0.05
1.54
0.45
7.38
9.05
1.81
1.45
9.80
11.47
ns
-1
0.53
7.21
0.04
1.31
0.38
6.28
7.70
1.81
1.45
8.34
9.75
ns
STD
0.63
5.24
0.05
1.54
0.45
5.25
5.75
2.00
1.78
7.67
8.17
ns
-1
0.53
4.45
0.04
1.31
0.38
4.46
4.89
2.00
1.78
6.52
6.95
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
Table 2-75 • 1.5 V LVCMOS Low Slew
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/O Banks
Drive
Strength
2 mA
4 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
STD
0.63
13.07
0.05
1.40
0.45
13.86
13.83
1.82
1.39
16.28
16.25
ns
-1
0.53
11.12
0.04
1.19
0.38
11.79
11.76
1.82
1.39
13.85
13.82
ns
STD
0.63
10.04
0.05
1.40
0.45
11.03
10.33
2.00
1.71
13.45
12.75
ns
-1
0.53
8.54
0.04
1.19
0.38
9.38
8.79
2.01
1.72
11.44
10.84
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
2 -4 6
v1.0
Automotive ProASIC3 DC and Switching Characteristics
3.3 V PCI, 3.3 V PCI-X
The Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz
PCI Bus applications.
Table 2-76 • Minimum and Maximum DC Input and Output Levels
3.3 V
PCI/PCI-X
VIH
VIL
Drive
Strength
VOL
VOH
IOL
IOH
IOSL
IOSH
IIL
IIH
Min, V Max, V Min, V Max, V Max, V Min, V mA mA Max, mA1 Max, mA1 µA2 µA2
Per PCI
specification
Per PCI curves
10
10
Notes:
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
2. Currents are measured at 125°C junction temperature.
AC loadings are defined per the PCI/PCI-X specifications for the datapath; Actel loadings for enable
path characterization are described in Figure 2-11.
R = 25
Test Point
Datapath
R to VCCI for tDP (F)
R to GND for tDP (R)
R=1k
Test Point
Enable Path
R to VCCI for tLZ/tZL/t ZLS
R to GND for tHZ /tZH /t ZHS
10 pF for tZH /tZHS /tZL /t ZLS
5 pF for tHZ /tLZ
Figure 2-11 • AC Loading
AC loadings are defined per PCI/PCI-X specifications for the datapath; Actel loading for tristate is
described in Table 2-77.
Table 2-77 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V)
Input HIGH (V)
Measuring Point* (V)
CLOAD (pF)
3.3
0.285 * VCCI for tDP(R)
10
0
0.615 * VCCI for tDP(F)
* Measuring point = Vtrip. See Table 2-18 on page 2-17 for a complete table of trip points.
Timing Characteristics
Table 2-78 • 3.3 V PCI/PCI-X
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.64
2.58
0.05
0.95
0.46
1.27
0.94
3.12
3.60
2.49
2.18
ns
–1
0.55
2.19
0.04
0.81
0.39
1.27
0.94
2.65
3.06
2.49
2.18
ns
Speed Grade
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
v1.0
2 - 47
Automotive ProASIC3 DC and Switching Characteristics
Table 2-79 • 3.3 V PCI/PCI-X
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus I/O Banks
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.64
3.00
0.05
0.93
0.46
1.27
0.94
3.12
3.60
2.49
2.18
ns
–1
0.55
2.55
0.04
0.79
0.39
1.27
0.94
2.65
3.06
2.49
2.18
ns
Speed Grade
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
Table 2-80 • 3.3 V PCI/PCI-X
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
tDP
tDIN
tPY
Speed Grade
tDOUT
Std.
0.628
2.50
0.05
0.92
–1
0.53
2.12
0.04
0.78
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.45
1.23
0.91
3.02
3.48
2.40
2.11
ns
0.38
1.23
0.91
2.57
2.96
2.41
2.11
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
Table 2-81 • 3.3 V PCI/PCI-X
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus I/O Banks
Speed Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.628
2.90
0.05
0.90
0.45
1.23
0.91
3.02
3.48
2.40
2.11
ns
–1
0.53
2.47
0.04
0.77
0.38
1.23
0.91
2.57
2.96
2.41
2.11
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
Differential I/O Characteristics
Physical Implementation
Configuration of the I/O modules as a differential pair is handled by Actel Designer software when
the user instantiates a differential I/O macro in the design.
Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output
Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no
support for bidirectional I/Os or tristates with the LVPECL standards.
LVDS
Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It
requires that one data bit be carried through two signal lines, so two pins are needed. It also
requires external resistor termination.
The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-12
on page 2-49. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one
receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end.
The values for the three driver resistors are different from those used in the LVPECL
implementation because the output standard specifications are different.
Along with LVDS I/O, ProASIC3 also supports Bus LVDS structure and Multipoint LVDS (M-LVDS)
configuration (up to 40 nodes).
2 -4 8
v1.0
Automotive ProASIC3 DC and Switching Characteristics
Bourns Part Number: CAT16-LV4F12
OUTBUF_LVDS
FPGA
P
165 Ω
Z0 = 50 Ω
140 Ω
N
P
+
–
100 Ω
Z0 = 50 Ω
165 Ω
FPGA
INBUF_LVDS
N
Figure 2-12 • LVDS Circuit Diagram and Board-Level Implementation
Table 2-82 • Minimum and Maximum DC Input and Output Levels
DC Parameter
Description
Min.
Typ.
Max.
Units
2.375
2.5
2.625
V
VCCI
Supply Voltage
VOL
Output LOW Voltage
0.9
1.075
1.25
V
VOH
Output HIGH Voltage
1.25
1.425
1.6
V
VI
Input Voltage
0
–
2.925
V
VODIFF
Differential Output Voltage
250
350
450
mV
VOCM
Output Common-Mode Voltage
1.125
1.25
1.375
V
VICM
Input Common-Mode Voltage
0.05
1.25
2.35
V
VIDIFF
Input Differential Voltage
100
350
–
mV
Notes:
1. ± 5%
2. Differential input voltage = ±350 mV
Table 2-83 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V)
1.075
Input HIGH (V)
Measuring Point* (V)
1.325
Cross point
* Measuring point = Vtrip. See Table 2-18 on page 2-17 for a complete table of trip points.
Timing Characteristics
Table 2-84 • LVDS
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
tDOUT
tDP
tDIN
tPY
Units
Std.
0.64
2.05
0.05
1.79
ns
–1
0.55
1.74
0.04
1.52
ns
Speed Grade
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
v1.0
2 - 49
Automotive ProASIC3 DC and Switching Characteristics
Table 2-85 • LVDS
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
tDOUT
tDP
tDIN
tPY
Units
Std.
0.63
1.98
0.05
1.73
ns
–1
0.53
1.68
0.04
1.47
ns
Speed Grade
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
B-LVDS/M-LVDS
Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard
to high-performance multipoint bus applications. Multidrop and multipoint bus configurations
may contain any combination of drivers, receivers, and transceivers. Actel LVDS drivers provide the
higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers
require series terminations for better signal quality and to control voltage swing. Termination is
also required at both ends of the bus since the driver can be located anywhere on the bus. These
configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with
appropriate terminations. Multipoint designs using Actel LVDS macros can achieve up to 200 MHz
with a maximum of 20 loads. A sample application is given in Figure 2-13. The input and output
buffer delays are available in the LVDS section in Table 2-84 on page 2-49.
Example: For a bus consisting of 20 equidistant loads, the following terminations provide the
required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver:
RS = 60 Ω and RT = 70 Ω, given Z0 = 50 Ω (2") and Zstub = 50 Ω (~1.5").
Receiver
Transceiver
EN
R
RS
Zstub
+
RS
Zstub
D
EN
T
-
+
Driver
RS
Zstub
-
Zstub
RS
Zstub
EN
Transceiver
EN
R
-
+
RS
Receiver
+
RS
RS
Zstub
Zstub
EN
T
-
+
RS
Zstub
RS
BIBUF_LVDS
-
RS
...
Z0
Z0
Z0
Z0
Z0
Z0
RT Z
0
Z0
Z0
Z0
Z0
Z0
RT
Figure 2-13 • B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers
LVPECL
Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It
requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It
also requires external resistor termination.
The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-14
on page 2-51. The building blocks of the LVPECL transmitter-receiver are one transmitter macro,
one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver
end. The values for the three driver resistors are different from those used in the LVDS
implementation because the output standard specifications are different.
2 -5 0
v1.0
Automotive ProASIC3 DC and Switching Characteristics
Bourns Part Number: CAT16-PC4F12
OUTBUF_LVPECL
FPGA
P
100 Ω
Z0 = 50 Ω
INBUF_LVPECL
+
–
Z0 = 50 Ω
100 Ω
FPGA
100 Ω
187 W
N
P
N
Figure 2-14 • LVPECL Circuit Diagram and Board-Level Implementation
Table 2-86 • Minimum and Maximum DC Input and Output Levels
DC Parameter
Description
Min.
Max.
Min.
3.0
Max.
Min.
3.3
Max.
Units
VCCI
Supply Voltage
3.6
VOL
Output LOW Voltage
0.96
1.27
1.06
1.43
1.30
1.57
V
VOH
Output HIGH Voltage
1.8
2.11
1.92
2.28
2.13
2.41
V
VIL, VIH
Input LOW, Input HIGH Voltages
0
3.3
0
3.6
0
3.9
V
VODIFF
Differential Output Voltage
0.625
0.97
0.625
0.97
0.625
0.97
V
VOCM
Output Common-Mode Voltage
1.762
1.98
1.762
1.98
1.762
1.98
V
VICM
Input Common-Mode Voltage
1.01
2.57
1.01
2.57
1.01
2.57
V
VIDIFF
Input Differential Voltage
300
300
V
300
mV
Table 2-87 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V)
1.64
Input HIGH (V)
Measuring Point* (V)
1.94
Cross point
* Measuring point = Vtrip. See Table 2-18 on page 2-17 for a complete table of trip points.
Timing Characteristics
Table 2-88 • LVPECL
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
tDOUT
tDP
tDIN
tPY
Units
Std.
0.64
2.01
0.05
1.57
ns
–1
0.55
1.71
0.04
1.34
ns
Speed Grade
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
Table 2-89 • LVPECL
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Speed Grade
tDOUT
tDP
tDIN
tPY
Units
Std.
0.63
1.95
0.05
1.52
ns
–1
0.53
1.66
0.04
1.29
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
v1.0
2 - 51
Automotive ProASIC3 DC and Switching Characteristics
I/O Register Specifications
Fully Registered I/O Buffers with Synchronous Enable and Asynchronous
Preset
INBUF
Preset
L
DOUT
Data_out
E
F
Y
Core
Array
G
PRE
D
Q
DFN1E1P1
TRIBUF
CLKBUF
CLK
INBUF
Enable
PRE
D
Q
C DFN1E1P1
INBUF
Data
E
E
EOUT
B
H
I
A
J
K
INBUF
INBUF
D_Enable
CLK
CLKBUF
Enable
Data Input I/O Register with:
Active High Enable
Active High Preset
Positive-Edge Triggered
PRE
D
Q
DFN1E1P1
E
Data Output Register and
Enable Output Register with:
Active High Enable
Active High Preset
Postive-Edge Triggered
Figure 2-15 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset
2 -5 2
v1.0
Pad Out
D
Automotive ProASIC3 DC and Switching Characteristics
Table 2-90 • Parameter Definition and Measuring Nodes
Parameter Name
Parameter Definition
Measuring Nodes
(from, to)*
tOCLKQ
Clock-to-Q of the Output Data Register
H, DOUT
tOSUD
Data Setup Time for the Output Data Register
F, H
tOHD
Data Hold Time for the Output Data Register
F, H
tOSUE
Enable Setup Time for the Output Data Register
G, H
tOHE
Enable Hold Time for the Output Data Register
G, H
tOPRE2Q
Asynchronous Preset-to-Q of the Output Data Register
tOREMPRE
Asynchronous Preset Removal Time for the Output Data Register
L, H
tORECPRE
Asynchronous Preset Recovery Time for the Output Data Register
L, H
tOECLKQ
Clock-to-Q of the Output Enable Register
tOESUD
Data Setup Time for the Output Enable Register
J, H
tOEHD
Data Hold Time for the Output Enable Register
J, H
tOESUE
Enable Setup Time for the Output Enable Register
K, H
tOEHE
Enable Hold Time for the Output Enable Register
K, H
tOEPRE2Q
Asynchronous Preset-to-Q of the Output Enable Register
tOEREMPRE
Asynchronous Preset Removal Time for the Output Enable Register
I, H
tOERECPRE
Asynchronous Preset Recovery Time for the Output Enable Register
I, H
tICLKQ
Clock-to-Q of the Input Data Register
A, E
tISUD
Data Setup Time for the Input Data Register
C, A
tIHD
Data Hold Time for the Input Data Register
C, A
tISUE
Enable Setup Time for the Input Data Register
B, A
tIHE
Enable Hold Time for the Input Data Register
B, A
tIPRE2Q
Asynchronous Preset-to-Q of the Input Data Register
D, E
tIREMPRE
Asynchronous Preset Removal Time for the Input Data Register
D, A
tIRECPRE
Asynchronous Preset Recovery Time for the Input Data Register
D, A
L, DOUT
H, EOUT
I, EOUT
* See Figure 2-15 on page 2-52 for more information.
v1.0
2 - 53
Automotive ProASIC3 DC and Switching Characteristics
Fully Registered I/O Buffers with Synchronous Enable and Asynchronous
Clear
D
CC
Core
Array
Q
DFN1E1C1
EE
D
Q
DFN1E1C1
TRIBUF
INBUF
Data
Data_out FF
GG
INBUF
Enable
BB
EOUT
E
E
CLR
CLR
LL
INBUF
CLR
CLKBUF
CLK
HH
AA
JJ
DD
D
Q
DFN1E1C1
KK
Data Input I/O Register with
Active High Enable
Active High Clear
Positive-Edge Triggered
E
INBUF
CLKBUF
CLK
Enable
INBUF
D_Enable
CLR
Data Output Register and
Enable Output Register with
Active High Enable
Active High Clear
Positive-Edge Triggered
Figure 2-16 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear
2 -5 4
v1.0
Pad Out
DOUT
Y
Automotive ProASIC3 DC and Switching Characteristics
Table 2-91 • Parameter Definitions and Measuring Nodes
Parameter Name
Parameter Definition
Measuring Nodes
(from, to)*
tOCLKQ
Clock-to-Q of the Output Data Register
HH, DOUT
tOSUD
Data Setup Time for the Output Data Register
FF, HH
tOHD
Data Hold Time for the Output Data Register
FF, HH
tOSUE
Enable Setup Time for the Output Data Register
GG, HH
tOHE
Enable Hold Time for the Output Data Register
GG, HH
tOCLR2Q
Asynchronous Clear-to-Q of the Output Data Register
tOREMCLR
Asynchronous Clear Removal Time for the Output Data Register
LL, HH
tORECCLR
Asynchronous Clear Recovery Time for the Output Data Register
LL, HH
tOECLKQ
Clock-to-Q of the Output Enable Register
tOESUD
Data Setup Time for the Output Enable Register
JJ, HH
tOEHD
Data Hold Time for the Output Enable Register
JJ, HH
tOESUE
Enable Setup Time for the Output Enable Register
KK, HH
tOEHE
Enable Hold Time for the Output Enable Register
KK, HH
tOECLR2Q
Asynchronous Clear-to-Q of the Output Enable Register
II, EOUT
tOEREMCLR
Asynchronous Clear Removal Time for the Output Enable Register
II, HH
tOERECCLR
Asynchronous Clear Recovery Time for the Output Enable Register
II, HH
tICLKQ
Clock-to-Q of the Input Data Register
AA, EE
tISUD
Data Setup Time for the Input Data Register
CC, AA
tIHD
Data Hold Time for the Input Data Register
CC, AA
tISUE
Enable Setup Time for the Input Data Register
BB, AA
tIHE
Enable Hold Time for the Input Data Register
BB, AA
tICLR2Q
Asynchronous Clear-to-Q of the Input Data Register
DD, EE
tIREMCLR
Asynchronous Clear Removal Time for the Input Data Register
DD, AA
tIRECCLR
Asynchronous Clear Recovery Time for the Input Data Register
DD, AA
LL, DOUT
HH, EOUT
* See Figure 2-16 on page 2-54 for more information.
v1.0
2 - 55
Automotive ProASIC3 DC and Switching Characteristics
Input Register
tICKMPWH tICKMPWL
CLK
50%
50%
Enable
50%
1
50%
50%
50%
tIHD
tISUD
Data
50%
50%
50%
0
tIREMPRE
tIRECPRE
tIWPRE
50%
tIHE
Preset
tISUE
50%
50%
50%
tIWCLR
50%
Clear
tIRECCLR
tIREMCLR
50%
50%
tIPRE2Q
50%
Out_1
50%
tICLR2Q
50%
tICLKQ
Figure 2-17 • Input Register Timing Diagram
Timing Characteristics
Table 2-92 • Input Data Register Propagation Delays
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V
Parameter
Description
–1
Std.
