Melexis MLX90316LDCBDG-100TU Rotary position sensor ic Datasheet

MLX90316
Rotary Position Sensor IC
Features and Benefits
Absolute Rotary Position Sensor IC
Simple & Robust Magnetic Design
Tria⊗is® Hall Technology
Programmable Angular Range up to 360 Degrees
Programmable Linear Transfer Characteristic
Selectable Analog (Ratiometric), PWM, Serial Protocol
12 bit Angular Resolution - 10 bit Angular Thermal Accuracy
40 bit ID Number
Single Die – SO8 Package RoHS Compliant
Dual Die (Full Redundant) – TSSOP16 Package RoHS Compliant
Applications
Absolute Rotary Position Sensor
Steering Wheel Position Sensor
Pedal Position Sensor
Motor-shaft Position Sensor
Throttle Position Sensor
Float-Level Sensor
Ride Height Position Sensor
Non-Contacting Potentiometer
Ordering Code
Product Code
MLX90316
MLX90316
MLX90316
MLX90316
MLX90316
MLX90316
MLX90316
MLX90316
MLX90316
MLX90316
MLX90316
MLX90316
MLX90316
MLX90316
MLX90316
MLX90316
MLX90316
MLX90316
MLX90316
MLX90316
MLX90316
MLX90316
MLX90316
MLX90316
3901090316
Rev10
Temperature Code
S
S
E
E
K
K
L
L
E
E
K
K
L
L
K
K
K
K
K
K
K
K
E
E
Package Code
DC
DC
DC
DC
DC
DC
DC
DC
GO
GO
GO
GO
GO
GO
DC
DC
GO
GO
DC
DC
GO
GO
DC
DC
Page 1 of 45
Option Code
BCG-000
BCG-000
BCG-000
BCG-000
BCG-000
BCG-000
BCG-000
BCG-000
BCG-000
BCG-000
BCG-000
BCG-000
BCG-000
BCG-000
BCG-200
BCG-200
BCG-200
BCG-200
BCG-300
BCG-300
BCG-300
BCG-300
BDG-100
BDG-100
Packing Form Code
RE
TU
RE
TU
RE
TU
RE
TU
RE
TU
RE
TU
RE
TU
RE
TU
RE
TU
RE
TU
RE
TU
RE
TU
Jul/13
MLX90316
Rotary Position Sensor IC
MLX90316
MLX90316
MLX90316
MLX90316
MLX90316
MLX90316
MLX90316
MLX90316
MLX90316
MLX90316
MLX90316
MLX90316
MLX90316
MLX90316
MLX90316
MLX90316
Legend:
Temperature Code:
K
K
L
L
E
E
K
K
L
L
L
L
L
L
L
L
DC
DC
DC
DC
GO
GO
GO
GO
GO
GO
GO
GO
DC
DC
DC
DC
BDG-100
BDG-100
BDG-100
BDG-100
BDG-100
BDG-100
BDG-100
BDG-100
BDG-100
BDG-100
BDG-102
BDG-102
BDG-102
BDG-102
BCS-000
BCS-000
Packing Form:
L for Temperature Range -40°C to 150°C
E for Temperature Range -40°C to 85°C
K for Temperature Range -40°C to 125°C
S for Temperature Range -20°C to 85°C
DC for SOIC150
GO for TSSOP173
AAA-xxx: die version
xxx-000: standard
xxx-100: SPI
xxx-102: SPI75AGC, see section 14.4.2
xxx-200: PPA (Pre-programmed Analog)
xxx-300: PPD (Pre-programmed Digital)
RE for Reel, TU for Tube
Ordering example:
MLX90316KDC-BCG-000-TU
Package Code:
Option Code:
3901090316
Rev10
Page 2 of 45
RE
TU
TU
RE
TU
RE
TU
RE
TU
RE
TU
RE
TU
RE
TU
RE
Jul/13
MLX90316
Rotary Position Sensor IC
1. Functional Diagram
DSP
Rev.Pol.
&
OverVolt.
VDD
Vx
A
D
µC
D
12
MUX
G
14
-1
5
Triais™
3V3
Reg
x1
A
OUT
(Analog/PWM)
Vy
ROM - F/W
RAM
EEP
ROM
SWITCH OUT
VSS
Figure 1 - Block Diagram (Analog & PWM)
DSP
Rev.Pol.
&
OverVolt.
VDD
Vx
A
D
µC
D
12
MUX
G
14
-1
5
Triais™
3V3
Reg
x1
OUT1 (Analog)
x1
OUT2 (Analog)
A
Vy
ROM - F/W
RAM
EEP
ROM
SWITCH OUT
VSS
Figure 2 - Block Diagram Analog (MLX90316BCS)
DSP
Rev.Pol.
VDD
Vx
MUX
G
A
14
-1
5
Triais™
3V3
Reg
/SS
µC
D
Vy
SERIAL PROTOCOL
SCLK
MOSI/MISO
ROM - F/W
RAM
EEP
ROM
VSS
Figure 3 - Block Diagram (Serial Protocol)
3901090316
Rev10
Page 3 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
2. Description
The MLX90316 is a monolithic sensor IC featuring the Tria⊗is® Hall technology. Conventional planar Hall
technology is only sensitive to the flux density applied orthogonally to the IC surface. The Tria⊗is® Hall
sensor is also sensitive to the flux density applied parallel to the IC surface. This is obtained through an
Integrated Magneto-Concentrator (IMC) which is deposited on the CMOS die (as an additional back-end
step).
The MLX90316 is only sensitive to the flux density coplanar with the IC surface. This allows the
MLX90316 with the correct magnetic circuit to decode the absolute rotary (angular) position from 0 to 360
Degrees. It enables the design of novel generation of non-contacting rotary position sensors that are
frequently required for both automotive and industrial applications.
In combination with the appropriate signal processing, the magnetic flux density of a small magnet
(diametral magnetization) rotating above the IC can be measured in a non-contacting way (Figure 4). The
angular information is computed from both vectorial components of the flux density (i.e. BX and BY).
MLX90316 produces an output signal proportional to the decoded angle. The output is selectable between
Analog, PWM and Serial Protocol.
Figure 4 - Typical application of MLX90316
3901090316
Rev10
Page 4 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
TABLE of CONTENTS
FEATURES AND BENEFITS ....................................................................................................................... 1
APPLICATIONS ............................................................................................................................................ 1
ORDERING
CODE………………………………………………………………………………………………………………....1
1.
FUNCTIONAL DIAGRAM ...................................................................................................................... 3
2.
DESCRIPTION ....................................................................................................................................... 5
3.
GLOSSARY OF TERMS − ABBREVIATIONS − ACRONYMS ............................................................ 8
4.
PINOUT .................................................................................................................................................. 8
5.
ABSOLUTE MAXIMUM RATINGS ....................................................................................................... 9
6.
DETAILED DESCRIPTION.................................................................................................................... 9
7.
MLX90316 ELECTRICAL SPECIFICATION ....................................................................................... 11
8.
MLX90316 ISOLATION SPECIFICATION .......................................................................................... 13
9.
MLX90316 TIMING SPECIFICATION ................................................................................................. 13
10. MLX90316 ACCURACY SPECIFICATION ......................................................................................... 14
11. MLX90316 MAGNETIC SPECIFICATION .......................................................................................... 15
12. MLX90316 CPU & MEMORY SPECIFICATION ................................................................................. 15
13. MLX90316 END-USER PROGRAMMABLE ITEMS ........................................................................... 16
14. DESCRIPTION OF END-USER PROGRAMMABLE ITEMS .............................................................. 17
14.1.
OUTPUT MODE .......................................................................................................................................... 17
14.1.1. Analog Output Mode ............................................................................................................................ 17
14.1.2. PWM Output Mode ............................................................................................................................... 17
14.1.3. Serial Protocol Output Mode ............................................................................................................... 19
14.1.4. Switch Out ............................................................................................................................................ 19
14.2.
OUTPUT TRANSFER CHARACTERISTIC....................................................................................................... 19
14.2.1. CLOCKWISE Parameter ...................................................................................................................... 19
14.2.2. Discontinuity Point (or Zero Degree Point) ......................................................................................... 19
14.2.3. LNR Parameters ................................................................................................................................... 20
14.2.4. CLAMPING Parameters ...................................................................................................................... 20
14.2.5. DEADZONE Parameter ....................................................................................................................... 21
14.2.6. MLX90316 xDC- BCS ONLY ............................................................................................................... 21
14.3.
IDENTIFICATION ........................................................................................................................................ 21
14.4.
SENSOR FRONT-END ................................................................................................................................. 22
14.4.1. HIGHSPEED Parameter ...................................................................................................................... 22
14.4.2. ARGC, AUTO_RG, RoughGain and FORCECRA75 Parameters ........................................................ 22
14.4.3. RGThresL, RGThresH Parameters ...................................................................................................... 23
14.5.
FILTER .................................................................................................................................................... 23
14.5.1. Hysteresis Filter ................................................................................................................................... 23
14.5.2. FIR Filters ............................................................................................................................................ 23
14.5.3. IIR Filters ............................................................................................................................................. 26
14.6.
PROGRAMMABLE DIAGNOSTIC SETTINGS ................................................................................................. 27
14.6.1. RESONFAULT Parameter ................................................................................................................... 26
14.6.2. EEHAMHOLE Parameter .................................................................................................................... 26
14.7.
