Maxim MAX9400 Quad differential lvecl/lvpecl buffer/receiver Datasheet

19-2223; Rev 1; 1/02
Quad Differential LVECL/LVPECL
Buffer/Receivers
These devices operate with a supply voltage of (VCC VEE) = 2.375V to 5.5V, and are specified for operation
from -40°C to +85°C. These devices are offered in
space-saving 32-pin 5mm ✕ 5mm TQFP and 32-lead
5mm ✕ 5mm QFN packages.
Applications
Features
♦ 400mV Differential Output at 3.0GHz Data Rate
♦ 335ps Propagation Delay in Asynchronous Mode
♦ 8ps Channel-to-Channel Skew in Synchronous
Mode
♦ Integrated 50Ω Outputs (MAX9402/MAX9405)
♦ Integrated 100Ω Inputs (MAX9403/MAX9405)
♦ Synchronous/Asynchronous Operation
Ordering Information
TEMP
RANGE
PART
PINDATA
OUTPUT
PACKAGE INPUT
MAX9400EHJ -40°C to +85°C 32 TQFP
Open
Open
MAX9400EGJ* -40°C to +85°C 32 QFN
Open
Open
MAX9402EHJ -40°C to +85°C 32 TQFP
Open
50Ω
MAX9402EGJ* -40°C to +85°C 32 QFN
Open
50Ω
MAX9403EHJ -40°C to +85°C 32 TQFP
100Ω
Open
MAX9403EGJ* -40°C to +85°C 32 QFN
100Ω
Open
MAX9405EHJ -40°C to +85°C 32 TQFP
100Ω
50Ω
MAX9405EGJ* -40°C to +85°C 32 QFN
100Ω
50Ω
*Future product—contact factory for availability.
Data and Clock Driver and Buffer
Pin Configurations
VCC
OUT0
OUT0
VEE
IN1
IN1
TOP VIEW
Base Station
IN0
DSLAM Backplane
IN0
Central Office Backplane Clock Distribution
32
31
30
29
28
27
26
25
ATE
1
24 VCC
SEL
2
23 OUT1
SEL
3
22 OUT1
CLK
4
21 VEE
MAX9400
MAX9402
MAX9403
MAX9405
20 VEE
CLK
5
EN
6
EN
7
18 OUT2
VCC
8
17 VCC
10
11
12
13
14
15
16
IN3
OUT3
OUT3
VEE
IN2
IN2
IN3
9
19 OUT2
VCC
Functional Diagram appears at end of data sheet.
VCC
TQFP (5mm x 5mm)
Pin Configurations continued at end of data sheet.
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
1
MAX9400/MAX9402/MAX9403/MAX9405
General Description
The MAX9400/MAX9402/MAX9403/MAX9405 are
extremely fast, low-skew quad LVECL/ECL or LVPECL/
PECL buffer/receivers designed for high-speed data
and clock driver applications. These devices feature an
ultra-low propagation delay of 335ps and channel-tochannel skew of 16ps in asynchronous mode with
86mA supply current.
The four channels can be operated synchronously with
an external clock, or in asynchronous mode determined
by the state of the SEL input. An enable input provides
the ability to force all the outputs to a differential low
state.
A variety of input and output terminations are offered for
maximum design flexibility. The MAX9400 has open
inputs and open emitter outputs. The MAX9402 has
open inputs and 50Ω series outputs. The MAX9403 has
100Ω differential input impedance and open emitter
outputs. The MAX9405 has 100Ω differential input
impedance and 50Ω series outputs.