0.29 0.34
Units
tICLKQ
Clock-to-Q of the Input Data Register
ns
tISUD
Data Setup Time for the Input Data Register
0.32 0.38
ns
tIHD
Data Hold Time for the Input Data Register
0.00 0.00
ns
tISUE
Enable Setup Time for the Input Data Register
0.45 0.53
ns
tIHE
Enable Hold Time for the Input Data Register
0.00 0.00
ns
tICLR2Q
Asynchronous Clear-to-Q of the Input Data Register
0.55 0.65
ns
tIPRE2Q
Asynchronous Preset-to-Q of the Input Data Register
0.55 0.65
ns
tIREMCLR
Asynchronous Clear Removal Time for the Input Data Register
0.00 0.00
ns
tIRECCLR
Asynchronous Clear Recovery Time for the Input Data Register
0.27 0.32
ns
tIREMPRE
Asynchronous Preset Removal Time for the Input Data Register
0.00 0.00
ns
tIRECPRE
Asynchronous Preset Recovery Time for the Input Data Register
0.27 0.32
ns
tIWCLR
Asynchronous Clear Minimum Pulse Width for the Input Data Register
0.25 0.30
ns
tIWPRE
Asynchronous Preset Minimum Pulse Width for the Input Data Register
0.25 0.30
ns
tICKMPWH
Clock Minimum Pulse Width HIGH for the Input Data Register
0.41 0.48
ns
tICKMPWL
Clock Minimum Pulse Width LOW for the Input Data Register
0.37 0.43
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
2 -5 6
v1.0
Automotive ProASIC3 DC and Switching Characteristics
Table 2-93 • Input Data Register Propagation Delays
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V
Parameter
Description
–1
Std.
Units
tICLKQ
Clock-to-Q of the Input Data Register
0.29 0.34
ns
tISUD
Data Setup Time for the Input Data Register
0.31 0.37
ns
tIHD
Data Hold Time for the Input Data Register
0.00 0.00
ns
tISUE
Enable Setup Time for the Input Data Register
0.44 0.52
ns
tIHE
Enable Hold Time for the Input Data Register
0.00 0.00
ns
tICLR2Q
Asynchronous Clear-to-Q of the Input Data Register
0.54 0.64
ns
tIPRE2Q
Asynchronous Preset-to-Q of the Input Data Register
0.54 0.64
ns
tIREMCLR
Asynchronous Clear Removal Time for the Input Data Register
0.00 0.00
ns
tIRECCLR
Asynchronous Clear Recovery Time for the Input Data Register
0.27 0.31
ns
tIREMPRE
Asynchronous Preset Removal Time for the Input Data Register
0.00 0.00
ns
tIRECPRE
Asynchronous Preset Recovery Time for the Input Data Register
0.27 0.31
ns
tIWCLR
Asynchronous Clear Minimum Pulse Width for the Input Data Register
0.25 0.30
ns
tIWPRE
Asynchronous Preset Minimum Pulse Width for the Input Data Register
0.25 0.30
ns
tICKMPWH
Clock Minimum Pulse Width HIGH for the Input Data Register
0.41 0.48
ns
tICKMPWL
Clock Minimum Pulse Width LOW for the Input Data Register
0.37 0.43
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
Output Register
tOCKMPWH tOCKMPWL
CLK
50%
50%
50%
50%
50%
50%
50%
tOSUD tOHD
1
Data_out
Enable
50%
50%
0
50%
tOWPRE
tOHE
Preset
tOSUE
tOREMPRE
tORECPRE
50%
50%
50%
tOWCLR
50%
Clear
tORECCLR
50%
tOREMCLR
50%
tOPRE2Q
DOUT
50%
50%
tOCLR2Q
50%
tOCLKQ
Figure 2-18 • Output Register Timing Diagram
v1.0
2 - 57
Automotive ProASIC3 DC and Switching Characteristics
Timing Characteristics
Table 2-94 • Output Data Register Propagation Delays
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V
Parameter
Description
–1
Std. Units
tOCLKQ
Clock-to-Q of the Output Data Register
0.72 0.84
ns
tOSUD
Data Setup Time for the Output Data Register
0.38 0.45
ns
tOHD
Data Hold Time for the Output Data Register
0.00 0.00
ns
tOSUE
Enable Setup Time for the Output Data Register
0.53 0.63
ns
tOHE
Enable Hold Time for the Output Data Register
0.00 0.00
ns
tOCLR2Q
Asynchronous Clear-to-Q of the Output Data Register
0.98 1.15
ns
tOPRE2Q
Asynchronous Preset-to-Q of the Output Data Register
0.98 1.15
ns
tOREMCLR
Asynchronous Clear Removal Time for the Output Data Register
0.00 0.00
ns
tORECCLR
Asynchronous Clear Recovery Time for the Output Data Register
0.27 0.32
ns
tOREMPRE
Asynchronous Preset Removal Time for the Output Data Register
0.00 0.00
ns
tORECPRE
Asynchronous Preset Recovery Time for the Output Data Register
0.27 0.32
ns
tOWCLR
Asynchronous Clear Minimum Pulse Width for the Output Data Register
0.25 0.30
ns
tOWPRE
Asynchronous Preset Minimum Pulse Width for the Output Data Register
0.25 0.30
ns
tOCKMPWH
Clock Minimum Pulse Width HIGH for the Output Data Register
0.41 0.48
ns
tOCKMPWL
Clock Minimum Pulse Width LOW for the Output Data Register
0.37 0.43
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
Table 2-95 • Output Data Register Propagation Delays
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V
Parameter
Description
–1
Std. Units
tOCLKQ
Clock-to-Q of the Output Data Register
0.70 0.82
ns
tOSUD
Data Setup Time for the Output Data Register
0.37 0.44
ns
tOHD
Data Hold Time for the Output Data Register
0.00 0.00
ns
tOSUE
Enable Setup Time for the Output Data Register
0.52 0.61
ns
tOHE
Enable Hold Time for the Output Data Register
0.00 0.00
ns
tOCLR2Q
Asynchronous Clear-to-Q of the Output Data Register
0.96 1.12
ns
tOPRE2Q
Asynchronous Preset-to-Q of the Output Data Register
0.96 1.12
ns
tOREMCLR
Asynchronous Clear Removal Time for the Output Data Register
0.00 0.00
ns
tORECCLR
Asynchronous Clear Recovery Time for the Output Data Register
0.27 0.31
ns
tOREMPRE
Asynchronous Preset Removal Time for the Output Data Register
0.00 0.00
ns
tORECPRE
Asynchronous Preset Recovery Time for the Output Data Register
0.27 0.31
ns
tOWCLR
Asynchronous Clear Minimum Pulse Width for the Output Data Register
0.25 0.30
ns
tOWPRE
Asynchronous Preset Minimum Pulse Width for the Output Data Register
0.25 0.30
ns
tOCKMPWH
Clock Minimum Pulse Width HIGH for the Output Data Register
0.41 0.48
ns
tOCKMPWL
Clock Minimum Pulse Width LOW for the Output Data Register
0.37 0.43
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
2 -5 8
v1.0
Automotive ProASIC3 DC and Switching Characteristics
Output Enable Register
tOECKMPWH tOECKMPWL
50%
50%
50%
50%
50%
50%
50%
CLK
tOESUD tOEHD
1
D_Enable
Enable
Preset
50%
0 50%
50%
tOEWPRE
50%
tOESUEtOEHE
tOEREMPRE
tOERECPRE
50%
50%
tOEWCLR
50%
tOEREMCLR
tOERECCLR
50%
50%
Clear
EOUT
50%
tOEPRE2Q
tOECLR2Q
50%
50%
tOECLKQ
Figure 2-19 • Output Enable Register Timing Diagram
Timing Characteristics
Table 2-96 • Output Enable Register Propagation Delays
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V
Parameter
Description
–1
Std. Units
tOECLKQ
Clock-to-Q of the Output Enable Register
0.54 0.64
ns
tOESUD
Data Setup Time for the Output Enable Register
0.38 0.45
ns
tOEHD
Data Hold Time for the Output Enable Register
0.00 0.00
ns
tOESUE
Enable Setup Time for the Output Enable Register
0.53 0.62
ns
tOEHE
Enable Hold Time for the Output Enable Register
0.00 0.00
ns
tOECLR2Q
Asynchronous Clear-to-Q of the Output Enable Register
0.81 0.95
ns
tOEPRE2Q
Asynchronous Preset-to-Q of the Output Enable Register
0.81 0.95
ns
tOEREMCLR
Asynchronous Clear Removal Time for the Output Enable Register
0.00 0.00
ns
tOERECCLR
Asynchronous Clear Recovery Time for the Output Enable Register
0.27 0.32
ns
tOEREMPRE
Asynchronous Preset Removal Time for the Output Enable Register
0.00 0.00
ns
tOERECPRE
Asynchronous Preset Recovery Time for the Output Enable Register
0.27 0.32
ns
tOEWCLR
Asynchronous Clear Minimum Pulse Width for the Output Enable Register
0.25 0.30
ns
tOEWPRE
Asynchronous Preset Minimum Pulse Width for the Output Enable Register
0.25 0.30
ns
tOECKMPWH Clock Minimum Pulse Width HIGH for the Output Enable Register
0.41 0.48
ns
Clock Minimum Pulse Width LOW for the Output Enable Register
0.37 0.43
ns
tOECKMPWL
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
v1.0
2 - 59
Automotive ProASIC3 DC and Switching Characteristics
Table 2-97 • Output Enable Register Propagation Delays
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V
Parameter
Description
–1
Std. Units
tOECLKQ
Clock-to-Q of the Output Enable Register
0.53 0.62
ns
tOESUD
Data Setup Time for the Output Enable Register
0.37 0.44
ns
tOEHD
Data Hold Time for the Output Enable Register
0.00 0.00
ns
tOESUE
Enable Setup Time for the Output Enable Register
0.52 0.61
ns
tOEHE
Enable Hold Time for the Output Enable Register
0.00 0.00
ns
tOECLR2Q
Asynchronous Clear-to-Q of the Output Enable Register
0.79 0.93
ns
tOEPRE2Q
Asynchronous Preset-to-Q of the Output Enable Register
0.79 0.93
ns
tOEREMCLR
Asynchronous Clear Removal Time for the Output Enable Register
0.00 0.00
ns
tOERECCLR
Asynchronous Clear Recovery Time for the Output Enable Register
0.27 0.31
ns
tOEREMPRE
Asynchronous Preset Removal Time for the Output Enable Register
0.00 0.00
ns
tOERECPRE
Asynchronous Preset Recovery Time for the Output Enable Register
0.27 0.31
ns
tOEWCLR
Asynchronous Clear Minimum Pulse Width for the Output Enable Register
0.25 0.30
ns
tOEWPRE
Asynchronous Preset Minimum Pulse Width for the Output Enable Register
0.25 0.30
ns
tOECKMPWH Clock Minimum Pulse Width HIGH for the Output Enable Register
0.41 0.48
ns
Clock Minimum Pulse Width LOW for the Output Enable Register
0.37 0.43
ns
tOECKMPWL
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
2 -6 0
v1.0
Automotive ProASIC3 DC and Switching Characteristics
DDR Module Specifications
Input DDR Module
Input DDR
INBUF
Data
A
D
Out_QF
(to core)
E
Out_QR
(to core)
FF1
B
CLK
CLKBUF
FF2
C
CLR
INBUF
DDR_IN
Figure 2-20 • Input DDR Timing Model
Table 2-98 • Parameter Definitions
Parameter Name
Parameter Definition
Measuring Nodes (from, to)
tDDRICLKQ1
Clock-to-Out Out_QR
B, D
tDDRICLKQ2
Clock-to-Out Out_QF
B, E
tDDRISUD
Data Setup Time of DDR Input
A, B
tDDRIHD
Data Hold Time of DDR Input
A, B
tDDRICLR2Q1
Clear-to-Out Out_QR
C, D
tDDRICLR2Q2
Clear-to-Out Out_QF
C, E
tDDRIREMCLR
Clear Removal
C, B
tDDRIRECCLR
Clear Recovery
C, B
v1.0
2 - 61
Automotive ProASIC3 DC and Switching Characteristics
CLK
tDDRISUD
Data
1
2
3
4
5
tDDRIHD
6
7
8
9
tDDRIRECCLR
CLR
tDDRIREMCLR
tDDRICLKQ1
tDDRICLR2Q1
Out_QF
2
6
4
tDDRICLKQ2
tDDRICLR2Q2
Out_QR
3
5
7
Figure 2-21 • Input DDR Timing Diagram
Timing Characteristics
Table 2-99 • Input DDR Propagation Delays
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V
Parameter
Description
–1
Std.
Units
tDDRICLKQ1
Clock-to-Out Out_QR for Input DDR
0.33
0.39
ns
tDDRICLKQ2
Clock-to-Out Out_QF for Input DDR
0.47
0.56
ns
tDDRISUD
Data Setup for Input DDR
0.34
0.40
ns
tDDRIHD
Data Hold for Input DDR
0.00
0.00
ns
tDDRICLR2Q1
Asynchronous Clear-to-Out Out_QR for Input DDR
0.56
0.66
ns
tDDRICLR2Q2
Asynchronous Clear-to-Out Out_QF for Input DDR
0.69
0.82
ns
tDDRIREMCLR
Asynchronous Clear Removal Time for Input DDR
0.00
0.00
ns
tDDRIRECCLR
Asynchronous Clear Recovery Time for Input DDR
0.27
0.32
ns
tDDRIWCLR
Asynchronous Clear Minimum Pulse Width for Input DDR
0.25
0.30
ns
tDDRICKMPWH
Clock Minimum Pulse Width HIGH for Input DDR
0.41
0.48
ns
tDDRICKMPWL
Clock Minimum Pulse Width LOW for Input DDR
0.37
0.43
ns
FDDRIMAX
Maximum Frequency for Input DDR
TBD
TBD
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
2 -6 2
v1.0
Automotive ProASIC3 DC and Switching Characteristics
Table 2-100 • Input DDR Propagation Delays
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V
Parameter
Description
–1
Std.