LOCK......................................................................................................................................................... 26
14.7.1. MLXLOCK Parameter ......................................................................................................................... 27
14.7.2. LOCK Parameter ................................................................................................................................. 27
3901090316
Rev10
Page 5 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
15. MLX90316 SELF DIAGNOSTIC .......................................................................................................... 28
16. SERIAL PROTOCOL ........................................................................................................................... 30
16.1.
INTRODUCTION ......................................................................................................................................... 30
16.2.
SERIAL PROTOCOL MODE ................................................................................................................... 30
16.3.
MOSI (MASTER OUT SLAVE IN) ............................................................................................................... 30
16.4.
MISO (MASTER IN SLAVE OUT) ............................................................................................................... 30
16.5.
SS (SLAVE SELECT) .................................................................................................................................. 30
16.6.
MASTER START-UP ................................................................................................................................... 30
16.7.
SLAVE START-UP ...................................................................................................................................... 30
16.8.
TIMING ...................................................................................................................................................... 31
16.9.
SLAVE RESET ............................................................................................................................................ 32
16.10.
FRAME LAYER .......................................................................................................................................... 32
16.10.1.
Command Device Mechanism .......................................................................................................... 32
16.10.2.
Data Frame Structure ...................................................................................................................... 32
16.10.3.
Timing............................................................................................................................................... 32
16.10.4.
Data Structure .................................................................................................................................. 33
16.10.5.
Angle Calculation ............................................................................................................................. 33
16.10.6.
Error Handling ................................................................................................................................. 33
17. RECOMMENDED APPLICATION DIAGRAMS .................................................................................. 34
17.1.
ANALOG OUTPUT WIRING WITH THE MLX90316 IN SOIC PACKAGE....................................................... 34
17.2.
ANALOG OUTPUT WIRING WITH THE MLX90316 IN TSSOP PACKAGE .................................................... 35
17.3.
PWM LOW SIDE OUTPUT WIRING ............................................................................................................ 35
17.4.
SERIAL PROTOCOL .................................................................................................................................... 36
17.4.1. SPI Version – Single Die ...................................................................................................................... 36
17.4.2. SPI Version – Dual Die ........................................................................................................................ 37
17.4.3. Non SPI Version (Standard Version).................................................................................................... 38
18. STANDARD INFORMATION REGARDING MANUFACTURABILITY OF MELEXIS PRODUCTS
WITH DIFFERENT SOLDERING PROCESSES ........................................................................................ 39
19. ESD PRECAUTIONS ........................................................................................................................... 39
20. PACKAGE INFORMATION.................................................................................................................. 40
20.1.
20.2.
20.3.
20.4.
20.5.
20.6.
SOIC8 - PACKAGE DIMENSIONS ............................................................................................................... 40
SOIC8 - PINOUT AND MARKING ............................................................................................................... 40
SOIC8 - IMC POSITIONNING ..................................................................................................................... 41
TSSOP16 - PACKAGE DIMENSIONS .......................................................................................................... 42
TSSOP16 - PINOUT AND MARKING .......................................................................................................... 43
TSSOP16 - IMC POSITIONNING ................................................................................................................ 43
21.DISCLAIMER………………………………………………………………………………………………........45
3901090316
Rev10
Page 6 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
3. Glossary of Terms − Abbreviations − Acronyms
Gauss (G), Tesla (T): Units for the magnetic flux density − 1 mT = 10 G
TC: Temperature Coefficient (in ppm/Deg.C.)
NC: Not Connected
PWM: Pulse Width Modulation
%DC: Duty Cycle of the output signal i.e. TON /(TON + TOFF)
ADC: Analog-to-Digital Converter
DAC: Digital-to-Analog Converter
LSB: Least Significant Bit
MSB: Most Significant Bit
DNL: Differential Non-Linearity
INL: Integral Non-Linearity
RISC: Reduced Instruction Set Computer
ASP: Analog Signal Processing
DSP: Digital Signal Processing
ATAN: trigonometric function: arctangent (or inverse tangent)
IMC: Integrated Magneto-Concentrator (IMC)
CoRDiC: Coordinate Rotation Digital Computer (i.e. iterative rectangular-to-polar transform)
EMC: Electro-Magnetic Compatibility
4. Pinout
Pin #
SOIC-8
TSSOP-16
Analog / PWM
Serial Protocol
Analog / PWM
Serial Protocol
1
VDD
VDD
VDIG1
VDIG1
2
Test 0
Test 0
VSS1 (Ground1)
VSS1 (Ground1)
3
Switch Out
/SS
VDD1
VDD1
SCLK
Test 01
Test 01
/SS2
4
Not Used / Out
2(1)
5
Out
MOSI / MISO
Switch Out2
6
Test 1
Test 1
Not Used2
SCLK2
7
VDIG
VDIG
Out2
MOSI2 / MISO2
8
VSS (Ground)
VSS (Ground)
Test 12
Test 12
9
VDIG2
VDIG2
10
VSS2 (Ground2)
VSS2 (Ground2)
11
VDD2
VDD2
12
Test 02
Test 02
13
Switch Out1
/SS1
14
Not Used1
SCLK1
15
Out1
MOSI1 / MISO1
16
Test 11
Test 11
For optimal EMC behavior, it is recommended to connect the unused pins (Not Used and Test) to the
1
Ground (see section 17).
MLX90316xDC-BCS includes a programmable second output
3901090316
Rev10
Page 7 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
5. Absolute Maximum Ratings
Parameter
Value
Supply Voltage, VDD (overvoltage)
+ 20 V
Reverse Voltage Protection
− 10 V
Positive Output Voltage – Standard Version
(Analog or PWM)
+ 10 V
+ 14 V (200 s max − TA = + 25°C)
Positive Output Voltage – SPI Version
VDD + 0.3V
Positive Output Voltage (Switch Out)
+ 10 V
+ 14 V (200 s max − TA = + 25°C)
Output Current (IOUT)
± 30 mA
Reverse Output Voltage
− 0.3 V
Reverse Output Current
− 50 mA
Operating Ambient Temperature Range, TA
− 40°C … + 150°C
Storage Temperature Range, TS
− 40°C … + 150°C
Magnetic Flux Density
± 700 mT
Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolutemaximum-rated conditions for extended periods may affect device reliability.
6. Detailed Description
As described on the block diagram (Figure 1, Figure 2 and Figure 3), the magnetic flux density parallel to
the IC surface (i.e. B//) is sensed through the Tria⊗is® sensor front-end. This front-end consists into two
orthogonal pairs (for each of the two directions parallel with the IC surface i.e. X and Y) of conventional
planar Hall plates (blue area on Figure 5) and an Integrated Magneto-Concentrator (IMC yellow disk on
Figure 5).
Hall Plates
Figure 5 - Tria⊗is® sensor front-end (4 Hall plates + IMC disk)
3901090316
Rev10
Page 8 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
Both components of the applied flux density B// are measured individually i.e. BX// and BY//. Two orthogonal
components (respectively BX⊥ and BY⊥) proportional to the parallel components (respectively BX// and BY//)
are induced through the IMC and can be measured by both respective pairs of conventional planar Hall
plates as those are sensitive to the flux density applied orthogonally to them and the IC surface.
While a magnet (diametrically magnetized) rotates above the IC as described on Figure 4, the sensing
stage provides two differential signals in quadrature (sine and cosine − Figure 6 and Figure 7)
400
300
BX & BY (G)
200
100
0
-100
-200
-300
-400
0
90
180
270
360
450
Alpha (Degree)
540
BX
630
720
BY
Figure 6 – Magnetic Flux Density – BX ∝ cos(α) & BY ∝ sin(α)
2000
1500
VX & VY (mV)
1000
500
0
-500
-1000
-1500
-2000
0
90
180
270
360
450
Alpha (Degree)
VX
540
630
720
VY
Figure 7 – Tria⊗is® sensor front-end − Output signals − VX ∝ BX ∝ cos(α) & VY ∝ BY ∝ sin(α)
3901090316
Rev10
Page 9 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
Those Hall signals are processed through a fully differential analog chain featuring the classic offset
cancellation technique (Hall plate quadrature spinning and chopper-stabilized amplifier).
The conditioned analog signals are converted through an ADC (configurable − 14 or 15 bits) and provided
to a DSP block for further processing. The DSP stage is based on a 16 bit RISC micro-controller whose
primary function is the extraction of the angular position from the two raw signals (after so-called front-end
compensation steps) through the following operation:
 VY 

 VX 
α = ATAN 
The DSP functionality is governed by the micro-code (firmware − F/W) of the micro-controller which is
stored into the ROM (mask programmable). In addition to the ″ATAN″ function, the F/W controls the whole
analog chain, the output transfer characteristic, the output protocol, the programming/calibration and also
the self-diagnostic modes.
In the MLX90316, the ″ATAN″ function is computed via a look-up table (i.e. it is not obtained through a
CoRDiC algorithm).
Due to the fact that the ″ATAN″ operation is performed on the ratio ″VY/VX″, the angular information is
intrinsically self-compensated vs. flux density variations (due to airgap change, thermal or ageing effects)
affecting both signals. This feature allows therefore an improved thermal accuracy vs. rotary position
sensor based on conventional linear Hall sensors.