MAX9400/MAX9402/MAX9403/MAX9405
Quad Differential LVECL/LVPECL
Buffer/Receivers
ABSOLUTE MAXIMUM RATINGS
VCC to VEE ................................................................-0.3V to +6V
Inputs to VEE...............................................-0.3V to (VCC + 0.3V)
Differential Input Voltage .......................................................±3V
Continuous Output Current .................................................50mA
Surge Output Current........................................................100mA
Continuous Power Dissipation (TA = +70°C)
32-Pin 5mm x 5mm TQFP
(derate 9.5mW/°C above +70°C) .................................761mW
32-Lead 5mm x 5mm QFN
(derate 21.3mW/°C above +70°C) ...................................1.7W
Junction-to-Ambient Thermal Resistance in Still Air
32-Pin 5mm x 5mm TQFP ........................................+105°C/W
32-Lead 5mm x 5mm QFN ........................................+47°C/W
Junction-to-Ambient Thermal Resistance with
500LFPM Airflow
32-Pin 5mm x 5mm TQFP .........................................+73°C/W
Junction-to-Case Thermal Resistance
32-Pin 5mm x 5mm TQFP .........................................+25°C/W
32-Lead 5mm x 5mm QFN .........................................+2°C/W
Operating Temperature Range ...........................-40°C to +85°C
Junction Temperature ......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
ESD Protection
Human Body Model (Inputs and Outputs) ........................2kV
Soldering Temperature (10s) ...........................................+300°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
DC ELECTRICAL CHARACTERISTICS
(VCC - VEE = 2.375V to 5.5V, MAX9400/MAX9403 outputs terminated with 50Ω ±1% to VCC - 2.0V. Typical values are at VCC - VEE =
3.3V, VIHD = VCC - 0.9V, VILD = VCC - 1.7V, TA = +25°C, unless otherwise noted.) (Notes 1, 2, and 3)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
INPUTS (IN_, IN_, CLK, CLK, EN, EN, SEL, SEL)
Differential Input High Voltage
VIHD
Figure 1
VEE +
1.4
VCC
V
Differential Input Low Voltage
VILD
Figure 1
VEE
VCC 0.2
V
Differential Input Voltage
VID
Figure 1
VCC - VEE < +3.0V
0.2
VCC VEE
Input Current
Differential Input Resistance
IIH, IIL
RIN
VCC - VEE ≥ +3.0V
0.2
3.0
MAX9400/
MAX9402
EN, EN, SEL, SEL , IN_, IN_,
CLK, or CLK = VIHD or VILD
-10
25
MAX9403/
MAX9405
EN, EN, SEL, SEL, CLK, or
CLK = VIHD or VILD
-10
25
MAX9403/MAX9405
86
114
V
µA
Ω
OUTPUTS (OUT_, OUT_)
Differential Output Voltage
VOH VOL
Figure 1
600
660
Output Common-Mode Voltage
VOCM
Figure 1
VCC 1.5
VCC 1.25
VCC 1.1
V
Internal Current Source
ISINK
MAX9402/MAX9405, Figure 2
6.5
8.3
10
mA
Output Impedance
ROUT
MAX9402/MAX9405, Figure 2
40
50
60
Ω
MAX9402/MAX9405
150
180
MAX9400/MAX9403
86
118
mV
POWER SUPPLY
Supply Current
2
IEE
_______________________________________________________________________________________
mA
Quad Differential LVECL/LVPECL
Buffer/Receivers
(VCC - VEE = 2.375V to 5.5V, outputs terminated with 50Ω ±1% to VCC - 2.0V, enabled, CLK = 3.2GHz, fIN = 1.6GHz, input transition
time = 125ps (20% to 80%), VIHD = VEE + 1.2V to VCC, VILD = VEE to VCC - 0.2V, VIHD - VILD = 0.2V to smaller of |VCC - VEE| or 3V,
unless otherwise noted. Typical values are at VCC - VEE = 3.3V, VIHD = VCC - 0.9V, VILD = VCC 1.7V, TA = +25°C, unless otherwise
noted.) (Notes 1, 4)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
237
335
437
237
335
437
397
475
597
397
475
597
UNITS
IN-to-OUT Differential
Propagation Delay
tPLH1
tPHL1
MAX9400/MAX9403
CLK-to-OUT Differential
Propagation Delay
tPLH2
tPHL2
MAX9400/MAX9403
IN-to-OUT Channel-to-Channel
Skew (Note 5)
tSKD1
SEL = high
16
80
ps
CLK-to-OUT Channel-toChannel Skew (Note 5)
tSKD2
SEL = low
8
55
ps
MAX9402/MAX9405
MAX9402/MAX9405
SEL = high, Figure 3
SEL = low, Figure 4
ps
ps
Maximum Clock Frequency
fCLK(MAX)
VOH - VOL ≥ 500mV, SEL = low
3.0
GHz
Maximum Data Frequency
fIN(MAX)
VOH - VOL ≥ 400mV, SEL = high
2
GHZ
Added Random Jitter (Note 6)
Added Deterministic Jitter
(Note 6)
tRJ
tDJ
SEL = low, fCLK = 3.0GHz clock, fIN = 1.5GHz
0.64
1.3
SEL = high, fIN = 2GHz
0.74
1.5
SEL = low, fCLK = 3.0GHz, IN_ = 3.0Gbps
223 - 1 PRBS pattern
17
30
SEL = high, IN = 2.0Gbps 223 - 1 PRBS
pattern
40
55
ps(RMS)
ps(P-P)
IN-to-CLK Setup Time
tS
Figure 4
80
CLK-to-IN Hold Time
tH
Figure 4
80
Output Rise Time
tR
Figure 3
80
120
ps
Output Fall Time
tF
Figure 3
80
120
ps
0.2
1
ps/°C
Propagation Delay Temperature
Coefficient
∆tPD/
∆T
ps
ps
Note 1: Measurements are made with the device in thermal equilibrium.
Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.
Note 3: DC parameters are production tested at +25°C. DC limits are guaranteed by design and characterization over the full operating temperature range.
Note 4: Guaranteed by design and characterization. Limits are set to ±6 sigma.
Note 5: Measured between outputs of the same part at the signal crossing points for a same-edge transition.
Note 6: Device jitter added to the input signal.
_______________________________________________________________________________________
3
MAX9400/MAX9402/MAX9403/MAX9405
AC ELECTRICAL CHARACTERISTICS
Typical Operating Characteristics
(VCC - VEE = 3.3V, MAX9400, outputs terminated with 50Ω ±1% to VCC - 2.0V, enabled, SEL = high, CLK = 2.0GHz, fIN = 1.0GHz,
input transition time = 125ps (20% to 80%), VIHD = VCC - 1.0V, VILD = VCC - 1.5V, TA = +25°C, unless otherwise noted.)
OUTPUT AMPLITUDE (VOH - VOL)
vs. IN_ FREQUENCY
85
80
75
800
OUTPUT RISE/FALL TIME (ps)
OUTPUT AMPLITUDE (mV)
90
100
MAX9400 toc02
1000
MAX9400 toc01
95
OUTPUT RISE/FALL
vs. TEMPERATURE
600
400
200
70
0
-40
-15
10
35
60
85
90
tR
80
tF
70
60
0
500
TEMPERATURE (°C)
1000 1500 2000 2500 3000 3500
-40
-15
IN_ FREQUENCY (MHz)
PROPAGATION DELAY (ps)
350
345
340
tPLH
335
tPHL
MAX9400 toc05
520
MAX9400 toc04
355
10
500
tPLH2
480
tPHL2
460
330
325
440
-40
-15
10
35
TEMPERATURE (°C)
4
60
85
-40
35
TEMPERATURE (°C)
CLK-TO-OUT PROPAGATION DELAY
vs. TEMPERATURE
IN-TO-OUT PROPAGATION DELAY
vs. TEMPERATURE
PROPAGATION DELAY (ps)
MAX9400 toc03
SUPPLY CURRENT (IEE)
vs. TEMPERATURE
SUPPLY CURRENT (mA)
MAX9400/MAX9402/MAX9403/MAX9405
Quad Differential LVECL/LVPECL
Buffer/Receivers
-15
10
35
60
85
TEMPERATURE (°C)
_______________________________________________________________________________________
60
85
Quad Differential LVECL/LVPECL
Buffer/Receivers
PIN
NAME
FUNCTION
1, 8,11,
17, 24, 30
VCC
Positive Supply Voltage. Bypass VCC to VEE with 0.1µF and 0.01µF ceramic capacitors. Place the
capacitors as close to the device as possible with the smaller value capacitor closest to the device.
2
SEL
Noninverting Differential Select Input. Setting SEL = high and SEL = low (differential high) enables all four
channels to operate asynchronously. Setting SEL = low and SEL = high (differential low) enables all four
channels to operate in synchronous mode.
3
SEL
Inverting Differential Select Input
4
CLK
Noninverting Differential Clock Input
5
CLK
Inverting Differential Clock Input. A rising edge on CLK (and falling on CLK) transfers data from the inputs
to the outputs when SEL = low.
6
EN
Noninverting Differential Output Enable Input. Setting EN = high and EN = low (differential high) enables
the outputs. Setting EN = low and EN = high (differential low) drives outputs low.
7
EN
Inverting Differential Output Enable Input
9
IN3
Noninverting Differential Input 3
10
IN3
Inverting Differential Input 3
12
OUT3
Inverting Differential Output 3
13
OUT3
Noninverting Differential Output 3
14, 20,
21, 27
VEE
Negative Supply Voltage
15
IN2
Noninverting Differential Input 2
16
IN2
Inverting Differential Input 2
18
OUT2
Inverting Differential Output 2
19
OUT2
Noninverting Differential Output 2
22
OUT1
Noninverting Differential Output 1
23
OUT1
Inverting Differential Output 1
25
IN1
Inverting Differential Input 1
26
IN1
Noninverting Differential Input 1
28
OUT0
Noninverting Differential Output 0
29
OUT0
Inverting Differential Output 0
31
IN0
Inverting Differential Input 0
32
IN0
Noninverting Differential Input 0
—
EP
Exposed Paddle (MAX940_EGJ only). Connected to VEE internally. See package dimensions.