Units
tDDRICLKQ1
Clock-to-Out Out_QR for Input DDR
0.33
0.38
ns
tDDRICLKQ2
Clock-to-Out Out_QF for Input DDR
0.46
0.54
ns
tDDRISUD
Data Setup for Input DDR
0.34
0.40
ns
tDDRIHD
Data Hold for Input DDR
0.00
0.00
ns
tDDRICLR2Q1
Asynchronous Clear-to-Out Out_QR for Input DDR
0.55
0.65
ns
tDDRICLR2Q2
Asynchronous Clear-to-Out Out_QF for Input DDR
0.68
0.80
ns
tDDRIREMCLR
Asynchronous Clear Removal Time for Input DDR
0.00
0.00
ns
tDDRIRECCLR
Asynchronous Clear Recovery Time for Input DDR
0.27
0.31
ns
tDDRIWCLR
Asynchronous Clear Minimum Pulse Width for Input DDR
0.25
0.30
ns
tDDRICKMPWH
Clock Minimum Pulse Width HIGH for Input DDR
0.41
0.48
ns
tDDRICKMPWL
Clock Minimum Pulse Width LOW for Input DDR
0.37
0.43
ns
FDDRIMAX
Maximum Frequency for Input DDR
TBD
TBD
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
Output DDR Module
Output DDR
Data_F
(from core)
A
X
FF1
Out
B
CLK
0
X
CLKBUF
C
D
Data_R
(from core)
E
X
1
X
X
OUTBUF
FF2
B
CLR
INBUF
C
X
X
DDR_OUT
Figure 2-22 • Output DDR Timing Model
v1.0
2 - 63
Automotive ProASIC3 DC and Switching Characteristics
Table 2-101 • Parameter Definitions
Parameter Name
Parameter Definition
Measuring Nodes (from, to)
tDDROCLKQ
Clock-to-Out
B, E
tDDROCLR2Q
Asynchronous Clear-to-Out
C, E
tDDROREMCLR
Clear Removal
C, B
tDDRORECCLR
Clear Recovery
C, B
tDDROSUD1
Data Setup Data_F
A, B
tDDROSUD2
Data Setup Data_R
D, B
tDDROHD1
Data Hold Data_F
A, B
tDDROHD2
Data Hold Data_R
D, B
CLK
tDDROSUD2 tDDROHD2
Data_F
1
2
tDDROREMCLR
Data_R 6
4
3
5
tDDROHD1
7
8
9
10
11
tDDRORECCLR
CLR
tDDROREMCLR
tDDROCLR2Q
Out
tDDROCLKQ
7
2
8
Figure 2-23 • Output DDR Timing Diagram
2 -6 4
v1.0
3
9
4
10
Automotive ProASIC3 DC and Switching Characteristics
Timing Characteristics
Table 2-102 • Output DDR Propagation Delays
Commercial-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V
Parameter
Description
–1
Std.
Units
tDDROCLKQ
Clock-to-Out of DDR for Output DDR
0.85
1.00
ns
tDDROSUD1
Data_F Data Setup for Output DDR
0.46
0.54
ns
tDDROSUD2
Data_R Data Setup for Output DDR
0.46
0.54
ns
tDDROHD1
Data_F Data Hold for Output DDR
0.00
0.00
ns
tDDROHD2
Data_R Data Hold for Output DDR
0.00
0.00
ns
tDDROCLR2Q
Asynchronous Clear-to-Out for Output DDR
0.97
1.15
ns
tDDROREMCLR
Asynchronous Clear Removal Time for Output DDR
0.00
0.00
ns
tDDRORECCLR
Asynchronous Clear Recovery Time for Output DDR
0.27
0.32
ns
tDDROWCLR1
Asynchronous Clear Minimum Pulse Width for Output DDR
0.25
0.30
ns
tDDROCKMPWH
Clock Minimum Pulse Width HIGH for the Output DDR
0.41
0.48
ns
tDDROCKMPWL
Clock Minimum Pulse Width LOW for the Output DDR
0.37
0.43
ns
FDDOMAX
Maximum Frequency for the Output DDR
TBD
TBD
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
Table 2-103 • Output DDR Propagation Delays
Commercial-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V
Parameter
Description
–1
Std.
Units
tDDROCLKQ
Clock-to-Out of DDR for Output DDR
0.84
0.98
ns
tDDROSUD1
Data_F Data Setup for Output DDR
0.45
0.53
ns
tDDROSUD2
Data_R Data Setup for Output DDR
0.45
0.53
ns
tDDROHD1
Data_F Data Hold for Output DDR
0.00
0.00
ns
tDDROHD2
Data_R Data Hold for Output DDR
0.00
0.00
ns
tDDROCLR2Q
Asynchronous Clear-to-Out for Output DDR
0.96
1.12
ns
tDDROREMCLR
Asynchronous Clear Removal Time for Output DDR
0.00
0.00
ns
tDDRORECCLR
Asynchronous Clear Recovery Time for Output DDR
0.27
0.31
ns
tDDROWCLR1
Asynchronous Clear Minimum Pulse Width for Output DDR
0.25
0.30
ns
tDDROCKMPWH
Clock Minimum Pulse Width HIGH for the Output DDR
0.41
0.48
ns
tDDROCKMPWL
Clock Minimum Pulse Width LOW for the Output DDR
0.37
0.43
ns
FDDOMAX
Maximum Frequency for the Output DDR
TBD
TBD
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
v1.0
2 - 65
Automotive ProASIC3 DC and Switching Characteristics
VersaTile Characteristics
VersaTile Specifications as a Combinatorial Module
The ProASIC3 library offers all combinations of LUT-3 combinatorial functions. In this section,
timing characteristics are presented for a sample of the library. For more details, refer to the
Fusion, IGLOO/e, and ProASIC3/E Macro Library Guide.
A
A
A
OR2
NOR2
Y
A
AND2
A
Y
NAND2
B
A
B
C
XOR2
Y
A
NAND3
B
MUX2
B
C
v1.0
Y
0
Y
Figure 2-24 • Sample of Combinatorial Cells
XOR3
A
MAJ3
S
2 -6 6
Y
B
A
A
B
C
Y
B
B
B
Y
INV
1
Y
Automotive ProASIC3 DC and Switching Characteristics
tPD
A
NAND2 or
Any Combinatorial
Logic
B
Y
tPD = MAX(tPD(RR), tPD(RF),
tPD(FF), tPD(FR)) where edges are
applicable for the particular
combinatorial cell
VCC
50%
50%
A, B, C
GND
VCC
50%
50%
OUT
GND
VCC
tPD
tPD
(FF)
(RR)
tPD
OUT
(FR)
50%
tPD
50%
GND
(RF)
Figure 2-25 • Timing Model and Waveforms
v1.0
2 - 67
Automotive ProASIC3 DC and Switching Characteristics
Timing Characteristics
Table 2-104 • Combinatorial Cell Propagation Delays
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V
Combinatorial Cell
Equation
Parameter
–1
Std.
Units
INV
Y = !A
tPD
0.49
0.57
ns
AND2
Y=A·B
tPD
0.57
0.67
ns
NAND2
Y = !(A · B)
tPD
0.57
0.67
ns
OR2
Y=A+B
tPD
0.59
0.69
ns
NOR2
Y = !(A + B)
tPD
0.59
0.69
ns
XOR2
Y=A⊕B
tPD
0.90
1.05
ns
MAJ3
Y = MAJ(A , B, C)
tPD
0.85
1.00
ns
XOR3
Y=A⊕B⊕C
tPD
1.06
1.25
ns
MUX2
Y = A !S + B S
tPD
0.62
0.72
ns
AND3
Y=A·B·C
tPD
0.68
0.80
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5
for derating values.
Table 2-105 • Combinatorial Cell Propagation Delays
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V
Combinatorial Cell
Equation
Parameter
–1
Std.
Units
INV
Y = !A
tPD
0.48
0.56
ns
AND2
Y=A·B
tPD
0.56
0.66
ns
NAND2
Y = !(A · B)
tPD
0.56
0.66
ns
OR2
Y=A+B
tPD
0.58
0.68
ns
NOR2
Y = !(A + B)
tPD
0.58
0.68
ns
XOR2
Y=A⊕B
tPD
0.88
1.03
ns
MAJ3
Y = MAJ(A , B, C)
tPD
0.83
0.98
ns
XOR3
Y=A⊕B⊕C
tPD
1.04
1.23
ns
MUX2
Y = A !S + B S
tPD
0.60
0.71
ns
AND3
Y=A·B·C
tPD
0.67
0.79
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5
for derating values.
2 -6 8
v1.0
Automotive ProASIC3 DC and Switching Characteristics
VersaTile Specifications as a Sequential Module
The ProASIC3 library offers a wide variety of sequential cells, including flip-flops and latches. Each
has a data input and optional enable, clear, or preset. In this section, timing characteristics are
presented for a representative sample from the library. For more details, refer to the Fusion,
IGLOO/e and ProASIC3/E Macro Library Guide.
Data
D
Q
Out
Data
Out
D
En
DFN1
CLK
Q
DFN1E1
CLK
PRE
Data
D
Q
Out
Data
En
DFN1C1
D
Q
Out
DFI1E1P1
CLK
CLK
CLR
Figure 2-26 • Sample of Sequential Cells
v1.0
2 - 69
Automotive ProASIC3 DC and Switching Characteristics
tCKMPWH tCKMPWL
CLK
50%
50%
tSUD
50%
Data
50%
50%
50%
50%
50%
tHD
50%
0
EN
50%
PRE
tRECPRE
tWPRE
tSUE
tHE
50%
tREMPRE
50%
50%
50%
CLR
tPRE2Q
50%
Out
tREMCLR
tRECCLR
tWCLR
50%
50%
tCLR2Q
50%
50%
tCLKQ
Figure 2-27 • Timing Model and Waveforms
Timing Characteristics
Table 2-106 • Register Delays
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V
Parameter
Description
–1
Std.
Units
tCLKQ
Clock-to-Q of the Core Register
0.67
0.79
ns
tSUD
Data Setup Time for the Core Register
0.52
0.61
ns
tHD
Data Hold Time for the Core Register
0.00
0.00
ns
tSUE
Enable Setup Time for the Core Register
0.55
0.65
ns
tHE
Enable Hold Time for the Core Register
0.00
0.00
ns
tCLR2Q
Asynchronous Clear-to-Q of the Core Register
0.49
0.57
ns
tPRE2Q
Asynchronous Preset-to-Q of the Core Register
0.49
0.57
ns
tREMCLR
Asynchronous Clear Removal Time for the Core Register
0.00
0.00
ns
tRECCLR
Asynchronous Clear Recovery Time for the Core Register
0.27
0.32
ns
tREMPRE
Asynchronous Preset Removal Time for the Core Register
0.00
0.00
ns
tRECPRE
Asynchronous Preset Recovery Time for the Core Register
0.27
0.32
ns
tWCLR
Asynchronous Clear Minimum Pulse Width for the Core Register
0.25
0.30
ns
tWPRE
Asynchronous Preset Minimum Pulse Width for the Core Register
0.25
0.30
ns
tCKMPWH
Clock Minimum Pulse Width HIGH for the Core Register
0.41
0.48
ns
tCKMPWL
Clock Minimum Pulse Width LOW for the Core Register
0.37
0.43
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
2 -7 0
v1.0
Automotive ProASIC3 DC and Switching Characteristics
Table 2-107 • Register Delays
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V
Parameter
–1
Std.
Units
tCLKQ
Clock-to-Q of the Core Register
Description
0.66
0.77
ns
tSUD
Data Setup Time for the Core Register
0.51
0.60
ns
tHD
Data Hold Time for the Core Register
0.00
0.00
ns
tSUE
Enable Setup Time for the Core Register
0.54
0.64
ns
tHE
Enable Hold Time for the Core Register
0.00
0.00
ns
tCLR2Q
Asynchronous Clear-to-Q of the Core Register
0.48
0.56
ns
tPRE2Q
Asynchronous Preset-to-Q of the Core Register
0.48
0.56
ns
tREMCLR
Asynchronous Clear Removal Time for the Core Register
0.00
0.00
ns
tRECCLR
Asynchronous Clear Recovery Time for the Core Register
0.27
0.31
ns
tREMPRE
Asynchronous Preset Removal Time for the Core Register
0.00
0.00
ns
tRECPRE
Asynchronous Preset Recovery Time for the Core Register
0.27
0.31
ns
tWCLR
Asynchronous Clear Minimum Pulse Width for the Core Register
0.25
0.30
ns
tWPRE
Asynchronous Preset Minimum Pulse Width for the Core Register
0.25
0.30
ns
tCKMPWH
Clock Minimum Pulse Width HIGH for the Core Register
0.41
0.48
ns
tCKMPWL
Clock Minimum Pulse Width LOW for the Core Register
0.37
0.43
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
v1.0
2 - 71
Automotive ProASIC3 DC and Switching Characteristics
Global Resource Characteristics
A3P250 Clock Tree Topology
Clock delays are device-specific. Figure 2-28 is an example of a global tree used for clock routing.
The global tree presented in Figure 2-28 is driven by a CCC located on the west side of the A3P250
device. It is used to drive all D-flip-flops in the device.
Central
Global Rib
CCC
VersaTile
Rows
Global Spine
Figure 2-28 • Example of Global Tree Use in an A3P250 Device for Clock Routing
2 -7 2
v1.0
Automotive ProASIC3 DC and Switching Characteristics
Global Tree Timing Characteristics
Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not
include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be
driven and conditioned internally by the CCC module. For more details on clock conditioning
capabilities, refer to the "Clock Conditioning Circuits" section on page 2-77. Table 2-114 on
page 2-76 to Table 2-125 on page 2-95 present minimum and maximum global clock delays within
each device. Minimum and maximum delays are measured with minimum and maximum loading.
Timing Characteristics
Table 2-108 • A3P060 Global Resource
Commercial-Case Conditions: TJ = 135°C, VCC = 1.425 V
–1
Parameter
Description
Min.
1
Std.
Max.
2
Min.
1
Max.2
Units
tRCKL
Input LOW Delay for Global Clock
0.87
1.16
1.02
1.37
ns
tRCKH
Input HIGH Delay for Global Clock
0.86
1.20
1.01
1.42
ns
tRCKMPWH
Minimum Pulse Width HIGH for Global Clock
ns
tRCKMPWL
Minimum Pulse Width LOW for Global Clock
ns
tRCKSW
Maximum Skew for Global Clock
FRMAX
Maximum Frequency for Global Clock
0.35
0.41
ns
MHz
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential
element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,
located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
Table 2-109 • A3P060 Global Resource
Commercial-Case Conditions: TJ = 115°C, VCC = 1.425 V
–1
Parameter
Description
Min.
1
Std.
Max.2
Min.1
Max.2
Units
tRCKL
Input LOW Delay for Global Clock
0.85
1.13
1.00
1.33
ns
tRCKH
Input HIGH Delay for Global Clock
0.84
1.18
0.99
1.38
ns
tRCKMPWH
Minimum Pulse Width HIGH for Global Clock
ns
tRCKMPWL
Minimum Pulse Width LOW for Global Clock
ns
tRCKSW
Maximum Skew for Global Clock
FRMAX
Maximum Frequency for Global Clock
0.34
0.40
ns
MHz
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential
element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,
located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
v1.0
2 - 73
Automotive ProASIC3 DC and Switching Characteristics
Table 2-110 • A3P125 Global Resource
Commercial-Case Conditions: TJ = 135°C, VCC = 1.425 V
–1
Parameter
Description
Min.
1
Std.
Max.
2
Min.
1
Max.2
Units
tRCKL
Input LOW Delay for Global Clock
0.93
1.22
1.09
1.43
ns
tRCKH
Input HIGH Delay for Global Clock
0.92
1.26
1.08
1.49
ns
tRCKMPWH
Minimum Pulse Width HIGH for Global Clock
ns
tRCKMPWL
Minimum Pulse Width LOW for Global Clock
ns
tRCKSW
Maximum Skew for Global Clock
FRMAX
Maximum Frequency for Global Clock
0.35
0.41
ns
MHz
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential
element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,
located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
Table 2-111 • A3P125 Global Resource
Commercial-Case Conditions: TJ = 115°C, VCC = 1.425 V
–1
Parameter
Description
Min.
1
Std.
Max.2
Min.1
Max.2
Units
tRCKL
Input LOW Delay for Global Clock
0.90
1.19
1.06
1.40
ns
tRCKH
Input HIGH Delay for Global Clock
0.90
1.23
1.05
1.45
ns
tRCKMPWH
Minimum Pulse Width HIGH for Global Clock
ns
tRCKMPWL
Minimum Pulse Width LOW for Global Clock
ns
tRCKSW
Maximum Skew for Global Clock
FRMAX
Maximum Frequency for Global Clock
0.34
0.40
ns
MHz
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential
element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,
located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
2 -7 4
v1.0
Automotive ProASIC3 DC and Switching Characteristics
Table 2-112 • A3P250 Global Resource
Commercial-Case Conditions: TJ = 135°C, VCC = 1.425 V
–1
Parameter
Description
Min.
1
Std.
Max.
2
Min.