In addition to the improved thermal accuracy, the realized rotary position sensor is capable of measuring a
complete revolution (360 Degrees) and the linearity performances are excellent taking into account typical
manufacturing tolerances (e.g. relative placement between the Hall IC and the magnet).
Once the angular information is computed (over 360 degrees), it is further conditioned (mapped) vs. the
target transfer characteristic and it is provided at the output(s) as:
•
•
•
an analog output level through a 12 bit DAC followed by a buffer
a digital PWM signal with 12 bit depth (programmable frequency 100 Hz … 1 kHz)
a digital Serial Protocol (SP − 14 bits computed angular information available)
For instance, the analog output can be programmed for offset, gain and clamping to meet any rotary
position sensor output transfer characteristic:
Vout(α) = ClampLo
Vout(α) = Voffset + Gain × α
Vout(α) = ClampHi
for α ≤ αmin
for αmin ≤ α ≤ αmax
for α ≥ αmax
where Voffset, Gain, ClampLo and ClampHi are the main adjustable parameters for the end-user.
The linear part of the transfer curve can be adjusted through either a 2 point or a 3 point calibration
depending on the linearity requirement.
A digital output is also available and used as a programmable angular switch.
The calibration parameters are stored in EEPROM featuring a Hamming Error Correction Coding (ECC).
The programming steps do not require any dedicated pins. The operation is done using the supply and
output nodes of the IC. The programming of the MLX90316 is handled at both engineering lab and
production line levels by the Melexis Programming Unit PTC-04 with the dedicated MLX90316
daughterboard and software tools (DLL − User Interface).
3901090316
Rev10
Page 10 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
7. MLX90316 Electrical Specification
DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the
Temperature suffix (S, E, K or L).
Parameter
Symbol
Nominal Supply Voltage
VDD
Supply Current(2)
Idd
POR Level
Test Conditions
Min
Typ
Max
Units
4.5
5
5.5
V
8.5
13.5
11
16
mA
mA
2.7
3
V
8
20
mA
mA
12
12
24
15
15
45
mA
mA
mA
10
10
∞(5)
∞(5)
kΩ
kΩ
3
%VDD
Slow mode(3)
Fast mode(3)
VDD POR
Supply Under Voltage
2
Output Current
Iout
Analog Output mode
PWM Output mode
-8
-20
Output Short Circuit Current
Ishort
Vout = 0 V
Vout = 5 V
Vout = 14 V (TA = 25°C)
Output Load
RL
Pull-down to Ground
Pull-up to 5V(4)
Analog Saturation Output Level
Digital Saturation Output Level
Vsat_lo
Pull-up load RL ≥ 10 kΩ
Vsat_hi
Pull-down load RL ≥ 10 kΩ
VsatD_lo
Pull-up Low Side RL ≥ 10 kΩ
Push-Pull (IOUT = -20mA)
VsatD_hi
Push-Pull (IOUT = 20mA)
Diag_lo
Pull-down load RL ≥ 10 kΩ
Pull-up load RL ≥ 10 kΩ
Diag_hi
Pull-down load RL ≥ 10 kΩ
Pull-up load RL ≥ 10 kΩ
BVSSPD
Broken VSS(7) &
Pull-down load RL ≤ 10 kΩ
BVSSPU
Broken VSS(7) &
Pull-up load RL ≥ 1kΩ
BVDDPD
Broken VDD(7) &
Pull-down load RL ≥ 1kΩ
BVDDPU
Broken VDD &
Pull-up load to 5V
Active Diagnostic Output Level
Passive Diagnostic Output Level
(Broken Track Diagnostic) (6)
1
1
96
%VDD
1.5
97
%VDD
1
1.5
97
98
100
0
1
No Broken Track diagnostic
…MLX 90316 Electrical Specification
2 For
the dual version, the supply current is multiplied by 2
section 14.4.1 for details concerning Slow and Fast mode
4 Applicable for output in Analog and PWM (Open-Drain) modes
5 RL < ∞ for output in PWM mode
6 For detailed information, see also section 15
7 Not Valid for the SPI Version
3 See
Page 11 of 45
%VDD
%VDD
MLX 90316 Electrical Specification continues…
3901090316
Rev10
%VDD
%VDD
4(6)
99
%VDD
Jul/13
%VDD
%VDD
MLX90316
Rotary Position Sensor IC
Clamped Output Level
Switch Out(9)
Clamp_lo
Programmable
0
100
%VDD(8)
Clamp_hi
Programmable
0
100
%VDD(8)
Sw_lo
Pull-up Load 1.5k to 5V
0.55
1.1
V
Sw_hi
Pull-up Load 1.5k to 5V
3.65
4.35
V
As an illustration of the previous table, the MLX90316 fits the typical classification of the output span
described on the Figure 8.
100 %
90 %
96 %
92 %
88 %
Diagnostic Band (High)
Clamping High
80 %
Output Level
70 %
60 %
50 %
Linear Range
40 %
30 %
20 %
10 %
0%
12 %
8%
4%
Clamping Low
Diagnostic Band (Low)
Figure 8 - Output Span Classification
8 Clamping
9
levels need to be considered vs the saturation of the output stage (see Vsat_lo and Vsat_hi)
See section 14.1.4 for the application diagram
3901090316
Rev10
Page 12 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
8. MLX90316 Isolation Specification
DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the
Temperature suffix (S, E, K or L). Only valid for the package code GO i.e. dual die version.
Parameter
Symbol
Isolation Resistance
Test Conditions
Between 2 dies
Min
Typ
Max
Units
4
MΩ
9. MLX90316 Timing Specification
DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the
Temperature suffix (S, E, K or L).
Parameter
Main Clock Frequency
Symbol
Ck
Sampling Rate
Step Response Time
Watchdog
Start-up Cycle
Ts
Wd
Tsu
Analog Output Slew Rate
PWM Frequency
Test Conditions
Min
Max
Units
Slow mode(10)
Fast mode(10)
7
20
MHz
MHz
Slow mode(11)
Fast mode(11)
600
200
µs
µs
Slow mode(10), Filter=5(11)
Fast mode(10), Filter=0(11)
400
See Section 15
Slow and Fast
mode(10)
COUT = 42 nF
COUT = 100 nF
FPWM
Typ
PWM Output Enabled
4
600
ms
µs
5
ms
15
ms
200
100
100
V/ms
1000
Hz
Digital Output Rise Time
Mode 5 – 10nF, RL = 10 kΩ
Mode 7 – 10nF, RL = 10 kΩ
120
2.2
µs
µs
Digital Output Fall Time
Mode 5 – 10nF, RL = 10 kΩ
Mode 7 – 10nF, RL = 10 kΩ
1.8
1.9
µs
µs
10 See
11 See
section 14.4.1 for details concerning Slow and Fast mode
section 14.5 for details concerning Filter parameter
3901090316
Rev10
Page 13 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
10.
MLX90316 Accuracy Specification
DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the
Temperature suffix (S, E, K or L).
Parameter
ADC Resolution on the raw
signals sine and cosine
Symbol
RADC
Thermal Offset Drift #1(13)
Test Conditions
Min
Slow Mode(12)
Fast Mode(12)
Typ
Max
Units
15
14
bits
bits
Thermal Offset Drift at the DSP
input (excl. DAC and output stage)
Temperature suffix S, E and K
Temperature suffix L
-60
-90
+60
+90
LSB15
LSB15
Thermal Offset Drift #2
(to be considered only for the
analog output mode)
Thermal Offset Drift of the DAC
and Output Stage
Temperature suffix S, E and K
Temperature suffix L
- 0.3
- 0.4
+ 0.3
+ 0.4
%VDD
%VDD
Thermal Drift of Sensitivity
Mismatch(14)
Temperature suffix S, E and K
Temperature suffix L
- 0.3
- 0.5
+ 0.3
+ 0.5
%
%
-1
1
Deg
Intrinsic Linearity Error(15)
Le
Analog Output Resolution
RDAC
TA = 25°C
12 bits DAC
(Theoretical – Noise free)
INL
DNL
0.025
-4
-2
%VDD/LSB
+4
+2
LSB
LSB
Output stage Noise
Clamped Output
0.05
Noise pk-pk(16)
RG = 9, Slow mode, Filter=5
RG = 9, Fast mode, Filter=0
0.03
0.1
0.06
0.2
Deg
Deg
0
0.1
%VDD
Ratiometry Error
-0.1
PWM Output Resolution
RPWM
12 bits
(Theoretical – Jitter free)
PWM Jitter(17)
JPWM
RG = 6, FPWM = 250 Hz – 800Hz
Serial Protocol Output
Resolution
RSP
14 bits – 360 Deg.
Mapping(Theoretical – Jitter free)
%VDD
0.025
%DC/LSB
0.2
0.022
%DC
Deg/LSB
12 15 bits corresponds to 14 bits + sign and 14 bits corresponds to 13 bits + sign. After angular calculation, this corresponds to
0.005Deg/LSB15 in Low Speed Mode and 0.01Deg/LSB14 in High Speed.
13 For instance, Thermal Offset Drift #1 equal ± 60LSB15 yields to max. ± 0.3 Deg. angular error for the computed angular
information (output of the DSP). See Front End Application Note for more details. This is only valid if automatic gain is set (See
Section 14.4.2)
14 For instance, Thermal Drift of Sensitivity Mismatch equal ± 0.4% yields to max. ± 0.1 Deg. angular error for the computed
angular information (output of the DSP). See Front End Application Note for more details.
