Revised February 1999 MM74HC32 Quad 2-Input OR Gate General Description The MM74HC32 OR gates utilize advanced silicon-gate CMOS technology to achieve operating speeds similar to LS-TTL gates with the low power consumption of standard CMOS integrated circuits. All gates have buffered outputs providing high noise immunity and the ability to drive 10 LS-TTL loads. The 74HC logic family is functionally as well as pin-out compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to VCC and ground. Features ■ Typical propagation delay: 10 ns ■ Wide power supply range: 2–6V ■ Low quiescent current: 20 µA maximum (74HC Series) ■ Low input current: 1 µA maximum ■ Fanout of 10 LS-TTL loads Ordering Code: Order Number Package Number MM74HC32M MM74HC32SJ MM74HC32MTC 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150” Narrow M14D 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide MTC14 MM74HC32N Package Description M14A N14A 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300” Wide Devices also available in Tape and Reel. Specify by appending suffix letter “X” to the ordering code. Connection Diagram Pin Assignments for DIP, SOIC, SOP and TSSOP Top View Logic Diagram Y=A+B (1 of 4) © 1999 Fairchild Semiconductor Corporation DS005132.prf www.fairchildsemi.com MM74HC32 Quad 2-Input OR Gate September 1983 MM74HC32 Absolute Maximum Ratings(Note 1) Recommended Operating Conditions (Note 2) −0.5 to + 7.0V Supply Voltage (VCC) −1.5 to VCC + 1.5V Supply Voltage (V ) CC −0.5 to VCC + 0.5V DC Input or Output Voltage DC Input Voltage (VIN) DC Output Voltage (VOUT) ±20 mA (VIN, VOUT ) ±25 mA Operating Temperature Range (T ) A ±50 mA Input Rise or Fall Times Clamp Diode Current (IIK, IOK) DC Output Current, per pin (IOUT) DC VCC or GND Current, per pin (ICC) Storage Temperature Range (TSTG) −65°C to +150°C Power Dissipation (PD) (Note 3) 600 mW S.O. Package only 500 mW Symbol VIH VIL VOH Parameter 6 Units V 0 VCC V −40 +85 °C (tr, tf) VCC = 2.0V 1000 ns VCC = 4.5V 500 ns VCC = 6.0V 400 ns Note 2: Unless otherwise specified all voltages are referenced to ground. 260°C DC Electrical Characteristics Max 2 Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur. Lead Temperature (TL) (Soldering 10 seconds) Min Note 3: Power Dissipation temperature derating — plastic “N” package: − 12 mW/°C from 65°C to 85°C. (Note 4) VCC Conditions TA = 25°C Typ TA = −40 to 85°C Guaranteed Limits Units Minimum HIGH Level 2.0V 1.5 1.5 V Input Voltage 4.5V 3.15 3.15 V 6.0V 4.2 4.2 V Maximum LOW Level 2.0V 0.5 0.5 V Input Voltage 4.5V 1.35 1.35 V 6.0V 1.8 1.8 V Minimum HIGH Level VIN = VIH or VIL Output Voltage |IOUT | ≤ 20 µA 2.0V 2.0 1.9 1.9 V 4.5V 4.5 4.4 4.4 V 6.0V 6.0 5.9 5.9 V | IOUT | ≤ 4.0 mA 4.5V 4.7 3.98 3.84 V | IOUT | ≤ 5.2 mA 6.0V 5.2 5.48 5.34 V VIN = VIH or VIL VOL Maximum LOW Level VIN = VIL Output Voltage |IOUT | ≤ 20 µA 2.0V 0 0.1 0.1 V 4.5V 0 0.1 0.1 V 6.0V 0 0.1 0.1 V | IOUT | ≤ 4.0 mA 4.5V 0.2 0.26 0.33 V | IOUT | ≤ 5.2 mA 6.0V 0.2 0.26 0.33 V VIN = VCC or GND 6.0V ±0.1 ±1.0 µA Maximum Quiescent VIN = VCC or GND 6.0V 2.0 20 µA Supply Current IOUT = 0 µA VIN = VIL IIN Maximum Input Current ICC Note 4: For a power supply of 5V ±10% the worst case output voltages (VOH, and VOL) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case VIH and VIL occur at VCC = 5.5V and 4.5V respectively. (The VIH value at 5.5V is 3.85V.) The worst case leakage current (IIN, ICC, and IOZ) occur for CMOS at the higher voltage and so the 6.0V values should be used. www.fairchildsemi.com 2 VCC = 5V, TA = 25°C, CL = 15 pF, tr = tf = 6 ns Symbol tPHL, tPLH Parameter Conditions Guaranteed Typ Maximum Propagation Limit 10 18 Units ns Delay AC Electrical Characteristics VCC = 2.0V to 6.0V, CL = 50 pF, tr = tf = 6 ns (unless otherwise specified) Symbol Parameter Conditions VCC TA = 25°C Typ tPHL, tPLH tTLH, tTHL Units Maximum Propagation 2.0V 30 100 125 ns Delay 4.5V 12 20 25 ns ns 6.0V 9 17 21 Maximum Output Rise 2.0V 30 75 95 ns and Fall Time 4.5V 8 15 19 ns 7 13 16 6.0V CPD TA = −40 to 85°C Guaranteed Limits Power Dissipation (per gate) 50 ns pF Capacitance (Note 5) CIN Maximum Input 5 10 10 pF Capacitance Note 5: CPD determines the no load dynamic power consumption, PD = CPD VCC2f + ICC VCC, and the no load dynamic current consumption, IS = CPD VCC f + ICC. 3 www.fairchildsemi.com MM74HC32 AC Electrical Characteristics MM74HC32 Physical Dimensions inches (millimeters) unless otherwise noted 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150” Narrow Package Number M14A 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M14D www.fairchildsemi.com 4 MM74HC32 Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC14 5 www.fairchildsemi.com MM74HC32 Quad 2-Input OR Gate Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300” Wide Package Number N14A LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 2. A critical component in any component of a life support 1. Life support devices or systems are devices or systems device or system whose failure to perform can be reawhich, (a) are intended for surgical implant into the sonably expected to cause the failure of the life support body, or (b) support or sustain life, and (c) whose failure device or system, or to affect its safety or effectiveness. to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the www.fairchildsemi.com user. Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.