1
Max.2
Units
tRCKL
Input LOW Delay for Global Clock
0.96
1.25
1.13
1.47
ns
tRCKH
Input HIGH Delay for Global Clock
0.94
1.28
1.10
1.51
ns
tRCKMPWH
Minimum Pulse Width HIGH for Global Clock
ns
tRCKMPWL
Minimum Pulse Width LOW for Global Clock
ns
tRCKSW
Maximum Skew for Global Clock
FRMAX
Maximum Frequency for Global Clock
0.35
0.41
ns
MHz
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential
element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,
located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
Table 2-113 • A3P250 Global Resource
Commercial-Case Conditions: TJ = 115°C, VCC = 1.425 V
–1
Parameter
Description
Min.
1
Std.
Max.2
Min.1
Max.2
Units
tRCKL
Input LOW Delay for Global Clock
0.94
1.22
1.10
1.44
ns
tRCKH
Input HIGH Delay for Global Clock
0.92
1.25
1.08
1.47
ns
tRCKMPWH
Minimum Pulse Width HIGH for Global Clock
ns
tRCKMPWL
Minimum Pulse Width LOW for Global Clock
ns
tRCKSW
Maximum Skew for Global Clock
FRMAX
Maximum Frequency for Global Clock
0.34
0.40
ns
MHz
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential
element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,
located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
v1.0
2 - 75
Automotive ProASIC3 DC and Switching Characteristics
Table 2-114 • A3P1000 Global Resource
Automotive-Case Conditions: TJ = 135°C, VCC = 1.425 V
–1
Parameter
Description
Min.
1
Std.
Max.
2
1
Min.
Max.2
Units
tRCKL
Input LOW Delay for Global Clock
1.17
1.46
1.37
1.72
ns
tRCKH
Input HIGH Delay for Global Clock
1.15
1.50
1.36
1.76
ns
tRCKMPWH
Minimum Pulse Width HIGH for Global Clock
ns
tRCKMPWL
Minimum Pulse Width LOW for Global Clock
ns
tRCKSW
Maximum Skew for Global Clock
FRMAX
Maximum Frequency for Global Clock
0.35
0.41
ns
MHz
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential
element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,
located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
Table 2-115 • A3P1000 Global Resource
Automotive-Case Conditions: TJ = 115°C, VCC = 1.425 V
–1
Parameter
Description
Min.
1
Std.
Max.2
Min.1
Max.2
Units
tRCKL
Input LOW Delay for Global Clock
1.14
1.43
1.34
1.68
ns
tRCKH
Input HIGH Delay for Global Clock
1.13
1.46
1.32
1.72
ns
tRCKMPWH
Minimum Pulse Width HIGH for Global Clock
ns
tRCKMPWL
Minimum Pulse Width LOW for Global Clock
ns
tRCKSW
Maximum Skew for Global Clock
FRMAX
Maximum Frequency for Global Clock
0.34
0.40
ns
MHz
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential
element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,
located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
2 -7 6
v1.0
Automotive ProASIC3 DC and Switching Characteristics
Clock Conditioning Circuits
CCC Electrical Specifications
Timing Characteristics
Table 2-116 • Automotive ProASIC3 CCC/PLL Specification
Parameter
Maximum
Units
Clock Conditioning Circuitry Input Frequency fIN_CCC
Minimum
1.5
350
MHz
Clock Conditioning Circuitry Output Frequency fOUT_CCC
0.75
350
MHz
Delay Increments in Programmable Delay
Blocks1, 2
Typical
160
ps
Number of Programmable Values in Each Programmable Delay Block
32
Input Period Jitter
1.5
CCC Output Peak-to-Peak Period Jitter FCCC_OUT
ns
Max Peak-to-Peak Period Jitter
1 Global
Network
Used
3 Global
Networks
Used
0.75 MHz to 24 MHz
0.50%
0.70%
24 MHz to 100 MHz
1.00%
1.20%
100 MHz to 250 MHz
1.75%
2.00%
250 MHz to 350 MHz
2.50%
5.60%
Acquisition Time
(A3P250 and A3P1000 only)
(all other dies)
LockControl = 0
300
µs
LockControl = 1
300
µs
LockControl = 0
300
µs
LockControl = 1
6.0
ms
LockControl = 0
1.6
ns
LockControl = 1
1.6
ns
LockControl = 0
1.6
ns
LockControl = 1
0.8
ns
48.5
51.5
%
0.6
5.56
ns
0.025
5.56
ns
Tracking Jitter4
(A3P250 and A3P1000 only)
(all other dies)
Output Duty Cycle
Delay Range in Block: Programmable Delay
11, 2
Delay Range in Block: Programmable Delay 21, 2
Delay Range in Block: Fixed Delay
1, 2
2.2
ns
Notes:
1. This delay is a function of voltage and temperature. See Table 2-5 on page 2-5 for deratings.
2. TJ = 25°C, VCC = 1.5 V
3. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL
input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by
the period jitter parameter.
v1.0
2 - 77
Automotive ProASIC3 DC and Switching Characteristics
Output Signal
Tperiod_max
Tperiod_min
Note: Peak-to-peak jitter measurements are defined by Tpeak-to-peak = Tperiod_max – Tperiod_min.
Figure 2-29 • Peak-to-Peak Jitter Definition
2 -7 8
v1.0
Automotive ProASIC3 DC and Switching Characteristics
Embedded SRAM and FIFO Characteristics
SRAM
RAM512x18
RAM4K9
ADDRA11
ADDRA10
DOUTA8
DOUTA7
RADDR8
RADDR7
RD17
RD16
ADDRA0
DINA8
DINA7
DOUTA0
RADDR0
RD0
RW1
RW0
DINA0
WIDTHA1
WIDTHA0
PIPEA
WMODEA
BLKA
WENA
CLKA
ADDRB0
DOUTB0
DINB8
DINB7
RD17
RD16
RD0
FULL
AFULL
EMPTY
AEMPTY
AEVAL0
AFVAL11
AFVAL10
REN
RCLK
DOUTB8
DOUTB7
RW2
RW1
RW0
WW2
WW1
WW0
ESTOP
FSTOP
AEVAL11
AEVAL10
PIPE
ADDRB11
ADDRB10
FIFO4K18
AFVAL0
WADDR8
WADDR7
REN
RBLK
RCLK
WADDR0
WD17
WD16
WD17
WD16
WD0
DINB0
WIDTHB1
WIDTHB0
PIPEB
WMODEB
BLKB
WENB
CLKB
RESET
WD0
WW1
WW0
WEN
WBLK
WCLK
RPIPE
WEN
WCLK
RESET
RESET
Figure 2-30 • RAM Models
v1.0
2 - 79
Automotive ProASIC3 DC and Switching Characteristics
Timing Waveforms
tCYC
tCKH
tCKL
CLK
tAS
tAH
A0
ADD
A1
A2
tBKS
tBKH
BLK_B
tENS
tENH
WEN_B
tCKQ1
DO
Dn
D0
D1
D2
tDOH1
Figure 2-31 • RAM Read for Pass-Through Output
tCYC
tCKH
tCKL
CLK
t
AS
tAH
A0
ADD
A1
A2
tBKS
tBKH
BLK_B
tENH
tENS
WEN_B
tCKQ2
DO
Dn
D0
D1
tDOH2
Figure 2-32 • RAM Read for Pipelined Output
2 -8 0
v1.0
Automotive ProASIC3 DC and Switching Characteristics
tCYC
tCKH
tCKL
CLK
tAS
tAH
A0
ADD
A1
A2
tBKS
tBKH
BLK_B
tENS
tENH
WEN_B
tDS
DI0
DI
tDH
DI1
D2
Dn
DO
Figure 2-33 • RAM Write, Output Retained (WMODE = 0)
tCYC
tCKH
tCKL
CLK
tAS
tAH
A0
ADD
A1
A2
tBKS
tBKH
BLK_B
tENS
WEN_B
tDS
DI0
DI
DO
(pass-through)
DO
(pipelined)
tDH
DI1
Dn
DI2
DI0
DI1
DI0
Dn
DI1
Figure 2-34 • RAM Write, Output as Write Data (WMODE = 1)
v1.0
2 - 81
Automotive ProASIC3 DC and Switching Characteristics
CLK1
tAS
tAH
A1
A3
tDS
A0
tDH
D1
D2
D3
ADD1
DI1
tCCKH
CLK2
WEN_B1
WEN_B2
tAS
ADD2
A0
DI2
D0
tAH
A0
A4
D4
tCKQ1
DO2
(pass-through)
Dn
D0
tCKQ2
DO2
(pipelined)
Dn
D0
Figure 2-35 • Write Access after Write to Same Address
2 -8 2
v1.0
Automotive ProASIC3 DC and Switching Characteristics
CLK1
tAS tAH
ADD1
DI1
A0
tDS tDH
D0
tWRO
A2
A3
D2
D3
CLK2
WEN_B1
WEN_B2
tAS tAH
A0
ADD2
A1
A4
tCKQ1
DO2
(pass-through)
DO2
(pipelined)
Dn
D0
D1
tCKQ2
Dn
D0
Figure 2-36 • Read Access after Write to Same Address
v1.0
2 - 83
Automotive ProASIC3 DC and Switching Characteristics
CLK1
tAS
tAH
A0
ADD1
A1
A0
WEN_B1
tCKQ1
DO1
(pass-through)
tCKQ1
D0
Dn
D1
tCKQ2
DO1
(pipelined)
D0
Dn
tCCKH
CLK2
tAS
tAH
ADD2
A0
A1
A3
DI2
D1
D2
D3
WEN_B2
Figure 2-37 • Write Access after Read to Same Address
tCYC
tCKH
tCKL
CLK
RESET_B
tRSTBQ
DO
Dm
Dn
Figure 2-38 • RAM Reset
2 -8 4
v1.0
Automotive ProASIC3 DC and Switching Characteristics
Timing Characteristics
Table 2-117 • RAM4K9
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V
Parameter Description
–1
Std. Units
tAS
Address Setup Time
0.30 0.36
ns
tAH
Address Hold Time
0.00 0.00
ns
tENS
REN_B, WEN_B Setup Time
0.17 0.20
ns
tENH
REN_B, WEN_B Hold Time
0.12 0.14
ns
tBKS
BLK_B Setup Time
0.28 0.33
ns
tBKH
BLK_B Hold Time
0.02 0.03
ns
tDS
Input Data (DI) Setup Time
0.22 0.26
ns
tDH
Input Data (DI) Hold Time
0.00 0.00
ns
tCKQ1
Clock HIGH to New Data Valid on DO (output retained, WMODE = 0)
2.17 2.55
ns
Clock HIGH to New Data Valid on DO (flow-through, WMODE = 1)
2.86 3.37
ns
tCKQ2
Clock HIGH to New Data Valid on DO (pipelined)
1.09 1.28
ns
tWRO
Address collision clk-to-clk delay for reliable read access after write on same TBD TBD
address
ns
tCCKH
Address collision clk-to-clk delay for reliable write access after write/read on TBD TBD
same address
ns
tRSTBQ
RESET_B LOW to Data Out LOW on DO (flow-through)
1.12 1.32
ns
RESET_B LOW to Data Out LOW on DO (pipelined)
1.12 1.32
ns
tREMRSTB
RESET_B Removal
0.35 0.41
ns
tRECRSTB
RESET_B Recovery
1.82 2.14
ns
tMPWRSTB
RESET_B Minimum Pulse Width
0.26 0.30
ns
tCYC
Clock Cycle Time
3.93 4.62
ns
FMAX
Maximum Frequency
255
217
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
v1.0
2 - 85
Automotive ProASIC3 DC and Switching Characteristics
Table 2-118 • RAM512X18
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V
Parameter
Description
–1
Std. Units
tAS
Address Setup Time
0.30 0.35
ns
tAH
Address Hold Time
0.00 0.00
ns
tENS
REN_B, WEN_B Setup Time
0.11 0.13
ns
tENH
REN_B, WEN_B Hold Time
0.07 0.08
ns
tDS
Input data (DI) Setup Time
0.22 0.26
ns
tDH
Input data (DI) Hold Time
0.00 0.00
ns
tCKQ1
Clock HIGH to New Data Valid on DO (output retained, WMODE = 0)
2.58 3.03
ns
tCKQ2
Clock HIGH to New Data Valid on DO (pipelined)
1.07 1.26
ns
tWRO
Address collision clk-to-clk delay for reliable read access after write on same TBD TBD
address
ns
tCCKH
Address collision clk-to-clk delay for reliable write access after write/read on TBD TBD
same address
ns
tRSTBQ
RESET_B LOW to Data Out LOW on DO (flow-through)
1.10 1.29
ns
RESET_B LOW to Data Out LOW on DO (pipelined)
1.10 1.29
ns
tREMRSTB
RESET_B Removal
0.34 0.40
ns
tRECRSTB
RESET_B Recovery
1.79 2.10
ns
tMPWRSTB
RESET_B Minimum Pulse Width
0.25 0.30
ns
tCYC
Clock Cycle Time
3.85 4.53
ns
FMAX
Maximum Frequency
260
221
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
2 -8 6
v1.0
Automotive ProASIC3 DC and Switching Characteristics
Table 2-119 • RAM4K9
Automotive-Case Conditions: TJ = 115°C, Worst Case VCC = 1.425 V
Parameter Description
–1
Std. Units
tAS
Address Setup Time
0.30 0.35
ns
tAH
Address Hold Time
0.00 0.00
ns
tENS
REN_B, WEN_B Setup Time
0.17 0.20
ns
tENH
REN_B, WEN_B Hold Time
0.12 0.14
ns
tBKS
BLK_B Setup Time
0.28 0.33
ns
tBKH
BLK_B Hold Time
0.02 0.03
ns
tDS
Input data (DI) Setup Time
0.22 0.26
ns
tDH
Input data (DI) Hold Time
0.00 0.00
ns
tCKQ1
Clock HIGH to New Data Valid on DO (output retained, WMODE = 0)
2.13 2.50
ns
Clock HIGH to New Data Valid on DO (flow-through, WMODE = 1)
2.81 3.30
ns
tCKQ2
Clock HIGH to New Data Valid on DO (pipelined)
1.07 1.25
ns
tWRO
Address collision clk-to-clk delay for reliable read access after write on same TBD TBD
address
ns
tCCKH
Address collision clk-to-clk delay for reliable write access after write/read on TBD TBD
same address
ns
tRSTBQ
RESET_B LOW to Data Out LOW on DO (flow-through)
1.10 1.29
ns
RESET_B LOW to Data Out LOW on DO (pipelined)
1.10 1.29
ns
tREMRSTB
RESET_B Removal
0.34 0.40
ns
tRECRSTB
RESET_B Recovery
1.79 2.10
ns
tMPWRSTB
RESET_B Minimum Pulse Width
0.25 0.30
ns
tCYC
Clock Cycle Time
3.85 4.53
ns
FMAX
Maximum Frequency
260
221
MHz
Note: For specific junction temperature and voltage-supply levels, refer to Table 2-5 on page 2-5 for derating
values.
v1.0
2 - 87
Automotive ProASIC3 DC and Switching Characteristics
Table 2-120 • RAM512X18
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V
Parameter
Description
–1
Std. Units
tAS
Address Setup Time
0.30 0.35
ns
tAH
Address Hold Time
0.00 0.00
ns
tENS
REN_B, WEN_B Setup Time
0.11 0.13
ns
tENH
REN_B, WEN_B Hold Time
0.07 0.08
ns
tDS
Input data (DI) Setup Time
0.22 0.26
ns
tDH
Input data (DI) Hold Time
0.00 0.00
ns
tCKQ1
Clock HIGH to New Data Valid on DO (output retained, WMODE = 0)
2.58 3.03
ns
tCKQ2
Clock HIGH to New Data Valid on DO (pipelined)
1.07 1.26
ns
tWRO
Address collision clk-to-clk delay for reliable read access after write on same TBD TBD
address
ns
tCCKH
Address collision clk-to-clk delay for reliable write access after write/read on TBD TBD
same address
ns
tRSTBQ
RESET_B LOW to Data Out LOW on DO (flow-through)
1.10 1.29
ns
RESET_B LOW to Data Out LOW on DO (pipelined)
1.10 1.29
ns
tREMRSTB
RESET_B Removal
0.34 0.40
ns
tRECRSTB
RESET_B Recovery
1.79 2.10
ns
tMPWRSTB
RESET_B Minimum Pulse Width
0.25 0.30
ns
tCYC
Clock Cycle Time
3.85 4.53
ns
FMAX
Maximum Frequency
260
221
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating
values.