_______________________________________________________________________________________
5
MAX9400/MAX9402/MAX9403/MAX9405
Pin Description
MAX9400/MAX9402/MAX9403/MAX9405
Quad Differential LVECL/LVPECL
Buffer/Receivers
Detailed Description
The MAX9400/MAX9402/MAX9403/MAX9405 are
extremely fast, low-skew quad LVECL/ECL or LVPECL/
PECL buffer/receivers designed for high-speed data
and clock driver applications. The devices feature an
ultra-low propagation delay of 335ps and channel-tochannel skew of 16ps in asynchronous mode with an
86mA supply current.
The four channels can be operated synchronously with
an external clock, or in asynchronous mode, determined
by the state of the SEL input. An enable input provides
the ability to force all the outputs to a differential low state.
A variety of input and output terminations are offered
for maximum design flexibility. The MAX9400 has open
inputs and open-emitter outputs. The MAX9402 has
open inputs and 50Ω series outputs. The MAX9403 has
100Ω differential input impedance and open-emitter
outputs. The MAX9405 has 100Ω differential input
impedance and 50Ω series outputs.
Supply Voltage
The MAX9400/MAX9402/MAX9403/MAX9405 are designed for operation with a single supply. Using a single
negative supply of VEE = -2.375V to -5.5V (VCC = ground)
yields LVECL/ECL-compatible input and output levels.
Using a single positive supply of VCC = 2.375V to 5.5V
(VEE = ground) yields LVPECL/PECL input and output
levels.
Data Inputs
The MAX9400/MAX9402 have open inputs and require
external termination. The MAX9403/MAX9405 have integrated 100Ω differential input termination resistors from
IN_ to IN_, reducing external component count.
Outputs
The MAX9402/MAX9405 have internal 50Ω series output termination resistors and 8mA internal pulldown
current sources. Using integrated resistors reduces
external component count.
The MAX9400/MAX9403 have open-emitter outputs. An
external termination is required. See the Output
Termination section.
Enable
Setting EN = high and EN = low enables the device.
Setting EN = low and EN = high forces the outputs to a
differential low, and all changes on CLK, SEL, and IN_
are ignored.
Asynchronous Operation
Setting SEL = high and SEL = low enables the four
channels to operate independently as buffer/receivers.
6
The CLK signal is ignored in this mode. In asynchronous mode, the CLK signal should be set to either a
logic low or high state to minimize noise coupling.
Synchronous Operation
Setting SEL = low and SEL = high enables all four
channels to operate in synchronous mode. In this
mode, buffered inputs are clocked into flip-flops simultaneously on the rising edge of the differential clock
input (CLK and CLK).
Differential Signal Input Limit
The maximum signal magnitude of the differential
inputs is VCC - VEE or 3V, whichever is less.
Applications Information
Input Bias
Unused inputs should be biased or driven as shown in
Figure 5. This avoids noise coupling that might cause
toggling at the unused outputs.
Output Termination
Terminate open-emitter outputs (MAX9400/MAX9403)
through 50Ω to VCC - 2V or use an equivalent Thevenin
termination. Terminate both outputs and use identical
termination on each for the lowest output-to-output
skew. When a single-ended signal is taken from a differential output, terminate both outputs. For example, if
OUT_ is used as a single-ended output, terminate both
OUT_ and OUT_.
Ensure that the output currents do not exceed the current limits as specified in the Absolute Maximum
Ratings table. Under all operating conditions, the
device’s total thermal limits should be observed.
Power-Supply Bypassing
Adequate power-supply bypassing is necessary to
maximize the performance and noise immunity. Bypass
VCC to VEE with high-frequency surface-mount ceramic
0.1µF and 0.01µF capacitors as close to the device as
possible with the 0.01µF capacitor closest to the device
pins. Use multiple bypass vias for connection to minimize inductance.
Circuit Board Traces
Input and output trace characteristics affect the performance of the MAX9400/MAX9402/MAX9403/MAX9405.
