Fujitsu MB15F78SPPFT Dual serial input pll frequency synthesizer Datasheet

FUJITSU SEMICONDUCTOR
DATA SHEET
DS04-21364-3E
ASSP
Dual Serial Input
PLL Frequency Synthesizer
MB15F78SP
■ DESCRIPTION
The Fujitsu MB15F78SP is a serial input Phase Locked Loop (PLL) frequency synthesizer with a 2550 MHz prescaler and a 1200 MHz prescaler. A 32/33 or a 64/65 for the 2550 MHz prescaler, and a 16/17 or a 32/33 for the 1200
MHz prescaler can be selected for the prescaler that enables pulse swallow operation.
The BiCMOS process is used , as a result a supply current is typically 5.5 mA at 2.7 V. The supply voltage range
is from 2.4 V to 3.6 V. A refined charge pump supplies well-balanced output current with 1.5 mA and 6 mA selectable by serial data.
The new package (BCC20) decreases an area of MB15F78SP more than 30 % comparing with the former BCC16
(for dual PLL).
MB15F78SP is ideally suited for wireless mobile communications, such as GSM.
■ FEATURES
• High frequency operatio
•
•
•
•
: RX synthesizer : 2550 MHz max
: TX synthesizer : 1200 MHz max
Low power supply voltage
: VCC = 2.4 to 3.6 V
Ultra Low power supply current : ICC = 5.5 mA typ.
(VCC = Vp = 2.7 V, Ta = +25°C, SWTX = SWRX = 0, in TX/RX locking state)
Direct power saving function
: Power supply current in power saving mode
Typ. 0.1 µA (VCC = Vp = 2.7 V, Ta = +25°C), Max. 10 µA (VCC = Vp = 2.7 V)
Software selectable charge pump current: 1.5 mA/6.0 mA typ.
(Continued)
■ PACKAGES
20-pin plastic TSSOP
(FPT-20P-M06)
20-pad plastic BCC
(LCC-20P-M04)
MB15F78SP
(Continued)
• Dual modulus prescaler : 2550 MHz prescaler (32/33 or 64/65 )/1200 MHz prescaler (16/17 or 32/33)
• 23-bit shift register
• Serial input binary 14-bit programmable reference divider : R = 3 to 16,383
• Serial input programmable divider consisting of:
- Binary 7-bit swallow counter : 0 to 127
- Binary 11-bit programmable counter: 3 to 2,047
• Built-in high-speed tuning, low-noise phase comparator, current-switching type constant current circuit
• On–chip phase control for phase comparator
• Built-in digital locking detector circuit to detect PLL locking and unlocking
• Operating temperature : Ta = –40 to +85°C
• Sireal data format compatible with MB15F08SL
■ PIN ASSIGNMENTS
(TSSOP-20)
TOP VIEW
(BCC-20)
TOP VIEW
OSCIN
1
20
Clock
GND
2
19
Data
finTX
3
18
LE
XfinTX
4
17
finRX
GNDTX
5
16
XfinRX
VCCTX
6
15
GNDRX
PSTX
7
14
VCCRX
VpTX
8
13
PSRX
DoTX
9
12
VpRX
LD/fout
10
11
DoRX
(FPT-20P-M06)
2
OSCIN Data
GND Clock
finTX
1
XfinTX
2
GNDTX
VCCTX
3
4
PSTX
5
VpTX
6
20 19 18 17
16
15
14
13
12
7
8
9 10 11
DoRX
DoTX
LD/fout VpRX
(LCC-20P-M04)
LE
finRX
XfinRX
GNDRX
VCCRX
PSRX
MB15F78SP
■ PIN DESCRIPTION
Pin no.
Pin name I/O
Descriptions
TSSOP
BCC
1
19
OSCIN
I
2
20
GND

3
1
finTX
I
Prescaler input pin for the TX-PLL.
Connection to an external VCO should be via AC coupling.
4
2
XfinTX
I
Prescaler complimentary input pin for the TX-PLL section.
This pin should be grounded via a capacitor.
5
3
GNDTX

Ground for the TX-PLL section.
6
4
VCCTX

Power supply voltage input pin for the TX-PLL section(except for the charge pump
circuit), the oscillator input buffer and the shift register.
7
5
PSTX
I
8
6
VpTX

Power supply voltage input pin for the TX-PLL charge pump.
9
7
DOTX
O
Charge pump output for the TX-PLL section.
10
8
LD/fout
O
Lock detect signal output (LD)/phase comparator monitoring
output (fout).The output signal is selected by LDS bit in the serial data.
LDS bit = “H” ; outputs fout signal / LDS bit = “L” ; outputs LD signal
11
9
DORX
O
Charge pump output for the RX-PLL section.
12
10
VpRX

Power supply voltage input pin for the RX-PLL charge pump.
13
11
PSRX
I
14
12
VCCRX