2 -8 8
v1.0
Automotive ProASIC3 DC and Switching Characteristics
FIFO
FIFO4K18
RW2
RW1
RW0
WW2
WW1
WW0
ESTOP
FSTOP
RD17
RD16
RD0
FULL
AFULL
EMPTY
AEMPTY
AEVAL11
AEVAL10
AEVAL0
AFVAL11
AFVAL10
AFVAL0
REN
RBLK
RCLK
WD17
WD16
WD0
WEN
WBLK
WCLK
RPIPE
RESET
Figure 2-39 • FIFO Model
v1.0
2 - 89
Automotive ProASIC3 DC and Switching Characteristics
Timing Waveforms
RCLK/
WCLK
tMPWRSTB
tRSTCK
RESET_B
tRSTFG
EMPTY
tRSTAF
AEMPTY
tRSTFG
FULL
tRSTAF
AFULL
WA/RA
(Address Counter)
MATCH (A0)
Figure 2-40 • FIFO Reset
tCYC
RCLK
tRCKEF
EMPTY
tCKAF
AEMPTY
WA/RA
(Address Counter)
NO MATCH
NO MATCH
Figure 2-41 • FIFO EMPTY Flag and AEMPTY Flag Assertion
2 -9 0
v1.0
Dist = AEF_TH
MATCH (EMPTY)
Automotive ProASIC3 DC and Switching Characteristics
tCYC
WCLK
tWCKFF
FULL
tCKAF
AFULL
WA/RA NO MATCH
(Address Counter)
NO MATCH
Dist = AFF_TH
MATCH (FULL)
Figure 2-42 • FIFO FULL Flag and AFULL Flag Assertion
WCLK
WA/RA
(Address Counter)
RCLK
MATCH
(EMPTY)
NO MATCH
1st Rising
Edge
After 1st
Write
NO MATCH
NO MATCH
NO MATCH
Dist = AEF_TH + 1
2nd Rising
Edge
After 1st
Write
tRCKEF
EMPTY
tCKAF
AEMPTY
Figure 2-43 • FIFO EMPTY Flag and AEMPTY Flag Deassertion
RCLK
WA/RA MATCH (FULL)
NO MATCH
(Address Counter)
1st Rising
Edge
After 1st
WCLK
Read
NO MATCH
NO MATCH
NO MATCH
Dist = AFF_TH – 1
1st Rising
Edge
After 2nd
Read
tWCKF
FULL
tCKAF
AFULL
Figure 2-44 • FIFO FULL Flag and AFULL Flag Deassertion
v1.0
2 - 91
Automotive ProASIC3 DC and Switching Characteristics
Timing Characteristics
Table 2-121 • FIFO
Worst-Case Automotive Conditions: TJ = 135°C, VCC = 1.425 V
Parameter
Description
–1
Std.
Units
tENS
REN_B, WEN_B Setup Time
1.97
1.67
ns
tENH
REN_B, WEN_B Hold Time
0.03
0.02
ns
tBKS
BLK_B Setup Time
0.28
0.32
ns
tBKH
BLK_B Hold Time
0.00
0.00
ns
tDS
Input Data (DI) Setup Time
0.26
0.22
ns
tDH
Input Data (DI) Hold Time
0.00
0.00
ns
tCKQ1
Clock HIGH to New Data Valid on DO (flow-through)
3.37
2.86
ns
tCKQ2
Clock HIGH to New Data Valid on DO (pipelined)
1.28
1.09
ns
tRCKEF
RCLK HIGH to Empty Flag Valid
2.45
2.09
ns
tWCKFF
WCLK HIGH to Full Flag Valid
2.33
1.98
ns
tCKAF
Clock HIGH to Almost Empty/Full Flag Valid
8.85
7.53
ns
tRSTFG
RESET_B LOW to Empty/Full Flag Valid
2.42
2.06
ns
tRSTAF
RESET_B LOW to Almost Empty/Full Flag Valid
8.76
7.45
ns
tRSTBQ
RESET_B LOW to Data Out LOW on DO (flow-through)
1.32
1.12
ns
RESET_B LOW to Data Out LOW on DO (pipelined)
1.32
1.12
ns
tREMRSTB
RESET_B Removal
0.41
0.35
ns
tRECRSTB
RESET_B Recovery
2.14
1.82
ns
tMPWRSTB
RESET_B Minimum Pulse Width
0.30
0.26
ns
tCYC
Clock Cycle Time
4.62
3.93
ns
FMAX
Maximum Frequency for FIFO
217
255
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5
for derating values.
2 -9 2
v1.0
Automotive ProASIC3 DC and Switching Characteristics
Table 2-122 • FIFO
Worst-Case Automotive Conditions: TJ = 115°C, VCC = 1.425 V
Parameter
Description
–1
Std.
Units
tENS
REN_B, WEN_B Setup Time
1.93
1.64
ns
tENH
REN_B, WEN_B Hold Time
0.03
0.02
ns
tBKS
BLK_B Setup Time
0.27
0.32
ns
tBKH
BLK_B Hold Time
0.00
0.00
ns
tDS
Input Data (DI) Setup Time
0.26
0.22
ns
tDH
Input Data (DI) Hold Time
0.00
0.00
ns
tCKQ1
Clock HIGH to New Data Valid on DO (flow-through)
3.30
2.81
ns
tCKQ2
Clock HIGH to New Data Valid on DO (pipelined)
1.25
1.07
ns
tRCKEF
RCLK HIGH to Empty Flag Valid
2.41
2.05
ns
tWCKFF
WCLK HIGH to Full Flag Valid
2.29
1.95
ns
tCKAF
Clock HIGH to Almost Empty/Full Flag Valid
8.68
7.38
ns
tRSTFG
RESET_B LOW to Empty/Full Flag Valid
2.37
2.02
ns
tRSTAF
RESET_B LOW to Almost Empty/Full Flag Valid
8.59
7.30
ns
tRSTBQ
RESET_B LOW to Data Out LOW on DO (flow-through)
1.29
1.10
ns
RESET_B LOW to Data Out LOW on DO (pipelined)
1.29
1.10
ns
tREMRSTB
RESET_B Removal
0.40
0.34
ns
tRECRSTB
RESET_B Recovery
2.10
1.79
ns
tMPWRSTB
RESET_B Minimum Pulse Width
0.30
0.25
ns
tCYC
Clock Cycle Time
4.53
3.85
ns
FMAX
Maximum Frequency for FIFO
221
260
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5
for derating values.
v1.0
2 - 93
Automotive ProASIC3 DC and Switching Characteristics
Embedded FlashROM Characteristics
tSU
CLK
tSU
tSU
tHOLD
Address
tHOLD
A0
tHOLD
A1
tCKQ2
tCKQ2
D0
Data
tCKQ2
D0
D1
Figure 2-45 • Timing Diagram
Timing Characteristics
Table 2-123 • Embedded FlashROM Access Time
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V
Parameter
Description
–1
Std.
Units
tSU
Address Setup Time
0.65
0.76
ns
tHOLD
Address Hold Time
0.00
0.00
ns
tCK2Q
Clock to Out
19.73
23.20
ns
FMAX
Maximum Clock Frequency
15
15
MHz
–1
Std.
Units
Table 2-124 • Embedded FlashROM Access Time
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V
Parameter
Description
tSU
Address Setup Time
0.64
0.75
ns
tHOLD
Address Hold Time
0.00
0.00
ns
tCK2Q
Clock to Out
19.35
22.74
ns
FMAX
Maximum Clock Frequency
15
15
MHz
2 -9 4
v1.0
Automotive ProASIC3 DC and Switching Characteristics
JTAG 1532 Characteristics
JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays
to the corresponding standard selected; refer to the I/O timing characteristics in the "User I/O
Characteristics" section on page 2-12 for more details.
Timing Characteristics
Table 2-125 • JTAG 1532
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Description
–2
–1
Std.
Units
tDISU
Test Data Input Setup Time
ns
tDIHD
Test Data Input Hold Time
ns
tTMSSU
Test Mode Select Setup Time
ns
tTMDHD
Test Mode Select Hold Time
ns
tTCK2Q
Clock to Q (data out)
ns
tRSTB2Q
Reset to Q (data out)
ns
FTCKMAX
TCK Maximum Frequency
tTRSTREM
ResetB Removal Time
ns
tTRSTREC
ResetB Recovery Time
ns
tTRSTMPW
ResetB Minimum Pulse
ns
20
20
20
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5
for derating values.
Part Number and Revision Date
Part Number 51700099-002-0
Revised January 2008
Actel Safety Critical, Life Support, and High-Reliability
Applications Policy
The Actel products described in this advanced status datasheet may not have completed Actel’s
qualification process. Actel may amend or enhance products during the product introduction and
qualification process, resulting in changes in device functionality or performance. It is the
responsibility of each customer to ensure the fitness of any Actel product (but especially a new
product) for a particular purpose, including appropriateness for safety-critical, life-support, and
other high-reliability applications. Consult Actel’s Terms and Conditions for specific liability
exclusions relating to life-support applications. A reliability report covering all of Actel’s products is
available on the Actel website at http://www.actel.com/documents/ORT_Report.pdf. Actel also
offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your
local Actel sales office for additional reliability information.
v1.0
2 - 95
Automotive ProASIC®3 Packaging
3 – Package Pin Assignments
100-Pin VQFP
100
1
100-Pin
VQFP
Note: This is the top view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.actel.com/products/solutions/package/docs.aspx.
v1.0
3-1
Package Pin Assignments
100-Pin VQFP
100-Pin VQFP
100-Pin VQFP
Pin Number
A3P060 Function
Pin Number
A3P060 Function
Pin Number
A3P060 Function
1
GND
35
IO62RSB1
69
IO31RSB0
2
GAA2/IO51RSB1
36
IO61RSB1
70
GBC2/IO29RSB0
3
IO52RSB1
37
VCC
71
GBB2/IO27RSB0
4
GAB2/IO53RSB1
38
GND
72
IO26RSB0
5
IO95RSB1
39
VCCIB1
73
GBA2/IO25RSB0
6
GAC2/IO94RSB1
40
IO60RSB1
74
VMV0
7
IO93RSB1
41
IO59RSB1
75
GNDQ
8
IO92RSB1
42
IO58RSB1
76
GBA1/IO24RSB0
9
GND
43
IO57RSB1
77
GBA0/IO23RSB0
10
GFB1/IO87RSB1
44
GDC2/IO56RSB1
78
GBB1/IO22RSB0
11
GFB0/IO86RSB1
45
GDB2/IO55RSB1
79
GBB0/IO21RSB0
12
VCOMPLF
46
GDA2/IO54RSB1
80
GBC1/IO20RSB0
13
GFA0/IO85RSB1
47
TCK
81
GBC0/IO19RSB0
14
VCCPLF
48
TDI
82
IO18RSB0
15
GFA1/IO84RSB1
49
TMS
83
IO17RSB0
16
GFA2/IO83RSB1
50
VMV1
84
IO15RSB0
17
VCC
51
GND
85
IO13RSB0
18
VCCIB1
52
VPUMP
86
IO11RSB0
19
GEC1/IO77RSB1
53
NC
87
VCCIB0
20
GEB1/IO75RSB1
54
TDO
88
GND
21
GEB0/IO74RSB1
55
TRST
89
VCC
22
GEA1/IO73RSB1
56
VJTAG
90
IO10RSB0
23
GEA0/IO72RSB1
57
GDA1/IO49RSB0
91
IO09RSB0
24
VMV1
58
GDC0/IO46RSB0
92
IO08RSB0
25
GNDQ
59
GDC1/IO45RSB0
93
GAC1/IO07RSB0
26
GEA2/IO71RSB1
60
GCC2/IO43RSB0
94
GAC0/IO06RSB0
27
GEB2/IO70RSB1
61
GCB2/IO42RSB0
95
GAB1/IO05RSB0
28
GEC2/IO69RSB1
62
GCA0/IO40RSB0
96
GAB0/IO04RSB0
29
IO68RSB1
63
GCA1/IO39RSB0
97
GAA1/IO03RSB0
30
IO67RSB1
64
GCC0/IO36RSB0
98
GAA0/IO02RSB0
31
IO66RSB1
65
GCC1/IO35RSB0
99
IO01RSB0
32
IO65RSB1
66
VCCIB0
100
IO00RSB0
33
IO64RSB1
67
GND
34
IO63RSB1
68
VCC
3 -2
v1.0
Automotive ProASIC3 Packaging
100-Pin VQFP
100-Pin VQFP
100-Pin VQFP
Pin Number
A3P250 Function
Pin Number
A3P250 Function
Pin Number
A3P250 Function
1
GND
35
IO85RSB2
69
IO43NDB1
2
GAA2/IO118UDB3
36
IO84RSB2
70
GBC2/IO43PDB1
3
IO118VDB3
37
VCC
71
GBB2/IO42PSB1
4
GAB2/IO117UDB3
38
GND
72
IO41NDB1
5
IO117VDB3
39
VCCIB2
73
GBA2/IO41PDB1
6
GAC2/IO116UDB3
40
IO77RSB2
74
VMV1
7
IO116VDB3
41
IO74RSB2
75
GNDQ
8
IO112PSB3
42
IO71RSB2
76
GBA1/IO40RSB0
9
GND
43
GDC2/IO63RSB2
77
GBA0/IO39RSB0
10
GFB1/IO109PDB3
44
GDB2/IO62RSB2
78
GBB1/IO38RSB0
11
GFB0/IO109NDB3
45
GDA2/IO61RSB2
79
GBB0/IO37RSB0
12
VCOMPLF
46
GNDQ
80
GBC1/IO36RSB0
13
GFA0/IO108NPB3
47
TCK
81
GBC0/IO35RSB0
14
VCCPLF
48
TDI
82
IO29RSB0
15
GFA1/IO108PPB3
49
TMS
83
IO27RSB0
16
GFA2/IO107PSB3
50
VMV2
84
IO25RSB0
17
VCC
51
GND
85
IO23RSB0
18
VCCIB3
52
VPUMP
86
IO21RSB0
19
GFC2/IO105PSB3
53
NC
87
VCCIB0
20
GEC1/IO100PDB3
54
TDO
88
GND
21
GEC0/IO100NDB3
55
TRST
89
VCC
22
GEA1/IO98PDB3
56
VJTAG
90
IO15RSB0
23
GEA0/IO98NDB3
57
GDA1/IO60USB1
91
IO13RSB0
24
VMV3
58
GDC0/IO58VDB1
92
IO11RSB0
25
GNDQ
59
GDC1/IO58UDB1
93
GAC1/IO05RSB0
26
GEA2/IO97RSB2
60
IO52NDB1
94
GAC0/IO04RSB0
27
GEB2/IO96RSB2
61
GCB2/IO52PDB1
95
GAB1/IO03RSB0
28
GEC2/IO95RSB2
62
GCA1/IO50PDB1
96
GAB0/IO02RSB0
29
IO93RSB2
63
GCA0/IO50NDB1
97
GAA1/IO01RSB0
30
IO92RSB2
64
GCC0/IO48NDB1
98
GAA0/IO00RSB0
31
IO91RSB2
65
GCC1/IO48PDB1
99
GNDQ
32
IO90RSB2
66
VCCIB1
100
VMV0
33
IO88RSB2
67
GND
34
IO86RSB2
68
VCC
v1.0
3-3
Package Pin Assignments
144-Pin FBGA
A1 Ball Pad Corner
12
11
10
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
Note: This is the bottom view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.actel.com/products/solutions/package/docs.aspx.