15 The Intrinsic Linearity Error refers to the IC itself (offset, sensitivity mismatch, orthogonality) taking into account an ideal
rotating field. Once associated to a practical magnetic construction and the associated mechanical and magnetic tolerances, the
output linearity error increases. However, it can be improved with the multi point end-user calibration that is available on the
MLX90316.
16 The application diagram used is described in the recommended wiring. For detailed information, refer to section Filter in
application mode (Section 14.5).
17 Jitter is defined by ± 3 σ for 1000 successive acquisitions and the slope of the transfer curve is 100%DC/360 Deg.
3901090316
Rev10
Page 14 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
11.
MLX90316 Magnetic Specification
DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the
Temperature suffix (S, E, K or L).
Parameter
Magnetic Flux Density
Magnet Temperature Coefficient
12.
Symbol
Test Conditions
Min
Typ
Max
Units
B
20
50
70(18)
mT
TCm
-2400
0
ppm/°C
MLX90316 CPU & Memory Specification
The DSP is based on a 16 bit RISC µController. This CPU provides 5 Mips while running at 20 MHz.
Parameter
18
Symbol
Test Conditions
Min
Typ
Max
Units
ROM
10
kB
RAM
256
B
EEPROM
128
B
Above 70 mT, the IMC starts saturating yielding to an increase of the linearity error.
3901090316
Rev10
Page 15 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
13.
MLX90316 End-User Programmable Items
Default Values
Parameter
Output Mode
PWMPOL1
PWMT
CLOCKWISE
DP
LNR_S0
LNR_A_X
LNR_A_Y
LNR_A_S
LNR_B_X
LNR_B_Y
LNR_B_S
LNR_C_X
LNR_C_Y
LNR_C_S
CLAMP_HIGH
CLAMP_LOW
KD
KDHYST
DEADZONE
FHYST
Comments
Define the output stage mode
MLX90316BCS
PWM Polarity
PWM Frequency
Discontinuity Point
Initial Slope
AX Coordinate
AY Coordinate
AS Coordinate
BX Coordinate
BY Coordinate
BS Coordinate
CX Coordinate
CY Coordinate
CS Coordinate
Clamping High
Clamping Low
Switch Out
MLX90316BCS
Hysteresis on the Switch Out
MLX90316BCS
MLXID1 / MLXID2 / MLXID3
CUSTID1
CUSTID2(20)
CUSTID3
FREE2
FILTER
FILTER A1(20)
FILTER A2(20)
ARGC
MLX90316BCS
Filter coefficient A1 for FILTER=6
Filter coefficient A2 for FILTER=6
Auto Gain at Start Up
MLX90316BCS
HIGHSPEED
STANDARD
SPI /
SPI75AGC
4
2
0
1000h
0
0h
0h
8000h
0h
0h
FFFFh
0h
0h
FFFFh
FFFFh
0h
8%
8%
FFFFh
0
N/A
0
4
0
MLX
1
6(19)
MLX
0
0
5
6600h
2A00h
0
0
0
N/A
N/A
N/A
N/A
0
0h
N/A
0
0%
100%/360d
FFFFh
FFFFh
N/A
FFFFh
FFFFh
N/A
0%
100%
FFFFh
N/A
N/A
0
0
N/A
MLX
1
19 / 36
MLX
0
N/A
0
N/A
N/A
1
N/A
1
PPA
PPD
4
7
2
N/A
N/A
1
N/A
1kHz
0
1
0h
0h
N/A
N/A
0
0
10%
10%
80%/360d 80%/360d
FFFFh
FFFFh
FFFFh
FFFFh
N/A
N/A
FFFFh
FFFFh
FFFFh
FFFFh
N/A
N/A
10%
10%
90%
90%
FFFFh
FFFFh
FFFFh
N/A
N/A
N/A
0
0
0
0
0
N/A
MLX
MLX
1
1
16
20
MLX
MLX
0
0
2Ah
N/A
2
5
N/A
N/A
N/A
N/A
1
1
1
N/A
0
1
# bit
3
3
1
16
1
15
16
16
16
16
16
16
16
16
16
16
16
16
16
16
8
8
8
8
16
8
16
16
8
16
16
16
16
1
1
1
End-User Programmable Items continues...
19
20
For MLX90316SDC–BCG–STANDARD, the CUSTUMERID2 parameter might differ from the given value (28d instead of 6d)
Not available in MLX90316xDC -BCS
3901090316
Rev10
Page 16 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
… End-User Programmable Items
FSWAP
FORCECRA75
Radius Adjustment to 75%
AUTO_RG
Automatic Rough Gain Selection
RoughGain
MLX90316BCS
RGThresL
RGThresH
EEHAMHOLE
RESONFAULT
MLXLOCK
LOCK
MLX90316BCS
Parameter for MLX90316xDC-BCS only
OUT2EN
Was CUSTUMERID2
OUT2 SLOPE RATIO
OUT2 OFFSET
CLAMP_LOW OUT2
CLAMP_HIGH OUT2
14.
1
0
0
9
6
0
15
3131h
0
0
0
0
1
0/1
1
0
N/A
0
15
0
1
1
1
N/A
0
0
1
3
3
0
15
0
1
1
1
0
1
0
1
0
N/A
0
15
0
1
1
1
N/A
1
1
1
8
8
4
4
16
2
1
1
1
1
N/A
MLX
8%
8%
N/A
N/A
N/A
N/A
N/A
1
-1
100%
10%
90%
N/A
N/A
N/A
N/A
N/A
1
8
8
16
16
Description of End-User Programmable Items
14.1. Output Mode
The MLX90316 output type is defined by the Output Mode parameter.
Parameter
Value
Description
Analog Output Mode
2, 4
Analog Rail-to-Rail
PWM Output Mode
5
7
Low Side (NMOS)
Push-Pull
Serial
N/A
Low Side (NMOS)
14.1.1. Analog Output Mode
The Analog Output Mode is a rail-to-rail and ratiometric output with a push-pull output stage configuration
allows the use of a pull-up or pull-down resistor.
14.1.2. PWM Output Mode
If one of the PWM Output modes is selected, the output signal is a digital signal with Pulse Width
Modulation (PWM).
In mode 5, the output stage is an open drain NMOS transistor (low side), to be used with a pull-up resistor
to VDD.
In mode 7, the output stage is a push-pull stage for which Melexis recommends the use of a pull-up
resistor to VDD.
The PWM polarity is selected by the PWMPOL1 parameter:
• PWMPOL1 = 0 for a low level at 100%
• PWMPOL1 = 1 for a high level at 100%
3901090316
Rev10
Page 17 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
The PWM frequency is selected by the PWMT parameter.
PWM Frequency Code (based on typical main clock frequency)
Pulse-Width Modulation Frequency (Hz)
Oscillator Mode
100
200
500
1000
Low Speed
~35000
~17500
~7000
~3500
High Speed
-
~50000
~20000
~10000
For instance, in Low Speed Mode, set PWMT=7000 (decimal) to set the PWM frequency around
500Hz(21).
14.1.3. Serial Protocol Output Mode
The MLX90316 features a digital Serial Protocol mode. The MLX90316 is considered as a Slave node.
See the dedicated Serial Protocol section for a full description (Section 16).
14.1.4. Switch Out
Parameter
Value
Unit
KD
0…359.9999
deg
KDHYST
0 … 1.4
deg
The switch is activated (Sw_lo) when the digital angle is greater than the value stored in the KD
parameter. This angle refers to the internal angular reference linked to the parameter DP and not to the
absolute physical 0° angle.
The KDHYST defines the hysteresis amplitude around the Switch point. The switch is actually activated if
the digital angle is greater than KD+KDHYST. It is deactivated if the digital angle is less than
KD-KDHYST.
The mandatory application diagram to use this feature is depicted in the Figure 9. See section 7 for the
electrical characteristic.
If the Switch feature is not used in the application, the output pin needs to be connected to the ground.
5V
MLX90316
1k5
SWITCH
OUT
to uC
I/O
Port
100 nF
6kΩ
Ω
125 Ω
175 Ω
ECU
Figure 9 – Application Diagram for the Switch Out
21 In order to compensate the lot to lot variation of the main clock frequency (Ck), Melexis strongly recommends trimming the
PWM frequency during EOL programming (see the PTC-04 documentation).
3901090316
Rev10
Page 18 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
14.2. Output Transfer Characteristic
Parameter
Value
CLOCKWISE
0 CCW
1 CW
DP
LNR_A_X
LNR_B_X
LNR_C_X
LNR_A_Y
LNR_B_Y
LNR_C_Y
LNR_S0
LNR_A_S
LNR_B_S
LNR_C_S
Unit
0 … 359.9999
deg
0 … 359.9999
deg
0 … 100
%
0 … 17
%/deg
-17 … 0 … 17
%/deg
CLAMP_LOW
0 … 100
%
CLAMP_HIGH
0 … 100
%
DEADZONE
0 … 359.9999
deg
MLX90316 xDC – BCS only
OUT2 SLOPE RATIO
-8 … 0 … 8
-
OUT2 OFFSET
-400 … 400
%
CLAMP_LOW OUT2
0 … 100
%
CLAMP_HIGH OUT2
0 … 100
%
14.2.1. CLOCKWISE Parameter
The CLOCKWISE parameter defines the magnet rotation direction.