Power supply voltage input pin for the RX-PLL section(except for the charge pump
circuit).
15
13
GNDRX

Ground for the RX-PLL section.
16
14
XfinRX
I
Prescaler complimentary input pin for the RX-PLL section.
This pin should be grounded via a capacitor.
17
15
finRX
I
Prescaler input pin for the RX-PLL.
Connection to an external VCO should be via AC coupling.
18
16
LE
I
Load enable signal input(with the schmitt trigger circuit).
When LE is set “H”, data in the shift register is transferred to the
corresponding latch according to the control bit in a serial data.
19
17
Data
I
Serial data input(with the schmitt trigger circuit).
A data is transferred to the corresponding latch(TX-ref. counter, TX-prog. counter,
RX-ref.counter, RX-prog.counter) according to the control bit in a serial data.
20
18
Clock
I
Clock input for the 23-bit shift register (with a schmitt trigger circuit).
One bit of data is shifted into the shift register on a rising edge of the clock.
The programmable reference divider input. TCX0 should be connected with a AC
coupling capacitor.
Ground for OSC input buffer and the shift register circuit.
Power saving mode control for the TX-PLL section. This pin must be set at “L”
Power-ON. (Open is prohibited.)
PSTX = “H” ; Normal mode / PSTX = “L” ; Power saving mode
Power saving mode control for the RX-PLL section. This pin must be set at “L”
Power-ON. (Open is prohibited.)
PSRX = “H” ; Normal mode / PSRX = “L” ; Power saving mode
3
MB15F78SP
■ BLOCK DIAGRAM
VCCTX
(4) 6
PSTX 7
(5)
Intermittent
mode control
(TX-PLL)
3 bit latch
LDS SWTX FCTX
finTX 3
(1)
XfinTX 4
(2)
GNDTX
5 (3)
VpTX
8 (6)
11 bit latch
7 bit latch
Binary 7-bit
Binary 11-bit proswallowcounter
grammable
TX-PLL)
counter(TX-PLL)
fpTX
Prescaler
(TX-PLL)
(16/17, 32/33)
Phase
comp.
(TX-PLL)
Charge Current
pump
Switch
(TX-PLL).
9 DoTX
(7)
Lock Det.
(TX-PLL)
2 bit latch
T1
T2
14 bit latch
1 bit latch
Binary 14-bit programmable ref.
counter(TX-PLL)
C/P setting
counter
LDTX
frTX
OSCIN 1
(19)
T1
T2
OR
2 bit latch
( 15 )
finRX 17
XfinRX 16
( 14 )
PSRX 13
(11)
LE 18
( 16 )
( 17 )
Data 19
Clock 20
( 18 )
Binary 14-bit programmable ref.
counter(RX-PLL)
C/P setting
counter
14 bit latch
1 bit latch
Intermittent
mode control
(RX-PLL)
Schmitt
circuit
Schmitt
circuit
O : TSSOP
( ) : BCC
10 LD/
( 8 ) fout
Lock Det.
(RX-PLL)
LDS SWRX FCRX
Binary 7-bit
swallow counter
(RX-PLL)
Binary 11-bit
programmable
counter(RX-PLL)
3 bit latch
7 bit latch
11 bit latch
Phase
comp.
(RX-PLL)
Charge
Current
pump
Switch
(RX-PLL)
fpRX
Latch selector
C C
N N
1 2
23-bit shift register
2 ( 20 )
GND
4
LD
frTX
frRX
fpTX
fpRX
Prescaler
(RX-PLL)
(32/33, 64/65)
Schmitt
circuit
Selector
AND
frRX
( 12 ) 14
15 ( 13 )
VCCRX GNDRX
12 ( 10 )
VpRX
11 DoRX
(9)
MB15F78SP
■ ABSOLUTE MAXIMUM RATINGS
Parameter
Rating
Symbol
Unit
Min.
Max.
VCC
−0.5
4.0
V
Vp
VCC
4.0
V
VI
−0.5
VCC + 0.5
V
LD/fout
VO
GND
VCC
V
DoTX, DoRX
VDD
GND
Vp
V
Tstg
−55
+125
°C
Power supply voltage
Input voltage
Output voltage
Storage temperature
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.
■ RECOMMENDED OPERATING CONDITIONS
Parameter
Symbol
Value
Unit
Min.
Typ.
Max.
VCC
2.4
2.7
3.6
V
Vp
VCC
2.7
3.6
V
Input voltage
VI
GND