3 -4
v1.0
Automotive ProASIC3 Packaging
144-Pin FBGA
144-Pin FBGA
144-Pin FBGA
Pin Number
A3P060 Function
Pin Number
A3P060 Function
Pin Number
A3P060 Function
A1
GNDQ
D1
IO91RSB1
G1
GFA1/IO84RSB1
A2
VMV0
D2
IO92RSB1
G2
GND
A3
GAB0/IO04RSB0
D3
IO93RSB1
G3
VCCPLF
A4
GAB1/IO05RSB0
D4
GAA2/IO51RSB1
G4
GFA0/IO85RSB1
A5
IO08RSB0
D5
GAC0/IO06RSB0
G5
GND
A6
GND
D6
GAC1/IO07RSB0
G6
GND
A7
IO11RSB0
D7
GBC0/IO19RSB0
G7
GND
A8
VCC
D8
GBC1/IO20RSB0
G8
GDC1/IO45RSB0
A9
IO16RSB0
D9
GBB2/IO27RSB0
G9
IO32RSB0
A10
GBA0/IO23RSB0
D10
IO18RSB0
G10
GCC2/IO43RSB0
A11
GBA1/IO24RSB0
D11
IO28RSB0
G11
IO31RSB0
A12
GNDQ
D12
GCB1/IO37RSB0
G12
GCB2/IO42RSB0
B1
GAB2/IO53RSB1
E1
VCC
H1
VCC
B2
GND
E2
GFC0/IO88RSB1
H2
GFB2/IO82RSB1
B3
GAA0/IO02RSB0
E3
GFC1/IO89RSB1
H3
GFC2/IO81RSB1
B4
GAA1/IO03RSB0
E4
VCCIB1
H4
GEC1/IO77RSB1
B5
IO00RSB0
E5
IO52RSB1
H5
VCC
B6
IO10RSB0
E6
VCCIB0
H6
IO34RSB0
B7
IO12RSB0
E7
VCCIB0
H7
IO44RSB0
B8
IO14RSB0
E8
GCC1/IO35RSB0
H8
GDB2/IO55RSB1
B9
GBB0/IO21RSB0
E9
VCCIB0
H9
GDC0/IO46RSB0
B10
GBB1/IO22RSB0
E10
VCC
H10
VCCIB0
B11
GND
E11
GCA0/IO40RSB0
H11
IO33RSB0
B12
VMV0
E12
IO30RSB0
H12
VCC
C1
IO95RSB1
F1
GFB0/IO86RSB1
J1
GEB1/IO75RSB1
C2
GFA2/IO83RSB1
F2
VCOMPLF
J2
IO78RSB1
C3
GAC2/IO94RSB1
F3
GFB1/IO87RSB1
J3
VCCIB1
C4
VCC
F4
IO90RSB1
J4
GEC0/IO76RSB1
C5
IO01RSB0
F5
GND
J5
IO79RSB1
C6
IO09RSB0
F6
GND
J6
IO80RSB1
C7
IO13RSB0
F7
GND
J7
VCC
C8
IO15RSB0
F8
GCC0/IO36RSB0
J8
TCK
C9
IO17RSB0
F9
GCB0/IO38RSB0
J9
GDA2/IO54RSB1
C10
GBA2/IO25RSB0
F10
GND
J10
TDO
C11
IO26RSB0
F11
GCA1/IO39RSB0
J11
GDA1/IO49RSB0
C12
GBC2/IO29RSB0
F12
GCA2/IO41RSB0
J12
GDB1/IO47RSB0
v1.0
3-5
Package Pin Assignments
144-Pin FBGA
Pin Number
A3P060 Function
K1
GEB0/IO74RSB1
K2
GEA1/IO73RSB1
K3
GEA0/IO72RSB1
K4
GEA2/IO71RSB1
K5
IO65RSB1
K6
IO64RSB1
K7
GND
K8
IO57RSB1
K9
GDC2/IO56RSB1
K10
GND
K11
GDA0/IO50RSB0
K12
GDB0/IO48RSB0
L1
GND
L2
VMV1
L3
GEB2/IO70RSB1
L4
IO67RSB1
L5
VCCIB1
L6
IO62RSB1
L7
IO59RSB1
L8
IO58RSB1
L9
TMS
L10
VJTAG
L11
VMV1
L12
TRST
M1
GNDQ
M2
GEC2/IO69RSB1
M3
IO68RSB1
M4
IO66RSB1
M5
IO63RSB1
M6
IO61RSB1
M7
IO60RSB1
M8
NC
M9
TDI
M10
VCCIB1
M11
VPUMP
M12
GNDQ
3 -6
v1.0
Automotive ProASIC3 Packaging
144-Pin FBGA
144-Pin FBGA
144-Pin FBGA
Pin Number
A3P125 Function
Pin Number
A3P125 Function
Pin Number
A3P125 Function
A1
GNDQ
D1
IO128RSB1
G1
GFA1/IO121RSB1
A2
VMV0
D2
IO129RSB1
G2
GND
A3
GAB0/IO02RSB0
D3
IO130RSB1
G3
VCCPLF
A4
GAB1/IO03RSB0
D4
GAA2/IO67RSB1
G4
GFA0/IO122RSB1
A5
IO11RSB0
D5
GAC0/IO04RSB0
G5
GND
A6
GND
D6
GAC1/IO05RSB0
G6
GND
A7
IO18RSB0
D7
GBC0/IO35RSB0
G7
GND
A8
VCC
D8
GBC1/IO36RSB0
G8
GDC1/IO61RSB0
A9
IO25RSB0
D9
GBB2/IO43RSB0
G9
IO48RSB0
A10
GBA0/IO39RSB0
D10
IO28RSB0
G10
GCC2/IO59RSB0
A11
GBA1/IO40RSB0
D11
IO44RSB0
G11
IO47RSB0
A12
GNDQ
D12
GCB1/IO53RSB0
G12
GCB2/IO58RSB0
B1
GAB2/IO69RSB1
E1
VCC
H1
VCC
B2
GND
E2
GFC0/IO125RSB1
H2
GFB2/IO119RSB1
B3
GAA0/IO00RSB0
E3
GFC1/IO126RSB1
H3
GFC2/IO118RSB1
B4
GAA1/IO01RSB0
E4
VCCIB1
H4
GEC1/IO112RSB1
B5
IO08RSB0
E5
IO68RSB1
H5
VCC
B6
IO14RSB0
E6
VCCIB0
H6
IO50RSB0
B7
IO19RSB0
E7
VCCIB0
H7
IO60RSB0
B8
IO22RSB0
E8
GCC1/IO51RSB0
H8
GDB2/IO71RSB1
B9
GBB0/IO37RSB0
E9
VCCIB0
H9
GDC0/IO62RSB0
B10
GBB1/IO38RSB0
E10
VCC
H10
VCCIB0
B11
GND
E11
GCA0/IO56RSB0
H11
IO49RSB0
B12
VMV0
E12
IO46RSB0
H12
VCC
C1
IO132RSB1
F1
GFB0/IO123RSB1
J1
GEB1/IO110RSB1
C2
GFA2/IO120RSB1
F2
VCOMPLF
J2
IO115RSB1
C3
GAC2/IO131RSB1
F3
GFB1/IO124RSB1
J3
VCCIB1
C4
VCC
F4
IO127RSB1
J4
GEC0/IO111RSB1
C5
IO10RSB0
F5
GND
J5
IO116RSB1
C6
IO12RSB0
F6
GND
J6
IO117RSB1
C7
IO21RSB0
F7
GND
J7
VCC
C8
IO24RSB0
F8
GCC0/IO52RSB0
J8
TCK
C9
IO27RSB0
F9
GCB0/IO54RSB0
J9
GDA2/IO70RSB1
C10
GBA2/IO41RSB0
F10
GND
J10
TDO
C11
IO42RSB0
F11
GCA1/IO55RSB0
J11
GDA1/IO65RSB0
C12
GBC2/IO45RSB0
F12
GCA2/IO57RSB0
J12
GDB1/IO63RSB0
v1.0
3-7
Package Pin Assignments
144-Pin FBGA
Pin Number
A3P125 Function
K1
GEB0/IO109RSB1
K2
GEA1/IO108RSB1
K3
GEA0/IO107RSB1
K4
GEA2/IO106RSB1
K5
IO100RSB1
K6
IO98RSB1
K7
GND
K8
IO73RSB1
K9
GDC2/IO72RSB1
K10
GND
K11
GDA0/IO66RSB0
K12
GDB0/IO64RSB0
L1
GND
L2
VMV1
L3
GEB2/IO105RSB1
L4
IO102RSB1
L5
VCCIB1
L6
IO95RSB1
L7
IO85RSB1
L8
IO74RSB1
L9
TMS
L10
VJTAG
L11
VMV1
L12
TRST
M1
GNDQ
M2
GEC2/IO104RSB1
M3
IO103RSB1
M4
IO101RSB1
M5
IO97RSB1
M6
IO94RSB1
M7
IO86RSB1
M8
IO75RSB1
M9
TDI
M10
VCCIB1
M11
VPUMP
M12
GNDQ
3 -8
v1.0
Automotive ProASIC3 Packaging
144-Pin FBGA
144-Pin FBGA
144-Pin FBGA
Pin Number
A3P250 Function
Pin Number
A3P250 Function
Pin Number
A3P250 Function
A1
GNDQ
D1
IO112NDB3
G1
GFA1/IO108PPB3
A2
VMV0
D2
IO112PDB3
G2
GND
A3
GAB0/IO02RSB0
D3
IO116VDB3
G3
VCCPLF
A4
GAB1/IO03RSB0
D4
GAA2/IO118UPB3
G4
GFA0/IO108NPB3
A5
IO16RSB0
D5
GAC0/IO04RSB0
G5
GND
A6
GND
D6
GAC1/IO05RSB0
G6
GND
A7
IO29RSB0
D7
GBC0/IO35RSB0
G7
GND
A8
VCC
D8
GBC1/IO36RSB0
G8
GDC1/IO58UPB1
A9
IO33RSB0
D9
GBB2/IO42PDB1
G9
IO53NDB1
A10
GBA0/IO39RSB0
D10
IO42NDB1
G10
GCC2/IO53PDB1
A11
GBA1/IO40RSB0
D11
IO43NPB1
G11
IO52NDB1
A12
GNDQ
D12
GCB1/IO49PPB1
G12
GCB2/IO52PDB1
B1
GAB2/IO117UDB3
E1
VCC
H1
VCC
B2
GND
E2
GFC0/IO110NDB3
H2
GFB2/IO106PDB3
B3
GAA0/IO00RSB0
E3
GFC1/IO110PDB3
H3
GFC2/IO105PSB3
B4
GAA1/IO01RSB0
E4
VCCIB3
H4
GEC1/IO100PDB3
B5
IO14RSB0
E5
IO118VPB3
H5
VCC
B6
IO19RSB0
E6
VCCIB0
H6
IO79RSB2
B7
IO22RSB0
E7
VCCIB0
H7
IO65RSB2
B8
IO30RSB0
E8
GCC1/IO48PDB1
H8
GDB2/IO62RSB2
B9
GBB0/IO37RSB0
E9
VCCIB1
H9
GDC0/IO58VPB1
B10
GBB1/IO38RSB0
E10
VCC
H10
VCCIB1
B11
GND
E11
GCA0/IO50NDB1
H11
IO54PSB1
B12
VMV1
E12
IO51NDB1
H12
VCC
C1
IO117VDB3
F1
GFB0/IO109NPB3
J1
GEB1/IO99PDB3
C2
GFA2/IO107PPB3
F2
VCOMPLF
J2
IO106NDB3
C3
GAC2/IO116UDB3
F3
GFB1/IO109PPB3
J3
VCCIB3
C4
VCC
F4
IO107NPB3
J4
GEC0/IO100NDB3
C5
IO12RSB0
F5
GND
J5
IO88RSB2
C6
IO17RSB0
F6
GND
J6
IO81RSB2
C7
IO24RSB0
F7
GND
J7
VCC
C8
IO31RSB0
F8
GCC0/IO48NDB1
J8
TCK
C9
IO34RSB0
F9
GCB0/IO49NPB1
J9
GDA2/IO61RSB2
C10
GBA2/IO41PDB1
F10
GND
J10
TDO
C11
IO41NDB1
F11
GCA1/IO50PDB1
J11
GDA1/IO60UDB1
C12
GBC2/IO43PPB1
F12
GCA2/IO51PDB1
J12
GDB1/IO59UDB1
v1.0
3-9
Package Pin Assignments
144-Pin FBGA
Pin Number
A3P250 Function
K1
GEB0/IO99NDB3
K2
GEA1/IO98PDB3
K3
GEA0/IO98NDB3
K4
GEA2/IO97RSB2
K5
IO90RSB2
K6
IO84RSB2
K7
GND
K8
IO66RSB2
K9
GDC2/IO63RSB2
K10
GND
K11
GDA0/IO60VDB1
K12
GDB0/IO59VDB1
L1
GND
L2
VMV3
L3
GEB2/IO96RSB2
L4
IO91RSB2
L5
VCCIB2
L6
IO82RSB2
L7
IO80RSB2
L8
IO72RSB2
L9
TMS
L10
VJTAG
L11
VMV2
L12
TRST
M1
GNDQ
M2
GEC2/IO95RSB2
M3
IO92RSB2
M4
IO89RSB2
M5
IO87RSB2
M6
IO85RSB2
M7
IO78RSB2
M8
IO76RSB2
M9
TDI
M10
VCCIB2
M11
VPUMP
M12
GNDQ
3 -1 0
v1.0
Automotive ProASIC3 Packaging
144-Pin FBGA
144-Pin FBGA
144-Pin FBGA
Pin Number
A3P1000 Function
Pin Number
A3P1000 Function
Pin Number
A3P1000 Function
A1
GNDQ
D1
IO213PDB3
G1
GFA1/IO207PPB3
A2
VMV0
D2
IO213NDB3
G2
GND
A3
GAB0/IO02RSB0
D3
IO223NDB3
G3
VCCPLF
A4
GAB1/IO03RSB0
D4
GAA2/IO225PPB3
G4
GFA0/IO207NPB3
A5
IO10RSB0
D5
GAC0/IO04RSB0
G5
GND
A6
GND
D6
GAC1/IO05RSB0
G6
GND
A7
IO44RSB0
D7
GBC0/IO72RSB0
G7
GND
A8
VCC
D8
GBC1/IO73RSB0
G8
GDC1/IO111PPB1
A9
IO69RSB0
D9
GBB2/IO79PDB1
G9
IO96NDB1
A10
GBA0/IO76RSB0
D10
IO79NDB1
G10
GCC2/IO96PDB1
A11
GBA1/IO77RSB0
D11
IO80NPB1
G11
IO95NDB1
A12
GNDQ
D12
GCB1/IO92PPB1
G12
GCB2/IO95PDB1
B1
GAB2/IO224PDB3
E1
VCC
H1
VCC
B2
GND
E2
GFC0/IO209NDB3
H2
GFB2/IO205PDB3
B3
GAA0/IO00RSB0
E3
GFC1/IO209PDB3
H3
GFC2/IO204PSB3
B4
GAA1/IO01RSB0
E4
VCCIB3
H4
GEC1/IO190PDB3
B5
IO13RSB0
E5
IO225NPB3
H5
VCC
B6
IO26RSB0
E6
VCCIB0
H6
IO105PDB1
B7
IO35RSB0
E7
VCCIB0
H7
IO105NDB1
B8
IO60RSB0
E8
GCC1/IO91PDB1
H8
GDB2/IO115RSB2
B9
GBB0/IO74RSB0
E9
VCCIB1
H9
GDC0/IO111NPB1
B10
GBB1/IO75RSB0
E10
VCC
H10
VCCIB1
B11
GND
E11
GCA0/IO93NDB1
H11
IO101PSB1
B12
VMV1
E12
IO94NDB1
H12
VCC
C1
IO224NDB3
F1
GFB0/IO208NPB3
J1
GEB1/IO189PDB3
C2
GFA2/IO206PPB3
F2
VCOMPLF
J2
IO205NDB3
C3
GAC2/IO223PDB3
F3
GFB1/IO208PPB3
J3
VCCIB3
C4
VCC
F4
IO206NPB3
J4
GEC0/IO190NDB3
C5
IO16RSB0
F5
GND
J5
IO160RSB2
C6
IO29RSB0
F6
GND
J6
IO157RSB2
C7
IO32RSB0
F7
GND
J7
VCC
C8
IO63RSB0
F8
GCC0/IO91NDB1
J8
TCK
C9
IO66RSB0
F9
GCB0/IO92NPB1
J9
GDA2/IO114RSB2
C10
GBA2/IO78PDB1
F10
GND
J10
TDO
C11
IO78NDB1
F11
GCA1/IO93PDB1
J11
GDA1/IO113PDB1
C12
GBC2/IO80PPB1
F12
GCA2/IO94PDB1
J12
GDB1/IO112PDB1
v1.0
3 - 11
Package Pin Assignments
144-Pin FBGA
Pin Number
A3P1000 Function
K1
GEB0/IO189NDB3
K2
GEA1/IO188PDB3
K3
GEA0/IO188NDB3
K4
GEA2/IO187RSB2
K5
IO169RSB2
K6
IO152RSB2
K7
GND
K8
IO117RSB2
K9
GDC2/IO116RSB2
K10
GND
K11
GDA0/IO113NDB1
K12
GDB0/IO112NDB1
L1
GND
L2
VMV3
L3
GEB2/IO186RSB2
L4
IO172RSB2
L5
VCCIB2
L6
IO153RSB2
L7
IO144RSB2
L8
IO140RSB2
L9
TMS
L10
VJTAG
L11
VMV2
L12
TRST
M1
GNDQ
M2
GEC2/IO185RSB2
M3
IO173RSB2
M4
IO168RSB2
M5
IO161RSB2
M6
IO156RSB2
M7
IO145RSB2
M8
IO141RSB2
M9
TDI
M10
VCCIB2
M11
VPUMP
M12
GNDQ
3 -1 2
v1.0
Automotive ProASIC3 Packaging
256-Pin FBGA
A1 Ball Pad Corner
16 15 14 13 12 11 10 9
8
7
6 5 4
3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
Note: This is the bottom view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.actel.com/products/solutions/package/docs.aspx.