•
•
CCW is the defined by the 1-4-5-8 pin order direction for the SOIC8 package and 1-8-9-16 pin
order direction for the TSSOP16 package.
CW is defined by the reverse direction: 8-5-4-1 pin order direction for the SOIC8 and 16-9-8-1 pin
order direction for the TSSOP16 package.
Refer to the drawing in the IMC positioning sections (Section 20.3 and 20.6).
14.2.2. Discontinuity Point (or Zero Degree Point)
The Discontinuity Point defines the 0° point on the circle. The discontinuity point places the origin at any
location of the trigonometric circle. The DP is used as reference for all the angular measurements.
3901090316
Rev10
Page 19 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
360°
0°
The placement of the discontinuity
point (0 point) is programmable.
Figure 10 - Discontinuity Point Positioning
14.2.3. LNR Parameters
The LNR parameters, together with the clamping values, fully define the relation (the transfer function)
between the digital angle and the output signal.
The shape of the MLX90316 transfer function from the digital angle value to the output voltage is
described by the drawing below. Six segments can be programmed but the clamping levels are
necessarily flat.
Two, three, or even five calibration points are then available, reducing the overall non-linearity of the IC by
almost an order of magnitude each time. Three or five point calibration will be preferred by customers
looking for excellent non-linearity figures. Two-point calibrations will be preferred by customers looking for
a cheaper calibration set-up and shorter calibration time.
100 %
Clamping High
CLAMPHIGH
C
Slope LNR_C_S
LNR_C_Y
B
Slope LNR_B_S
LNR_B_Y
A
Slope LNR_A_S
LNR_A_Y
Slope LNR_S0
Clamping Low
CLAMPLOW
0%
0
LNR_A_X
LNR_B_X
LNR_C_X
360
(Deg.)
14.2.4. CLAMPING Parameters
The clamping levels are two independent values to limit the output voltage range. The CLAMP_LOW
parameter adjusts the minimum output voltage level. The CLAMP_HIGH parameter sets the maximum
output voltage level. Both parameters have 16 bits of adjustment. In analog mode, the resolution will be
limited by the D/A converter (12 bits) to 0.024%VDD. In PWM mode, the resolution will be 0.024%DC. In
SPI mode, the resolution is 14bits or 0.022deg over 360deg.
3901090316
Rev10
Page 20 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
14.2.5. DEADZONE Parameter
The dead zone is defined as the angle window between 0 and 359.9999.
When the digital angle lies in this zone, the IC is in fault mode (RESONFAULT must be set to “1” – See
14.6.1).
14.2.6. MLX90316 xDC- BCS ONLY
The MLX90316 BCS firmware offers the possibility to program a second output transfer characteristic of
the single die version.
The following formula is used in the 90316BxS:
OUT2 = OUT2SlopeRatio * OUT1 + OUT2Offset
Range OUT2 = [ Clamp_Low OUT2..Clamp_High OUT2 ]
OUT2 SLOPE RATIO Controls the slope ratio OUT1 vs OUT2. The ratio can be positive or negative.
The example of MLX90316LDC-BCS-PPA is given in the figure below (slope = -1, OUT2 = -1 x slope OUT1
+ 100 %).
100%
90%
Output Level (%VDD)
OUT1
OUT2
10%
0%
360 (Deg.)
0
14.3. Identification
Parameter
Value
MELEXSID1
MELEXSID2
MELEXSID3
CUSTUMERID1
CUSTUMERID2
CUSTUMERID3
0 … 65535
0 … 65535
0 … 65535
0 … 255
0 … 65535
0 … 65535
Unit
Identification number: 40 bits freely useable by Customer for traceability purpose.
3901090316
Rev10
Page 21 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
14.4. Sensor Front-End
Parameter
HIGHSPEED
ARGC
AUTO_RG
Value
0 = Slow mode
1 = Fast mode
0 = disable
1 = enable
0 = disable
1 = enable
RoughGain
0 … 15
RGThresL
0 … 15
RGThresH
0 … 15
Unit
14.4.1. HIGHSPEED Parameter
The HIGHSPEED parameter defines the main frequency for the DSP.
• HIGHSPEED = 0 selects the Slow mode with a 7 MHz master clock.
• HIGHSPEED = 1 selects the Fast mode with a 20 MHz master clock.
For better noise performance, the Slow Mode must be enabled.
14.4.2. ARGC, AUTO_RG, RoughGain and FORCECRA75 Parameters
AUTO_RG and ARGC parameters enable the automatic gain control (AGC) of the analog chain. The AGC
loop is based on
(VX)²+ (VY)² = (Amplitude)² = (Radius)²
and it targets an amplitude of 90% of the ADC input span.
At Start-Up phase, the gain stored in the parameter RoughGain is always used. Depending of the
AUTO_RG and ARGC settings, the AGC regulation acts as follow:
• If ARGC is set, the regulation proceeds by jump to reach the target gain. Note that this regulation
is only valid if the starting gain does not saturate the ADC. Melexis recommendation is to use
RoughGain ≤ 3 if ARGC=1.
• If ARGC is “0” and AUTO_RG is set to “1”, the regulation adapts every cycle by one gain code the
current gain to reach the 90% ADC span target. Note that if the value of RoughGain is too far
from the actual gain, the chip will enter the normal operating mode (after the Start-Up phase) with
an incorrect gain which will cause the device to go in diagnostic low (field too low/field too high –
See section 15).
• If ARGC and AUTO_RG are “0”, the AGC regulation is off and the gain used is the value stored in
the parameter RoughGain. Melexis does not advise the use of this mode.
The parameter AUTO_RG activates the automatic regulation during normal operation of the device as
background task.
The parameter FORCECRA75 modifies the target of the AGC algorithm to 75% - instead of 90% - of the
ADC span (at start-up and in normal operation).
3901090316
Rev10
Page 22 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
Melexis strongly recommend to set ARGC = “1”, AUTO_RG = “1” and RoughGain ≤ 3 for all types of
application. If the magnetic specifications of the application are well known and under control, the
appropriate RoughGain can also be programmed with ARGC set to “0” and AUTO_RG to “1”.
Please note that the angular errors listed in the section 10 are only valid if the AUTO_RG is activated.
AUTO_RG avoids also the saturation of the analog chain and the associated linearity error.
The current gain (RG) can be read out with the PTC-04 and gives a rough indication of the applied
magnetic flux density (Amplitude).
14.4.3. RGThresL, RGThresH Parameters
RGThresL & RGThresH define the boundaries within the gain setting (Rough Gain) is allowed to vary.
Outside this range, the output is set in diagnostic low.
14.5. FILTER
Parameter
Value
Unit
FHYST
0 … 11 ; step 0.04
deg
FILTER
0… 6
0
1
FSWAP
The MLX90316 includes 3 types of filters:
• Hysteresis Filter: programmable by the FHYST parameter
• Low Pass FIR Filters controlled with the Filter parameter
• Low Pass IIR Filter controlled with the Filter parameter and the coefficients FILTER A1 and
FILTER A2
Note: if the parameter FSWAP is set to “1”, the filtering is active on the digital angle. If set to “0”, the
filtering is active on the output transfer function.
14.5.1. Hysteresis Filter
The FHYST parameter is a hysteresis filter. The output value of the IC is not updated when the digital step
is smaller than the programmed FHYST parameter value. The output value is modified when the
increment is bigger than the hysteresis. The hysteresis filter reduces therefore the resolution to a level
compatible with the internal noise of the IC. The hysteresis must be programmed to a value close to the
noise level.
Please note that for the programmable version, the FHYST parameter is set to 4 by default. If you do not
wish this feature, please set it to “0”.
14.5.2. FIR Filters
The MLX90316 features 6 FIR filter modes controlled with Filter = 0…5. The transfer function is described
below:
yn =
1
j
∑ ai
j
∑a x
i n −i
i =0
i =0
3901090316
Rev10
Page 23 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
The characteristics of the filters no 0 to 5 is given in the Table 1.
Filter No (j)
Type
Coefficients a0… a5
Title
90% Response Time
99% Response Time
Efficiency RMS (dB)
Efficiency P2P (dB)
0
Disable
N/A
No Filter
1
1
0
0
1
2
3
4
Finite Impulse Response
110000
121000
133100
111100
Extra Light
Light
2
3
4
4
2
3
4
4
2.9
4.0
4.7
5.6
2.9
3.6
5.0
6.1
5
122210
5
5
6.2
7.0
Table 1 - FIR Filters Selection Table
FIR and HYST Filters : Step response Comparative Plot
40000
x(n)
[0..65535] Scale
38000
fir(n)
hyst(n)
36000
34000
32000
30000
0
5
10
15
Milliseconds
20
25
30
FIR and HYST Filter : Gaussian white noise response
40200
x(n)
fir(n)
hyst(n)
40150
[0..65535] Scale
40100
40050
40000
39950
39900
39850
39800
0
50
100
150
Milliseconds
Figure 11 - Step Response and Noise Response for FIR (No 3) and FHYST=10
3901090316
Rev10
Page 24 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
14.5.3. IIR Filters
The IIR Filter is enabled with Filter = 6. The diagram of the IIR Filter implemented in the MLX90316 is
given in Figure 12. Only the parameter A1 and A2 are configurable (See Table 2).
b0 = 1
x(n)
y(n)
Z-1
Z-1
b1 = 2
-a1
Z-1
Z-1
b2 = 1
-a2
Figure 12 - IIR Diagram
Filter No
Type
Title
90% Response Time
Efficiency RMS (dB)
Efficiency P2P (dB)
Coefficient A1
Coefficient A2
11
9.9
12.9
26112
10752
16
11.4
14.6
28160
12288
6
2nd Order Infinite Impulse Response (IIR)
Medium & Strong
26
40
52
13.6
15.3
16.2
17.1
18.8
20
29120
30208
31296
12992
13952
14976
100
>20
>20
31784
15412
Table 2 - IIR Filter Selection Table
The Figure 13 shows the response of the filter to a Gaussian noise with default coefficient A1 and A2.