Connect each of the inputs and outputs to a 50Ω characteristic impedance trace. Avoid discontinuities in differential impedance and maximize common-mode
noise immunity by maintaining the distance between
differential traces and avoid sharp corners. Minimize
the number of vias to prevent impedance discontinuities. Reduce reflections by maintaining the 50Ω char-
_______________________________________________________________________________________
Quad Differential LVECL/LVPECL
Buffer/Receivers
VCC
Chip Information
TRANSISTOR COUNT: 713
PROCESS: Bipolar
VIHD (MAX)
VID
VCC
VID = 0V
VOH
VILD (MAX)
VOH - VOL
VOCM
VIHD (MIN)
VID
VOL
VID = 0V
VEE
VEE
VILD (MIN)
INPUT VOLTAGE DEFINITION
OUTPUT VOLTAGE DEFINITION
Figure 1. Input and Output Voltage Definitions
IN_
IN_
100kΩ
IN_
IN_
MAX9420/MAX9421
MAX9422/MAX9423
VCC
VCC
50Ω
OUT_
50Ω
OUT_
OUT_
OUT_
8mA
8mA
VEE
MAX9420/MAX9422
MAX9421/MAX9423
Figure 2. Input and Output Configurations
_______________________________________________________________________________________
7
MAX9400/MAX9402/MAX9403/MAX9405
acteristic impedance through connectors and across
cables. Minimize skew by matching the electrical
length of the traces.
MAX9400/MAX9402/MAX9403/MAX9405
Quad Differential LVECL/LVPECL
Buffer/Receivers
IN_
VIHD - VILD
IN_
tPLH1
tPHL1
OUT_
VOH - VOL
OUT_
VOH - VOL
80%
OUT_ - OUT_
VOH - VOL
20%
DIFFERENTIAL OUTPUT
WAVEFORM
80%
20%
tR
tF
SEL = HIGH
EN = HIGH
Figure 3. IN-to-OUT Propagation Delay and Transition Timing Diagram
CLK
VIHD - VILD
CLK
tH
tS
tH
IN_
VIHD - VILD
IN_
tPLH2
tPHL2
OUT_
VIHD - VILD
OUT_
SEL = LOW
EN = HIGH
Figure 4. CLK-to-OUT Propagation Delay Timing Diagram
8
_______________________________________________________________________________________
Quad Differential LVECL/LVPECL
Buffer/Receivers
MAX9400/MAX9402/MAX9403/MAX9405
VCC
VCC
IN_
IN_
OUT_
OUT_
100Ω
100Ω
OUT_
IN_
OUT_
IN_
1/4 MAX9400/MAX9402
1kΩ
1kΩ
VEE
1/4 MAX9403/MAX9405
VEE
Figure 5. Input Bias Circuits for Unused Inputs
Pin Configurations (continued)
IN0
IN0
VCC
OUT0
OUT0
VEE
IN1
IN1
32
31
30
29
28
27
26
25
TOP VIEW
*
*
VCC
1
24
VCC
SEL
2
23
OUT1
SEL
3
22
OUT1
21
VEE
20
VEE
MAX9400
MAX9402
MAX9403
MAX9405
CLK
4
CLK
5
EN
6
19
OUT2
EN
7
18
OUT2
VCC
8
17
VCC
12
13
14
15
16
OUT3
VEE
IN2
IN2
11
VCC
OUT3
9
10
IN3
*
IN3
*EXPOSED PADDLE
*
QFN-EP*
*EXPOSED PADDLE AND CORNER PINS ARE CONNECTED TO VEE.
_______________________________________________________________________________________
9
Quad Differential LVECL/LVPECL
Buffer/Receivers
MAX9400/MAX9402/MAX9403/MAX9405
Functional Diagram
IN0
IN0
1
D
Q
D
Q
0
OUT0
OUT0
CK
CK
IN1
IN1
1
D
Q
D
Q
0
OUT1
OUT1
CK
CK
IN2
IN2
1
D
Q
D
Q
0
OUT2
OUT2
CK
CK
IN3
IN3
1
D
Q
D
Q
0
CK
CK
CLK
CLK
SEL
SEL
EN
EN
10
______________________________________________________________________________________
OUT3
OUT3
Quad Differential LVECL/LVPECL
Buffer/Receivers
32L TQFP, 5x5x01.0.EPS
______________________________________________________________________________________
11
MAX9400/MAX9402/MAX9403/MAX9405
Package Information
Quad Differential LVECL/LVPECL
Buffer/Receivers
MAX9400/MAX9402/MAX9403/MAX9405
Package Information (continued)
12
______________________________________________________________________________________
Quad Differential LVECL/LVPECL
Buffer/Receivers
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 13
© 2002 Maxim Integrated Products
Printed USA
is a registered trademark of Maxim Integrated Products.
MAX9400/MAX9402/MAX9403/MAX9405
Package Information (continued)
Similar pages