v1.0
3 - 13
Package Pin Assignments
256-Pin FBGA
256-Pin FBGA
256-Pin FBGA
Pin Number
A3P250 Function
Pin Number
A3P250 Function
Pin Number
A3P250 Function
A1
GND
C5
GAC0/IO04RSB0
E9
IO24RSB0
A2
GAA0/IO00RSB0
C6
GAC1/IO05RSB0
E10
VCCIB0
A3
GAA1/IO01RSB0
C7
IO13RSB0
E11
VCCIB0
A4
GAB0/IO02RSB0
C8
IO17RSB0
E12
VMV1
A5
IO07RSB0
C9
IO22RSB0
E13
GBC2/IO43PDB1
A6
IO10RSB0
C10
IO27RSB0
E14
IO46RSB1
A7
IO11RSB0
C11
IO31RSB0
E15
NC
A8
IO15RSB0
C12
GBC0/IO35RSB0
E16
IO45PDB1
A9
IO20RSB0
C13
IO34RSB0
F1
IO113NDB3
A10
IO25RSB0
C14
NC
F2
IO112PPB3
A11
IO29RSB0
C15
IO42NPB1
F3
NC
A12
IO33RSB0
C16
IO44PDB1
F4
IO115VDB3
A13
GBB1/IO38RSB0
D1
IO114VDB3
F5
VCCIB3
A14
GBA0/IO39RSB0
D2
IO114UDB3
F6
GND
A15
GBA1/IO40RSB0
D3
GAC2/IO116UDB3
F7
VCC
A16
GND
D4
NC
F8
VCC
B1
GAB2/IO117UDB3
D5
GNDQ
F9
VCC
B2
GAA2/IO118UDB3
D6
IO08RSB0
F10
VCC
B3
NC
D7
IO14RSB0
F11
GND
B4
GAB1/IO03RSB0
D8
IO18RSB0
F12
VCCIB1
B5
IO06RSB0
D9
IO23RSB0
F13
IO43NDB1
B6
IO09RSB0
D10
IO28RSB0
F14
NC
B7
IO12RSB0
D11
IO32RSB0
F15
IO47PPB1
B8
IO16RSB0
D12
GNDQ
F16
IO45NDB1
B9
IO21RSB0
D13
NC
G1
IO111NDB3
B10
IO26RSB0
D14
GBB2/IO42PPB1
G2
IO111PDB3
B11
IO30RSB0
D15
NC
G3
IO112NPB3
B12
GBC1/IO36RSB0
D16
IO44NDB1
G4
GFC1/IO110PPB3
B13
GBB0/IO37RSB0
E1
IO113PDB3
G5
VCCIB3
B14
NC
E2
NC
G6
VCC
B15
GBA2/IO41PDB1
E3
IO116VDB3
G7
GND
B16
IO41NDB1
E4
IO115UDB3
G8
GND
C1
IO117VDB3
E5
VMV0
G9
GND
C2
IO118VDB3
E6
VCCIB0
G10
GND
C3
NC
E7
VCCIB0
G11
VCC
C4
NC
E8
IO19RSB0
G12
VCCIB1
3 -1 4
v1.0
Automotive ProASIC3 Packaging
256-Pin FBGA
256-Pin FBGA
256-Pin FBGA
Pin Number
A3P250 Function
Pin Number
A3P250 Function
Pin Number
A3P250 Function
G13
GCC1/IO48PPB1
K1
GFC2/IO105PDB3
M5
VMV3
G14
IO47NPB1
K2
IO107NPB3
M6
VCCIB2
G15
IO54PDB1
K3
IO104PPB3
M7
VCCIB2
G16
IO54NDB1
K4
NC
M8
NC
H1
GFB0/IO109NPB3
K5
VCCIB3
M9
IO74RSB2
H2
GFA0/IO108NDB3
K6
VCC
M10
VCCIB2
H3
GFB1/IO109PPB3
K7
GND
M11
VCCIB2
H4
VCOMPLF
K8
GND
M12
VMV2
H5
GFC0/IO110NPB3
K9
GND
M13
NC
H6
VCC
K10
GND
M14
GDB1/IO59UPB1
H7
GND
K11
VCC
M15
GDC1/IO58UDB1
H8
GND
K12
VCCIB1
M16
IO56NDB1
H9
GND
K13
IO52NPB1
N1
IO103NDB3
H10
GND
K14
IO55RSB1
N2
IO101PPB3
H11
VCC
K15
IO53NPB1
N3
GEC1/IO100PPB3
H12
GCC0/IO48NPB1
K16
IO51NDB1
N4
NC
H13
GCB1/IO49PPB1
L1
IO105NDB3
N5
GNDQ
H14
GCA0/IO50NPB1
L2
IO104NPB3
N6
GEA2/IO97RSB2
H15
NC
L3
NC
N7
IO86RSB2
H16
GCB0/IO49NPB1
L4
IO102RSB3
N8
IO82RSB2
J1
GFA2/IO107PPB3
L5
VCCIB3
N9
IO75RSB2
J2
GFA1/IO108PDB3
L6
GND
N10
IO69RSB2
J3
VCCPLF
L7
VCC
N11
IO64RSB2
J4
IO106NDB3
L8
VCC
N12
GNDQ
J5
GFB2/IO106PDB3
L9
VCC
N13
NC
J6
VCC
L10
VCC
N14
VJTAG
J7
GND
L11
GND
N15
GDC0/IO58VDB1
J8
GND
L12
VCCIB1
N16
GDA1/IO60UDB1
J9
GND
L13
GDB0/IO59VPB1
P1
GEB1/IO99PDB3
J10
GND
L14
IO57VDB1
P2
GEB0/IO99NDB3
J11
VCC
L15
IO57UDB1
P3
NC
J12
GCB2/IO52PPB1
L16
IO56PDB1
P4
NC
J13
GCA1/IO50PPB1
M1
IO103PDB3
P5
IO92RSB2
J14
GCC2/IO53PPB1
M2
NC
P6
IO89RSB2
J15
NC
M3
IO101NPB3
P7
IO85RSB2
J16
GCA2/IO51PDB1
M4
GEC0/IO100NPB3
P8
IO81RSB2
v1.0
3 - 15
Package Pin Assignments
256-Pin FBGA
256-Pin FBGA
Pin Number
A3P250 Function
Pin Number
A3P250 Function
P9
IO76RSB2
T13
IO67RSB2
P10
IO71RSB2
T14
GDA2/IO61RSB2
P11
IO66RSB2
T15
TMS
P12
NC
T16
GND
P13
TCK
P14
VPUMP
P15
TRST
P16
GDA0/IO60VDB1
R1
GEA1/IO98PDB3
R2
GEA0/IO98NDB3
R3
NC
R4
GEC2/IO95RSB2
R5
IO91RSB2
R6
IO88RSB2
R7
IO84RSB2
R8
IO80RSB2
R9
IO77RSB2
R10
IO72RSB2
R11
IO68RSB2
R12
IO65RSB2
R13
GDB2/IO62RSB2
R14
TDI
R15
NC
R16
TDO
T1
GND
T2
IO94RSB2
T3
GEB2/IO96RSB2
T4
IO93RSB2
T5
IO90RSB2
T6
IO87RSB2
T7
IO83RSB2
T8
IO79RSB2
T9
IO78RSB2
T10
IO73RSB2
T11
IO70RSB2
T12
GDC2/IO63RSB2
3 -1 6
v1.0
Automotive ProASIC3 Packaging
256-Pin FBGA
256-Pin FBGA
256-Pin FBGA
Pin Number
A3P1000 Function
Pin Number
A3P1000 Function
Pin Number
A3P1000 Function
A1
GND
C5
GAC0/IO04RSB0
E9
IO47RSB0
A2
GAA0/IO00RSB0
C6
GAC1/IO05RSB0
E10
VCCIB0
A3
GAA1/IO01RSB0
C7
IO25RSB0
E11
VCCIB0
A4
GAB0/IO02RSB0
C8
IO36RSB0
E12
VMV1
A5
IO16RSB0
C9
IO42RSB0
E13
GBC2/IO80PDB1
A6
IO22RSB0
C10
IO49RSB0
E14
IO83PPB1
A7
IO28RSB0
C11
IO56RSB0
E15
IO86PPB1
A8
IO35RSB0
C12
GBC0/IO72RSB0
E16
IO87PDB1
A9
IO45RSB0
C13
IO62RSB0
F1
IO217NDB3
A10
IO50RSB0
C14
VMV0
F2
IO218NDB3
A11
IO55RSB0
C15
IO78NDB1
F3
IO216PDB3
A12
IO61RSB0
C16
IO81NDB1
F4
IO216NDB3
A13
GBB1/IO75RSB0
D1
IO222NDB3
F5
VCCIB3
A14
GBA0/IO76RSB0
D2
IO222PDB3
F6
GND
A15
GBA1/IO77RSB0
D3
GAC2/IO223PDB3
F7
VCC
A16
GND
D4
IO223NDB3
F8
VCC
B1
GAB2/IO224PDB3
D5
GNDQ
F9
VCC
B2
GAA2/IO225PDB3
D6
IO23RSB0
F10
VCC
B3
GNDQ
D7
IO29RSB0
F11
GND
B4
GAB1/IO03RSB0
D8
IO33RSB0
F12
VCCIB1
B5
IO17RSB0
D9
IO46RSB0
F13
IO83NPB1
B6
IO21RSB0
D10
IO52RSB0
F14
IO86NPB1
B7
IO27RSB0
D11
IO60RSB0
F15
IO90PPB1
B8
IO34RSB0
D12
GNDQ
F16
IO87NDB1
B9
IO44RSB0
D13
IO80NDB1
G1
IO210PSB3
B10
IO51RSB0
D14
GBB2/IO79PDB1
G2
IO213NDB3
B11
IO57RSB0
D15
IO79NDB1
G3
IO213PDB3
B12
GBC1/IO73RSB0
D16
IO82NSB1
G4
GFC1/IO209PPB3
B13
GBB0/IO74RSB0
E1
IO217PDB3
G5
VCCIB3
B14
IO71RSB0
E2
IO218PDB3
G6
VCC
B15
GBA2/IO78PDB1
E3
IO221NDB3
G7
GND
B16
IO81PDB1
E4
IO221PDB3
G8
GND
C1
IO224NDB3
E5
VMV0
G9
GND
C2
IO225NDB3
E6
VCCIB0
G10
GND
C3
VMV3
E7
VCCIB0
G11
VCC
C4
IO11RSB0
E8
IO38RSB0
G12
VCCIB1
v1.0
3 - 17
Package Pin Assignments
256-Pin FBGA
256-Pin FBGA
256-Pin FBGA
Pin Number
A3P1000 Function
Pin Number
A3P1000 Function
Pin Number
A3P1000 Function
G13
GCC1/IO91PPB1
K1
GFC2/IO204PDB3
M5
VMV3
G14
IO90NPB1
K2
IO204NDB3
M6
VCCIB2
G15
IO88PDB1
K3
IO203NDB3
M7
VCCIB2
G16
IO88NDB1
K4
IO203PDB3
M8
IO147RSB2
H1
GFB0/IO208NPB3
K5
VCCIB3
M9
IO136RSB2
H2
GFA0/IO207NDB3
K6
VCC
M10
VCCIB2
H3
GFB1/IO208PPB3
K7
GND
M11
VCCIB2
H4
VCOMPLF
K8
GND
M12
VMV2
H5
GFC0/IO209NPB3
K9
GND
M13
IO110NDB1
H6
VCC
K10
GND
M14
GDB1/IO112PPB1
H7
GND
K11
VCC
M15
GDC1/IO111PDB1
H8
GND
K12
VCCIB1
M16
IO107NDB1
H9
GND
K13
IO95NPB1
N1
IO194PSB3
H10
GND
K14
IO100NPB1
N2
IO192PPB3
H11
VCC
K15
IO102NDB1
N3
GEC1/IO190PPB3
H12
GCC0/IO91NPB1
K16
IO102PDB1
N4
IO192NPB3
H13
GCB1/IO92PPB1
L1
IO202NDB3
N5
GNDQ
H14
GCA0/IO93NPB1
L2
IO202PDB3
N6
GEA2/IO187RSB2
H15
IO96NPB1
L3
IO196PPB3
N7
IO161RSB2
H16
GCB0/IO92NPB1
L4
IO193PPB3
N8
IO155RSB2
J1
GFA2/IO206PSB3
L5
VCCIB3
N9
IO141RSB2
J2
GFA1/IO207PDB3
L6
GND
N10
IO129RSB2
J3
VCCPLF
L7
VCC
N11
IO124RSB2
J4
IO205NDB3
L8
VCC
N12
GNDQ
J5
GFB2/IO205PDB3
L9
VCC
N13
IO110PDB1
J6
VCC
L10
VCC
N14
VJTAG
J7
GND
L11
GND
N15
GDC0/IO111NDB1
J8
GND
L12
VCCIB1
N16
GDA1/IO113PDB1
J9
GND
L13
GDB0/IO112NPB1
P1
GEB1/IO189PDB3
J10
GND
L14
IO106NDB1
P2
GEB0/IO189NDB3
J11
VCC
L15
IO106PDB1
P3
VMV2
J12
GCB2/IO95PPB1
L16
IO107PDB1
P4
IO179RSB2
J13
GCA1/IO93PPB1
M1
IO197NSB3
P5
IO171RSB2
J14
GCC2/IO96PPB1
M2
IO196NPB3
P6
IO165RSB2
J15
IO100PPB1
M3
IO193NPB3
P7
IO159RSB2
J16
GCA2/IO94PSB1
M4
GEC0/IO190NPB3
P8
IO151RSB2
3 -1 8
v1.0
Automotive ProASIC3 Packaging
256-Pin FBGA
256-Pin FBGA
Pin Number
A3P1000 Function
Pin Number
A3P1000 Function
P9
IO137RSB2
T13
IO120RSB2
P10
IO134RSB2
T14
GDA2/IO114RSB2
P11
IO128RSB2
T15
TMS
P12
VMV1
T16
GND
P13
TCK
P14
VPUMP
P15
TRST
P16
GDA0/IO113NDB1
R1
GEA1/IO188PDB3
R2
GEA0/IO188NDB3
R3
IO184RSB2
R4
GEC2/IO185RSB2
R5
IO168RSB2
R6
IO163RSB2
R7
IO157RSB2
R8
IO149RSB2
R9
IO143RSB2
R10
IO138RSB2
R11
IO131RSB2
R12
IO125RSB2
R13
GDB2/IO115RSB2
R14
TDI
R15
GNDQ
R16
TDO
T1
GND
T2
IO183RSB2
T3
GEB2/IO186RSB2
T4
IO172RSB2
T5
IO170RSB2
T6
IO164RSB2
T7
IO158RSB2
T8
IO153RSB2
T9
IO142RSB2
T10
IO135RSB2
T11
IO130RSB2
T12
GDC2/IO116RSB2
v1.0
3 - 19
Package Pin Assignments
484-Pin FBGA
A1 Ball Pad Corner
22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
Note: This is the bottom view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.actel.com/products/solutions/package/docs.aspx.