3901090316
Rev10
Page 25 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
IIR Filter - Gaussian White Noise Response
40200
[0…65535] Scale
40150
x(n)
y(n)
40100
40050
40000
39950
39900
39850
39800
0
50
100
150
Time
Figure 13 - Noise Response for the IIR Filter
14.6. Programmable Diagnostic Settings
Parameter
RESONFAULT
EEHAMHOLE
Value
0
1
0
3131h
Unit
14.6.1. RESONFAULT Parameter
This RESONFAULT parameter enables the soft reset when a fault is detected by the CPU when the
parameter is set to 1. By default, the parameter is set to “0” but it is recommended to set it to “1” to
activate the self diagnostic modes (See section 15).
Note that in the User Interface (MLX90316UI), the RESONFAULT is split in two bits:
• DRESONFAULT: disable the reset in case of a fault.
• DOUTINFAULT: disable output in diagnostic low in case of fault.
14.6.2. EEHAMHOLE Parameter
The EEHAMHOLE parameter disables the CRC check and the memory recovery (Hamming code) when it
is equal to 3131h. Melexis strongly recommends to set the parameter to 0 (enable memory recovery).
This is done automatically when using the MEMLOCK function.
14.7. Lock
Parameter
Value
0
1
0
1
MLXLOCK
LOCK
3901090316
Rev10
Page 26 of 45
Unit
Jul/13
MLX90316
Rotary Position Sensor IC
14.7.1. MLXLOCK Parameter
MLXLOCK locks all the parameters set by Melexis.
14.7.2. LOCK Parameter
LOCK locks all the parameters set by the user. Once the lock is enabled, it is not possible to change the
EEPROM values anymore.
Note that the lock bit should be set by the solver function “MemLock”.
3901090316
Rev10
Page 27 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
15.
MLX90316 Self Diagnostic
The MLX90316 provides numerous self-diagnostic features. Those features increase the robustness of the IC
functionality as it will prevent the IC to provide erroneous output signal in case of internal or external failure
modes (“fail-safe”).
Action
ROM CRC Error at start up
(64 words including Intelligent
Watch Dog - IWD)
ROM CRC Error (Operation Background task)
RAM Test Fail (Start up)
CPU Reset (22)
Enter Endless Loop:
- Progress (watchdog
Acknowledge)
- Set Outputs in Diagnostic low
CPU Reset
Effect on Outputs
Diagnostic low(23)
Immediate Diagnostic low
Diagnostic low
Calibration Data CRC Error
(Start-Up)
Hamming Code Recovery
Hamming Code Recovery Error
(Start-Up)
Calibration Data CRC Error
(Operation - Background)
Dead Zone
CPU Reset
Immediate Diagnostic low
CPU Reset
Immediate Diagnostic low
Set Outputs in Diagnostic low.
Normal Operation until the “dead
zone” is left.
ADC Clipping
Set Outputs in Diagnostic low
(ADC Output is 0000h or
Normal mode and CPU Reset If
7FFFh)
recovery
Radius Overflow ( > 100% ) or
Set Outputs in Diagnostic low
Radius Underflow
Normal mode and CPU Reset If
( < 50 % )
recovery
Fine Gain Clipping
Set Outputs in Diagnostic low
(FG < 0d or > 63d)
Normal mode, and CPU Reset If
recovery
Rough Offset Clipping
Set Outputs in Diagnostic low
(RO is < 0d or > 127d)
Normal mode, and CPU Reset If
recovery
Set Outputs in Diagnostic low
Rough Gain Clipping
(RG < RGTHRESLOW or RG > Normal mode, and CPU Reset If
recovery
RGTHRESHIGH)
DAC Monitor (Digital to Analog Set Outputs in Diagnostic low.
converter)
Normal Mode with immediate
recovery without CPU Reset
MLX90316 Fault Mode continues…
22
Immediate Diagnostic low
All the outputs are already
in Diagnostic low (start-up)
Start-Up Time is increased
by 3 ms if successful
recovery
See 14.6.2
Immediate recovery if the
“dead zone” is left
Immediate Diagnostic low
Immediate Diagnostic low
(50 % - 100 %)
No magnet / field too high
See also 14.4.2
Immediate Diagnostic low
Immediate Diagnostic low
Immediate Diagnostic low
See also 14.4.2
Immediate Diagnostic low
CPU reset means
1.
2.
3.
4.
23
Remark
All the outputs are already
in Diagnostic low - (start-up)
Core Reset (same as Power-On-Reset). It induces a typical start up time.
Periphery Reset (same as Power-On-Reset)
Fault Flag/Status Lost
The reset can be disabled by clearing the RESONFAULT bit (See 14.6.1)
Refer to section 7 for the Diagnostic Output Level specifications
3901090316
Rev10
Page 28 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
…MLX90316 Fault Mode
Fault Mode
ADC Monitor (Analog to Digital
Converter)
Undervoltage Mode
Action
Set Outputs in Diagnostic low.
Normal Mode with immediate
recovery without CPU Reset
At Start-Up, wait Until VDD > 3V.
During operation, CPU Reset after
3 ms debouncing
Effect on Outputs
Immediate Diagnostic low
Remark
ADC Inputs are Shorted
- VDD < POR level =>
Outputs high impedance
Firmware Flow Error
CPU Reset
- POR level < VDD < 3 V =>
Outputs in Diagnostic low.
Immediate Diagnostic low
Read/Write Access out of
physical memory
Write Access to protected area
(IO and RAM Words)
Unauthorized entry in
“SYSTEM” Mode
VDD > 7 V
CPU Reset
Immediate Diagnostic low
Intelligent Watchdog
(Observer)
100% Hardware detection
CPU Reset
Immediate Diagnostic low
100% Hardware detection
CPU Reset
Immediate Diagnostic low
100% Hardware detection
Set Output High Impedance
(Analog)
100% Hardware detection
VDD > 9.4 V
IC is switched off (internal supply)
CPU Reset on recovery
Broken VSS(24)
CPU Reset on recovery
Pull down resistive load =>
Diag. Low
Pull up resistive load =>
Diag. High(23)
Pull down resistive load =>
Diag. Low
Pull up resistive load =>
Diag. High
Pull down resistive load =>
Diag. Low
Pull up resistive load =>
Diag. High
Broken VDD(24)
CPU Reset on recovery
24
Pull down resistive load =>
Diag. Low
Pull up resistive load =>
Diag. High
100% Hardware detection
100% Hardware detection.
Pull down load ≤ 10 kΩ to
meet Diag Low spec:
- < 2% VDD (temperature
suffix S and E)
- < 4% VDD ( temperature
suffix K)
- contact Melexis for
temperature suffix L
No valid diagnostic for
VPULLUP = VDD.
Pull up load (≤ 10kΩ) to
VPULLUP > 8 V to meet Diag
Hi spec > 96% Vdd.
Not Valid for SPI Version
3901090316
Rev10
Page 29 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
16.
Serial Protocol
16.1. Introduction
The MLX90316 features a digital Serial Protocol mode. The MLX90316 is considered as a Slave node.
The serial protocol of the MLX90316 is a three wires protocol (/SS, SCLK, MOSI-MISO):
•
•
•
/SS pin is a 5 V tolerant digital input
SCLK pin is a 5 V tolerant digital input
MOSI-MISO pin is a 5 V tolerant open drain digital input/output
The basic knowledge of the standard SPI specification is required for the good understanding of the
present section.
16.2. SERIAL PROTOCOL Mode
•
•
CPHA = 1 CPOL = 0 even clock changes are used to sample the data
active-Hi clock
The positive going edge shifts a bit to the Slave’s output stage and the negative going edge samples the
bit at the Master’s input stage.
16.3. MOSI (Master Out Slave In)
The Master sends a command to the Slave to get the angle information.
16.4. MISO (Master In Slave Out)
The MISO of the slave is an open-collector stage. Due to the capacitive load (TBD) a >1 kΩ pull-up is
used for the recessive high level (in fast mode). Note that MOSI and MISO use the same physical pin of
the MLX90316.
16.5. /SS (Slave Select)
The /SS pin enables a frame transfer (if CPHA = 1). It allows a re-synchronization between Slave and
Master in case of communication error.
16.6. Master Start-Up
/SS, SCLK, MISO can be undefined during the Master start-up as long as the Slave is re-synchronized
before the first frame transfer.
16.7. Slave Start-Up
The slave start-up (after power-up or an internal failure) takes 16 ms. Within this time /SS and SCLK is
ignored by the Slave. The first frame can therefore be sent after 16 ms. MISO is Hi-Z (i.e. Hi-Impedance)
until the Slave is selected by its /SS input. MLX90316 will cope with any signal from the Master while
starting up.
3901090316
Rev10
Page 30 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
16.8. Timing
To synchronize communication, the Master deactivates /SS high for at least t5 (1.5 ms). In this case, the
Slave will be ready to receive a new frame. The Master can re-synchronize at any time, even in the middle
of a byte transfer.
Note:
Any time shorter than t5 leads to an undefined frame state, because the Slave may or may not
have seen /SS inactive.
t6
t1
t1 t7 t1
t1
t1
t4
t2
t9
t5
SCLK
MOSI/
MISO
/SS
2 Startbytes
Timings
25
Min(25)
Byte 0
Byte 1
Max
t1
2.3 µs / 6.9 µs
-
t2
12.5 µs / 37.5 µs
-
t4
2.3 µs / 6.9 µs
-
t5
300 µs / 1500 µs
-
t5
0µs
t6
2.3 µs / 6.9 µs
-
t7
15 µs / 45 µs
-
t9
-
<1 µs
TStartUp
-
< 10 ms / 16 ms
-
Byte 2
Byte 7
Remarks
No capacitive load on MISO.
t1 is the minimum clock period for any
bits within a byte.
t2 the minimum time between any other
byte
Time between last clock and
/SS=high=chip de-selection
Minimum /SS = Hi time where it’s
guaranteed
that
a
frame
resynchronizations will be started.
Maximum /SS = Hi time where it’s
guaranteed that NO frame resynchronizations will be started.
The time t6 defines the minimum time
between /SS = Lo and the first clock edge
t7 is the minimum time between the
StartByte and the Byte0
Maximum time between /SS = Hi and
MISO Bus High-Impedance
Minimum time between reset-inactive
and any master signal change
Timings shown for oscillator base frequency of 20MHz (Fast Mode) / 7 MHz (Slow Mode)
3901090316
Rev10
Page 31 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
16.9. Slave Reset
On internal soft failures the Slave resets after 1 second or after an (error) frame is sent. On internal hard
failures the Slave resets itself. In that case, the Serial Protocol will not come up. The serial protocol link is
enabled only after the completion of the first synchronization (the Master deactivates /SS for at least t5).
16.10. Frame Layer
16.10.1. Command Device Mechanism
Before each transmission of a data frame, the Master should send a byte AAh to enable a frame transfer.
The latch point for the angle measurement is at the last clock before the first data frame byte.
Latch point
/SS
SCLK
MOSI
A
A
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
A
A
F
F
F
F
MISO
F
F
F
F
D
A
T
A
F
F
F
F
F
F
F
F
F
F
F
F
D
Timing diagram
16.10.2. Data Frame Structure
A data frame consists of 10 bytes:
•
•
•
•
2 start bytes (AAh followed by FFh)
2 data bytes (DATA16 – most significant byte first)
2 inverted data bytes (/DATA16 - most significant byte first)
4 all-Hi bytes
The Master should send AAh (55h in case of inverting transistor) followed by 9 bytes FFh. The Slave will
answer with two bytes FFh followed by 4 data bytes and 4 bytes FFh.
16.10.3. Timing
There are no timing limits for frames: a frame transmission could be initiated at any time. There is no interframe time defined.
3901090316
Rev10
Page 32 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
16.10.4. Data Structure
The DATA16 could be a valid angle, or an error condition. The two meanings are distinguished by the
LSB.
DATA16: Angle A[13:0] with (Angle Span)/214
Most Significant Byte
MSB
A13
A12
A11
A10
A9
Less Significant Byte
A8
A7
LSB
A6
MSB
A5
A4
A3
A2
A1
A0
0
LSB
1
E1
LSB
E0
DATA16: Error
Most Significant Byte
MSB
E15
E14
E13
E12
E11
BIT
E0
E1
E2
E3
E4
NAME
0
1
F_ADCMONITOR
F_ADCSATURA
F_RGTOOLOW
E5
E6
E7
F_MAGTOOLOW
F_MAGTOOHIGH
F_RGTOOHIGH
E8
E9
E10
E11
E12
E13
E14
E15
F_FGCLAMP
F_ROCLAMP
F_MT7V
F_DACMONITOR
-
Less Significant Byte
E10
E9
LSB
E8
MSB
E7
E6
E5
E4
E3
E2
ADC Failure
ADC Saturation (Electrical failure or field too strong)
Analog Gain Below Trimmed Threshold
(Likely reason : field too weak)
Magnetic Field Too Weak
Magnetic Field Too Strong
Analog Gain Above Trimmed Threshold
(Likely reason : field too strong)
Never occurring in serial protocol
Analog Chain Rough Offset Compensation : Clipping
Device Supply VDD Greater than 7V
Never occurring in serial protocol
16.10.5. Angle Calculation
All communication timing is independent (asynchronous) of the angle data processing. The angle is
calculated continuously by the Slave:
•
•
Slow Mode: every 1.5 ms at most.
Fast Mode: every 350 µs at most.
The last angle calculated is hold to be read by the Master at any time. Only valid angles are transferred by
the Slave, because any internal failure of the Slave will lead to a soft reset.
16.10.6. Error Handling
In case of any errors listed in section 16.10.4, the Serial protocol will be initialized and the error condition
can be read by the master. The slave will perform a soft reset once the error frame is sent.
In case of any other errors (ROM CRC error, EEPROM CRC error, RAM check error, intelligent watchdog
error…) the Slave’s serial protocol is not initialized. The MOSI/MISO pin will stay Hi-impedant (no error
frames are sent).
3901090316
Rev10
Page 33 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
17.
Recommended Application Diagrams
17.1. Analog Output Wiring with the MLX90316 in SOIC Package
ECU
5V
Vdd
8
1
C1
100nF
Vdd
GND
Vss
MLX90316
Test 1
Switch Out
ADC
C2
100nF
Vdig
C3
100nF
Test 2
5
4
Output
Out1
NotUsed
R1
10K
C4
4.7nF
Figure 14 – Recommended wiring for the MLX90316 in SOIC8 package(26).
ECU
5V
VDD
8
1
VDD
C1
GND
VSS
C2
MLX90316
TEST1
BCS
VDIG
TEST2
OUT2
OUT1
C4
OUT1
5
4
Switch Out
ADC
C3
OUT2
C1, C2, C3, C4: 100nF
Figure 15 – Recommended wiring for the MLX90316 in SOIC8 package – “BCS” Version.
26
See section 14.1.4 if the Switch Output feature is used.
3901090316
Rev10
Page 34 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
17.2. Analog Output Wiring with the MLX90316 in TSSOP Package
ECU
VDD1
Vdd1
GND1
C3
100nF
16
C1
100nF
GND1
GND1
1
C2
100nF
Vdig1
Output1
Out1
Vss1
C7
4.7nF
R1
10K
Vdd1
C4
100nF
MLX90316
Vdd2
Vss2
Out2
VDD2
Vdd2
GND2
ADC
9
8
GND2
Vdig2
C5
100nF
C6
100nF
R2
10K
GND2
C8
4.7nF
Output2
Figure 16 – Recommended wiring for the MLX90316 in TSSOP16 package (dual die).
17.3. PWM Low Side Output Wiring
ECU
5V
Vdd
8
1
Vdd
C1
100nF
GND
Vss
MLX90316
Test 1
Switch Out
TIMER
C2
100nF
Vdig
5V
C3
4.7nF
Test 2
5
4
Output
NotUsed
PWM
R1
1K
C4
4.7nF
Figure 17 – Recommended wiring for a PWM Low Side Output configuration(27).
27
See section 14.1.4 if the Switch Output feature is used.
3901090316
Rev10
Page 35 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
17.4. Serial Protocol
Generic schematics for single slave and dual slave applications are described.
17.4.1. SPI Version – Single Die
SPI Master
GND
C1
100nF
8
1
Vdd
5V
Vdd
Vss
MLX90316
Test 0
_SS
_SS
Test 1
SCLK
MOSI
5
MISO
/SS
4
SCLK
SCLK
MOSI
C2
100nF
Vdig
MOSI
R2
1K
3.3V/5V
Figure 18 – MLX90316 SPI Version – Single Die – Application Diagram
3901090316
Rev10
Page 36 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
17.4.2. SPI Version – Dual Die
SPI Master
C1
100nF
GND
8
1
Vdd
5V
Vdd
Vss
C2
100nF
MLX90316
Test 0
Test 1
SCLK
MOSI
5
MISO
/SS
4
SCLK1
SCLK1
MOSI
#1
_SS1
_SS1
Vdig
MOSI
R2
1K
3.3V/5V
C1
100nF
_SS2
8
1
SCLK2
Vdd
Vss
C2
100nF
MLX90316
Test 0
#2
_SS2
/SS
Test 1
SCLK
MOSI
5
4
SCLK2
Vdig
Figure 19 – MLX90316 SPI Version – Dual Die – Application Diagram
3901090316
Rev10
Page 37 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
17.4.3. Non SPI Version (Standard Version)
SPI Master
GND
C1
100nF
8
1
Vdd
5V
Vdd
_SS
_SS
Vss
C2
100nF
MLX90316
Test 0
R4
Vdig
SCLK
R5
Test 1
SCLK
MOSI
MISO
MOSI
5
4
/SS
R3
MOSI
R1
R2
3.3V/5V
Figure 20 – MLX90316 − Single Die − Serial Protocol Mode
µCtrl
Pull-up
90316
Supply
Supply Supply R1 (Ω) R2 (Ω) R3 (Ω) R4 (Ω)
(V)
(V)
(V)
5V µCtrl w/o O.D. w/o 3.3V
5V
5V
5V
100
1000
20,000
1000
5V µCtrl w/o O.D. w/ 3.3V
5V
3.3V
5V
150
1000
N/A
1000
3.3V µCtrl w/o O.D. (28)
3.3V
3.3V
5V
150
1000
N/A
N/A
5V µCtrl w/ O.D. w/o 3.3V (29)
5V
5V
5V
100
1000
20,000
1000
3.3V µCtrl w/ O.D.