3 -2 0
v1.0
Automotive ProASIC3 Packaging
484-Pin FBGA*
484-Pin FBGA*
484-Pin FBGA*
Pin Number
A3P1000 Function
Pin Number
A3P1000 Function
Pin Number
A3P1000 Function
A1
GND
B15
IO63RSB0
D7
GAB0/IO02RSB0
A2
GND
B16
IO66RSB0
D8
IO16RSB0
A3
VCCIB0
B17
IO68RSB0
D9
IO22RSB0
A4
IO07RSB0
B18
IO70RSB0
D10
IO28RSB0
A5
IO09RSB0
B19
NC
D11
IO35RSB0
A6
IO13RSB0
B20
NC
D12
IO45RSB0
A7
IO18RSB0
B21
VCCIB1
D13
IO50RSB0
A8
IO20RSB0
B22
GND
D14
IO55RSB0
A9
IO26RSB0
C1
VCCIB3
D15
IO61RSB0
A10
IO32RSB0
C2
IO220PDB3
D16
GBB1/IO75RSB0
A11
IO40RSB0
C3
NC
D17
GBA0/IO76RSB0
A12
IO41RSB0
C4
NC
D18
GBA1/IO77RSB0
A13
IO53RSB0
C5
GND
D19
GND
A14
IO59RSB0
C6
IO10RSB0
D20
NC
A15
IO64RSB0
C7
IO14RSB0
D21
NC
A16
IO65RSB0
C8
VCC
D22
NC
A17
IO67RSB0
C9
VCC
E1
IO219NDB3
A18
IO69RSB0
C10
IO30RSB0
E2
NC
A19
NC
C11
IO37RSB0
E3
GND
A20
VCCIB0
C12
IO43RSB0
E4
GAB2/IO224PDB3
A21
GND
C13
NC
E5
GAA2/IO225PDB3
A22
GND
C14
VCC
E6
GNDQ
B1
GND
C15
VCC
E7
GAB1/IO03RSB0
B2
VCCIB3
C16
NC
E8
IO17RSB0
B3
NC
C17
NC
E9
IO21RSB0
B4
IO06RSB0
C18
GND
E10
IO27RSB0
B5
IO08RSB0
C19
NC
E11
IO34RSB0
B6
IO12RSB0
C20
NC
E12
IO44RSB0
B7
IO15RSB0
C21
NC
E13
IO51RSB0
B8
IO19RSB0
C22
VCCIB1
E14
IO57RSB0
B9
IO24RSB0
D1
IO219PDB3
E15
GBC1/IO73RSB0
B10
IO31RSB0
D2
IO220NDB3
E16
GBB0/IO74RSB0
B11
IO39RSB0
D3
NC
E17
IO71RSB0
B12
IO48RSB0
D4
GND
E18
GBA2/IO78PDB1
B13
IO54RSB0
D5
GAA0/IO00RSB0
E19
IO81PDB1
B14
IO58RSB0
D6
GAA1/IO01RSB0
E20
GND
v1.0
3 - 21
Package Pin Assignments
484-Pin FBGA*
484-Pin FBGA*
484-Pin FBGA*
Pin Number
A3P1000 Function
Pin Number
A3P1000 Function
Pin Number
A3P1000 Function
E21
NC
G13
IO52RSB0
J5
IO218NDB3
E22
IO84PDB1
G14
IO60RSB0
J6
IO216PDB3
F1
NC
G15
GNDQ
J7
IO216NDB3
F2
IO215PDB3
G16
IO80NDB1
J8
VCCIB3
F3
IO215NDB3
G17
GBB2/IO79PDB1
J9
GND
F4
IO224NDB3
G18
IO79NDB1
J10
VCC
F5
IO225NDB3
G19
IO82NPB1
J11
VCC
F6
VMV3
G20
IO85PDB1
J12
VCC
F7
IO11RSB0
G21
IO85NDB1
J13
VCC
F8
GAC0/IO04RSB0
G22
NC
J14
GND
F9
GAC1/IO05RSB0
H1
NC
J15
VCCIB1
F10
IO25RSB0
H2
NC
J16
IO83NPB1
F11
IO36RSB0
H3
VCC
J17
IO86NPB1
F12
IO42RSB0
H4
IO217PDB3
J18
IO90PPB1
F13
IO49RSB0
H5
IO218PDB3
J19
IO87NDB1
F14
IO56RSB0
H6
IO221NDB3
J20
NC
F15
GBC0/IO72RSB0
H7
IO221PDB3
J21
IO89PDB1
F16
IO62RSB0
H8
VMV0
J22
IO89NDB1
F17
VMV0
H9
VCCIB0
K1
IO211PDB3
F18
IO78NDB1
H10
VCCIB0
K2
IO211NDB3
F19
IO81NDB1
H11
IO38RSB0
K3
NC
F20
IO82PPB1
H12
IO47RSB0
K4
IO210PPB3
F21
NC
H13
VCCIB0
K5
IO213NDB3
F22
IO84NDB1
H14
VCCIB0
K6
IO213PDB3
G1
IO214NDB3
H15
VMV1
K7
GFC1/IO209PPB3
G2
IO214PDB3
H16
GBC2/IO80PDB1
K8
VCCIB3
G3
NC
H17
IO83PPB1
K9
VCC
G4
IO222NDB3
H18
IO86PPB1
K10
GND
G5
IO222PDB3
H19
IO87PDB1
K11
GND
G6
GAC2/IO223PDB3
H20
VCC
K12
GND
G7
IO223NDB3
H21
NC
K13
GND
G8
GNDQ
H22
NC
K14
VCC
G9
IO23RSB0
J1
IO212NDB3
K15
VCCIB1
G10
IO29RSB0
J2
IO212PDB3
K16
GCC1/IO91PPB1
G11
IO33RSB0
J3
NC
K17
IO90NPB1
G12
IO46RSB0
J4
IO217NDB3
K18
IO88PDB1
3 -2 2
v1.0
Automotive ProASIC3 Packaging
484-Pin FBGA*
484-Pin FBGA*
484-Pin FBGA*
Pin Number
A3P1000 Function
Pin Number
A3P1000 Function
Pin Number
A3P1000 Function
K19
IO88NDB1
M11
GND
P3
IO199NDB3
K20
IO94NPB1
M12
GND
P4
IO202NDB3
K21
IO98NDB1
M13
GND
P5
IO202PDB3
K22
IO98PDB1
M14
VCC
P6
IO196PPB3
L1
NC
M15
GCB2/IO95PPB1
P7
IO193PPB3
L2
IO200PDB3
M16
GCA1/IO93PPB1
P8
VCCIB3
L3
IO210NPB3
M17
GCC2/IO96PPB1
P9
GND
L4
GFB0/IO208NPB3
M18
IO100PPB1
P10
VCC
L5
GFA0/IO207NDB3
M19
GCA2/IO94PPB1
P11
VCC
L6
GFB1/IO208PPB3
M20
IO101PPB1
P12
VCC
L7
VCOMPLF
M21
IO99PPB1
P13
VCC
L8
GFC0/IO209NPB3
M22
NC
P14
GND
L9
VCC
N1
IO201NDB3
P15
VCCIB1
L10
GND
N2
IO201PDB3
P16
GDB0/IO112NPB1
L11
GND
N3
NC
P17
IO106NDB1
L12
GND
N4
GFC2/IO204PDB3
P18
IO106PDB1
L13
GND
N5
IO204NDB3
P19
IO107PDB1
L14
VCC
N6
IO203NDB3
P20
NC
L15
GCC0/IO91NPB1
N7
IO203PDB3
P21
IO104PDB1
L16
GCB1/IO92PPB1
N8
VCCIB3
P22
IO103NDB1
L17
GCA0/IO93NPB1
N9
VCC
R1
NC
L18
IO96NPB1
N10
GND
R2
IO197PPB3
L19
GCB0/IO92NPB1
N11
GND
R3
VCC
L20
IO97PDB1
N12
GND
R4
IO197NPB3
L21
IO97NDB1
N13
GND
R5
IO196NPB3
L22
IO99NPB1
N14
VCC
R6
IO193NPB3
M1
NC
N15
VCCIB1
R7
GEC0/IO190NPB3
M2
IO200NDB3
N16
IO95NPB1
R8
VMV3
M3
IO206NDB3
N17
IO100NPB1
R9
VCCIB2
M4
GFA2/IO206PDB3
N18
IO102NDB1
R10
VCCIB2
M5
GFA1/IO207PDB3
N19
IO102PDB1
R11
IO147RSB2
M6
VCCPLF
N20
NC
R12
IO136RSB2
M7
IO205NDB3
N21
IO101NPB1
R13
VCCIB2
M8
GFB2/IO205PDB3
N22
IO103PDB1
R14
VCCIB2
M9
VCC
P1
NC
R15
VMV2
M10
GND
P2
IO199PDB3
R16
IO110NDB1
v1.0
3 - 23
Package Pin Assignments
484-Pin FBGA*
484-Pin FBGA*
484-Pin FBGA*
Pin Number
A3P1000 Function
Pin Number
A3P1000 Function
Pin Number
A3P1000 Function
R17
GDB1/IO112PPB1
U9
IO165RSB2
W1
NC
R18
GDC1/IO111PDB1
U10
IO159RSB2
W2
IO191PDB3
R19
IO107NDB1
U11
IO151RSB2
W3
NC
R20
VCC
U12
IO137RSB2
W4
GND
R21
IO104NDB1
U13
IO134RSB2
W5
IO183RSB2
R22
IO105PDB1
U14
IO128RSB2
W6
GEB2/IO186RSB2
T1
IO198PDB3
U15
VMV1
W7
IO172RSB2
T2
IO198NDB3
U16
TCK
W8
IO170RSB2
T3
NC
U17
VPUMP
W9
IO164RSB2
T4
IO194PPB3
U18
TRST
W10
IO158RSB2
T5
IO192PPB3
U19
GDA0/IO113NDB1
W11
IO153RSB2
T6
GEC1/IO190PPB3
U20
NC
W12
IO142RSB2
T7
IO192NPB3
U21
IO108NDB1
W13
IO135RSB2
T8
GNDQ
U22
IO109PDB1
W14
IO130RSB2
T9
GEA2/IO187RSB2
V1
NC
W15
GDC2/IO116RSB2
T10
IO161RSB2
V2
NC
W16
IO120RSB2
T11
IO155RSB2
V3
GND
W17
GDA2/IO114RSB2
T12
IO141RSB2
V4
GEA1/IO188PDB3
W18
TMS
T13
IO129RSB2
V5
GEA0/IO188NDB3
W19
GND
T14
IO124RSB2
V6
IO184RSB2
W20
NC
T15
GNDQ
V7
GEC2/IO185RSB2
W21
NC
T16
IO110PDB1
V8
IO168RSB2
W22
NC
T17
VJTAG
V9
IO163RSB2
Y1
VCCIB3
T18
GDC0/IO111NDB1
V10
IO157RSB2
Y2
IO191NDB3
T19
GDA1/IO113PDB1
V11
IO149RSB2
Y3
NC
T20
NC
V12
IO143RSB2
Y4
IO182RSB2
T21
IO108PDB1
V13
IO138RSB2
Y5
GND
T22
IO105NDB1
V14
IO131RSB2
Y6
IO177RSB2
U1
IO195PDB3
V15
IO125RSB2
Y7
IO174RSB2
U2
IO195NDB3
V16
GDB2/IO115RSB2
Y8
VCC
U3
IO194NPB3
V17
TDI
Y9
VCC
U4
GEB1/IO189PDB3
V18
GNDQ
Y10
IO154RSB2
U5
GEB0/IO189NDB3
V19
TDO
Y11
IO148RSB2
U6
VMV2
V20
GND
Y12
IO140RSB2
U7
IO179RSB2
V21
NC
Y13
NC
U8
IO171RSB2
V22
IO109NDB1
Y14
VCC
3 -2 4
v1.0
Automotive ProASIC3 Packaging
484-Pin FBGA*
484-Pin FBGA*
Pin Number
A3P1000 Function
Pin Number
A3P1000 Function
Y15
VCC
AB7
IO167RSB2
Y16
NC
AB8
IO162RSB2
Y17
NC
AB9
IO156RSB2
Y18
GND
AB10
IO150RSB2
Y19
NC
AB11
IO145RSB2
Y20
NC
AB12
IO144RSB2
Y21
NC
AB13
IO132RSB2
Y22
VCCIB1
AB14
IO127RSB2
AA1
GND
AB15
IO126RSB2
AA2
VCCIB3
AB16
IO123RSB2
AA3
NC
AB17
IO121RSB2
AA4
IO181RSB2
AB18
IO118RSB2
AA5
IO178RSB2
AB19
NC
AA6
IO175RSB2
AB20
VCCIB2
AA7
IO169RSB2
AB21
GND
AA8
IO166RSB2
AB22
GND
AA9
IO160RSB2
AA10
IO152RSB2
AA11
IO146RSB2
AA12
IO139RSB2
AA13
IO133RSB2
AA14
NC
AA15
NC
AA16
IO122RSB2
AA17
IO119RSB2
AA18
IO117RSB2
AA19
NC
AA20
NC
AA21
VCCIB1
AA22
GND
AB1
GND
AB2
GND
AB3
VCCIB2
AB4
IO180RSB2
AB5
IO176RSB2
AB6
IO173RSB2
v1.0
3 - 25
Package Pin Assignments
Part Number and Revision Date
Part Number 51700099-003-0
Revised January 2008
Datasheet Categories
Categories
In order to provide the latest information to designers, some datasheets are published before data
has been fully characterized. Datasheets are designated as "Product Brief," "Advance,"
"Preliminary," and "Production." The definition of these categories are as follows:
Product Brief
The product brief is a summarized version of a datasheet (advance or production) and contains
general product information. This document gives an overview of specific device and family
information.
Advance
This version contains initial estimated information based on simulation, other products, devices, or
speed grades. This information can be used as estimates, but not for production. This label only
applies to the DC and Switching Characteristics chapter of the datasheet and will only be used
when the data has not been fully characterized.
Preliminary
The datasheet contains information based on simulation and/or initial characterization. The
information is believed to be correct, but changes are possible.
Unmarked (production)
This version contains information that is considered to be final.
Export Administration Regulations (EAR)
The products described in this document are subject to the Export Administration Regulations
(EAR). They could require an approved export license prior to export from the United States. An
export includes release of product or disclosure of technology to a foreign national inside or
outside the United States.
Actel Safety Critical, Life Support, and High-Reliability
Applications Policy
The Actel products described in this advance status document may not have completed Actel’s
qualification process. Actel may amend or enhance products during the product introduction and
qualification process, resulting in changes in device functionality or performance. It is the
responsibility of each customer to ensure the fitness of any Actel product (but especially a new
product) for a particular purpose, including appropriateness for safety-critical, life-support, and
other high-reliability applications. Consult Actel’s Terms and Conditions for specific liability
exclusions relating to life-support applications. A reliability report covering all of Actel’s products is
available on the Actel website at http://www.actel.com/documents/ORT_Report.pdf. Actel also
offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your
local Actel sales office for additional reliability information.
3 -2 6
v1.0
Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.
w w w. a c t e l . c o m
Actel Corporation
Actel Europe Ltd.
Actel Japan
Actel Hong Kong
2061 Stierlin Court
Mountain View, CA
94043-4655 USA
Phone 650.318.4200
Fax 650.318.4600
River Court,Meadows Business Park
Station Approach, Blackwater
Camberley Surrey GU17 9AB
United Kingdom
Phone +44 (0) 1276 609 300
Fax +44 (0) 1276 607 540
EXOS Ebisu Buillding 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668
http://jp.actel.com
Room 2107, China Resources Building
26 Harbour Road
Wanchai, Hong Kong
Phone +852 2185 6460
Fax +852 2185 6488
www.actel.com.cn
51700099-005-0/1.08
Similar pages