3.3V
3.3V
5V
150
1000
N/A
N/A
Table 3 - Resistor Values for Common Specific Applications
Application Type
28
29
R5 (Ω)
MOS
Type
20,000
20,000
N/A
20,000
N/A
BS170
BS170
BS170
N/A
N/A
µCtrl w/ O.D. : Micro-controller with open-drain capability (for instance NEC V850ES series)
µCtrl w/o O.D. : Micro-controller without open-drain capability (like TI TMS320 series or ATMEL AVR )
3901090316
Rev10
Page 38 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
18. Standard information regarding manufacturability of Melexis
products with different soldering processes
Our products are classified and qualified regarding soldering technology, solderability and moisture
sensitivity level according to following test methods:
Reflow Soldering SMD’s (Surface Mount Devices)
•
•
IPC/JEDEC J-STD-020
Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices
(classification reflow profiles according to table 5-2)
EIA/JEDEC JESD22-A113
Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing
(reflow profiles according to table 2)
Wave Soldering SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)
•
•
EN60749-20
Resistance of plastic- encapsulated SMD’s to combined effect of moisture and soldering heat
EIA/JEDEC JESD22-B106 and EN60749-15
Resistance to soldering temperature for through-hole mounted devices
Iron Soldering THD’s (Through Hole Devices)
•
EN60749-15
Resistance to soldering temperature for through-hole mounted devices
Solderability SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)
•
EIA/JEDEC JESD22-B102 and EN60749-21
Solderability
For all soldering technologies deviating from above mentioned standard conditions (regarding peak
temperature, temperature gradient, temperature profile etc) additional classification and qualification tests
have to be agreed upon with Melexis.
The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance
of adhesive strength between device and board.
Melexis recommends reviewing on our web site the General Guidelines soldering recommendation
(http://www.melexis.com/Quality_soldering.aspx) as well as trim&form recommendations
(http://www.melexis.com/Assets/Trim-and-form-recommendations-5565.aspx).
Melexis is contributing to global environmental conservation by promoting lead free solutions. For more
information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction
Of the use of certain Hazardous Substances) please visit the quality page on our website:
http://www.melexis.com/quality.aspx
19.
ESD Precautions
Electronic semiconductor products are sensitive to Electro Static Discharge (ESD).
Always observe Electro Static Discharge control procedures whenever handling semiconductor products.
3901090316
Rev10
Page 39 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
20.
Package Information
20.1. SOIC8 - Package Dimensions
1.27 TYP
NOTES:
3.81
3.99**
4.80
4.98*
5.80
6.20**
All dimensions are in millimeters (anlges in degrees).
* Dimension does not include mold flash, protrusions or
gate burrs (shall not exceed 0.15 per side).
** Dimension does not include interleads flash or protrusion
(shall not exceed 0.25 per side).
*** Dimension does not include dambar protrusion.
Allowable dambar protrusion shall be 0.08 mm total in
excess of the dimension at maximum material condition.
Dambar cannot be located on the lower radius of the foot.
1.37
1.57
1.52
1.72
0.19
0.25
0°
8°
0.100
0.250
0.36
0.46***
0.41
1.27
Out
MOSI/MISO
Test 1
Vdig
Vss
20.2. SOIC8 - Pinout and Marking
8
Marking :
Part Number MLX90316 (3 digits)
Die Version (3 digits)
5
316
TOP
316Bxx
M12345
Xy-E
3901090316
Rev10
Xy-E
Bottom
Out2
SCLK
\SS
Switch
Test 0
Standard
BDG
SPI Version
BCS
BCS Version
M12345 Lot number: “M” + 5 digits
4
Vdd
1
BCG
Page 40 of 45
YY
Split lot number (Optional ) + “-E”
WW
Week Date code (2 digits)
Year Date code (2 digits)
Jul/13
MLX90316
Rotary Position Sensor IC
20.3. SOIC8 - IMC Positionning
CW
8
7
6
5
CCW
COS
1.25
1.65
1
2
3
0.46 +/- 0.06
4
1.96
2.26
SIN
Angle detection MLX90316 SOIC8
6
2
3
~ 90 Deg.*
5
8
7
4
1
2
2
3
5
S3
4
~ 270 Deg.*
5
8
7
6
5
4
1
2
N3
4
S
6
N
1
7
S
~ 180 Deg.*
8
6
N
1
7
S
8
N
~ 0 Deg.*
* No absolute reference for the angular information.
The MLX90316 is an absolute angular position sensor but the linearity error (Le – See Section 10) does
not include the error linked to the absolute reference 0 Deg (which can be fixed in the application through
the discontinuity point – See 14.2.2).
3901090316
Rev10
Page 41 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
20.4. TSSOP16 - Package Dimensions
0.65 TYP
12O TYP
0.20 TYP
0.09 MIN
1.0 DIA
4.30
4.50**
6.4 TYP
0.09 MIN
1.0
12O TYP
0.50
0.75
0O
8O
1.0
1.0 TYP
0.85
0.95
4.90
5.10*
1.1 MAX
0.19
0.30***
0.09
0.20
0.05
0.15
NOTES:
All dimensions are in millimeters (anlges in degrees).
* Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side).
** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side).
*** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at
maximum material condition. Dambar cannot be located on the lower radius of the foot.
3901090316
Rev10
Page 42 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
20.5. TSSOP16 - Pinout and Marking
16
1
Vdig_1
Test1_1
Vss_1
Out_1/MOSI/MISO_1
Vdd_1
SCLK_1
316BxG
M12345
Xy-E
Test0_1
_SS_2/Switch_2
_SS_1/ Switch_1
Test0_2
Out _2/MOSI/MISO_2
Test1_2
Vss_2
Marking :
Part Number MLX90316 (3 digits)
Die Version (3 digits)
9
Vdd_2
8
SCLK_2
Vdig_2
316
Top
M12345
Xy-E
Bottom
YY
BCG
Standard
BDG
SPI Version
Lot number: “M” + 5 digits
Split lot number (Optional ) + “-E”
WW
Week Date code (2 digits)
Year Date code (2 digits)
20.6. TSSOP16 - IMC Positionning
CW
COS 2
16
9
Die 1
Die 2
SIN 2
SIN 1
0.30 +/- 0.06
CCW
1.95
2.45
1
8
1.84
2.04
COS 1
2.76
2.96
3901090316
Rev10
Page 43 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
Angle detection MLX90316 TSSOP16
~ 180 Deg.*
16
~ 90 Deg.* ~ 270 Deg.*
9
Die 2
1
8
1
9
16
Die 2
9
Die 1
S
S
N
1
8
~ 270 Deg.* ~ 90 Deg.*
~ 180 Deg.* ~ 0 Deg.*
16
Die 2
S
Die 1
S
Die 1
9
N
N
Die 1
16
8
1
Die 2
N
~ 0 Deg.*
8
* No absolute reference for the angular information.
The MLX90316 is an absolute angular position sensor but the linearity error (Le – See Section 10) does
not include the error linked to the absolute reference 0 Deg (which can be fixed in the application through
the discontinuity point – See 14.2.2).
3901090316
Rev10
Page 44 of 45
Jul/13
MLX90316
Rotary Position Sensor IC
21.
Disclaimer
Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in
its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the
information set forth herein or regarding the freedom of the described devices from patent infringement.
Melexis reserves the right to change specifications and prices at any time and without notice. Therefore,
prior to designing this product into a system, it is necessary to check with Melexis for current information.
This product is intended for use in normal commercial applications. Applications requiring extended
temperature range, unusual environmental requirements, or high reliability applications, such as military,
medical life-support or life-sustaining equipment are specifically not recommended without additional
processing by Melexis for each application.
The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not
be liable to recipient or any third party for any damages, including but not limited to personal injury,
property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or
consequential damages, of any kind, in connection with or arising out of the furnishing, performance or
use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow
out of Melexis’ rendering of technical or other services.
© 2013 Melexis NV. All rights reserved.
For the latest version of this document, go to our website at
www.melexis.com
Or for additional information contact Melexis Direct:
Europe, Africa, Asia:
Phone: +32 1367 0495
E-mail: [email protected]
America:
Phone: +1 248 306 5400
E-mail: [email protected]
ISO/TS 16949 and ISO14001 Certified
3901090316
Rev10
Page 45 of 45
Jul/13
Similar pages