VCC
V
Operating temperature
Ta
−40

+85
°C
Power supply voltage
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the
semiconductor device. All of the device’s electrical characteristics are warranted when the device is
operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation
outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on
the data sheet. Users considering application outside the listed conditions are advised to contact their
FUJITSU representatives beforehand.
5
MB15F78SP
■ ELECTRICAL CHARACTERISTICS
(VCC = 2.4 V to 3.6 V, Ta = −40 °C to +85 °C)
Parameter
Symbol
“H” level input voltage
“L” level input voltage
“H” level input voltage
“L” level input voltage
“H” level input current
“L” level input current
“H” level input current
“L” level input current
“H” level output voltage
“L” level output voltage
High impedance
cutoff current
“H” level output current
“L” level output current
Typ.
Max.
Unit

2.2

mA
ICCRX *2
RX PLL

3.3

mA
IPSTX
PSTX = PSRX = “L”

0.1 *8
10
µA
IPSRX
PSTX = PSRX = “L”

0.1 *8
10
µA
finTX *3
finTX
TX PLL
50

1200
MHz
finRX *3
finRX
RX PLL
400

2550*9
MHz
OSCIN
fOSC
3

40
MHz

finTX
PfinTX
TX PLL, 50 Ω system
−15

+2
dBm
finRX
PfinRX
RX PLL, 50 Ω system
−15 *9

+2
dBm
OSCIN
VOSC
0.5

VCC
VP - P
Data,
LE,
Clock
VIH
Schmitt trigger input
0.7 VCC
+ 0.4


V
VIL
Schmitt trigger input


0.3 VCC
− 0.4
V
PSTX
PSRX
VIH

0.7 VCC


V
VIL



0.3 VCC
V
IIH *4

−1.0

+1.0
µA
IIL *4

−1.0

+1.0
µA
IIH

0

+100
µA
IIL *4

−100

0
µA
VCC − 0.4


V


0.4
V
Data
LE
Clock
PSTX
PSRX
OSCIN
LD/fout
“L” level output voltage
“H” level output voltage
Min.
TX PLL
Power saving current
Input sensitivity
Value
ICCTX *1
Power supply current
Operating frequency
Condition
DoTX
DoRX
DoTX
DoRX
LD/fout

VOH
VCC = Vp = 2.7 V,
IOH = −1 mA
VOL
VCC = Vp = 2.7 V, IOL = 1 mA
VDOH
VCC = Vp = 2.7 V,
IDOH = −0.5 mA
Vp − 0.4


V
VDOL
VCC = Vp = 2.7 V,
IDOL = 0.5 mA


0.4
V
IOFF
VCC = Vp = 2.7 V
VOFF = 0.5 V to Vp − 0.5 V


2.5
nA
IOH *4
VCC = Vp = 2.7 V


−1.0
mA
IOL
VCC = Vp = 2.7 V
1.0


mA
(Continued)
6
MB15F78SP
(Continued)
(VCC = 2.4 V to 3.6 V, Ta = −40 °C to +85 °C)
Parameter
“H” level output current
“L” level output current
Charge pump
current rate
Symbol
Condition
DoTX
DoRX
IDOH *4
DoTX
DoRX
IDOL
Value
Unit
Min.
Typ.
Max.
VCC = Vp = 2.7 V, CS bit = “H”
VDOH = Vp/2,
CS bit = “L”
Ta = +25 °C

−6.0

mA

−1.5

mA
VCC = Vp = 2.7 V, CS bit = “H”
VDOL = Vp/2,
CS bit = “L”
Ta = +25 °C

6.0

mA

1.5

mA
IDOL/IDOH
IDOMT *5 VDO = Vp / 2

3

%
vs VDO
IDOVD *6 0.5 V ≤ VDO ≤ Vp − 0.5 V

10

%
vs Ta
IDOTA *7

10

%
−40 °C ≤ Ta ≤ +85 °C,
VDO = Vp / 2
*1 : finTX = 910 MHz, fosc = 12.8 MHz, VCCTX = VpTX = 2.7 V, SWTX = 0, Ta = +25 °C, in locking state.
*2 : finRX = 2500 MHz, fosc = 12.8 MHz, VCCRX = VpRX = 2.7 V, SWRX = 0, Ta = +25 °C, in locking state.
*3 : AC coupling. 1000 pF capacitor is connected under the condition of minimum operating
frequency.
*4 : The symbol “–” (minus) means direction of current flow.
*5 : VCC = Vp = 2.7 V, Ta = +25 °C
(||I3| – |I4||) / [ (|I3| + |I4|) / 2 ] × 100 (%)
*6 : VCC = Vp = 2.7 V, Ta = +25 °C (Applied to each IDOL, IDOH)
[ (||I2| – |I1||) / 2 ] / [ (|I1| + |I2|) / 2 ] × 100 (%)
*7 : VCC = Vp = 2.7 V, Ta = +25 °C (Applied to each IDOL, IDOH)
[ ||IDO (+85°C) | – |IDO (–40 °C) || / 2 ] / [ (|IDO (+85°C) | + |IDO (–40°C) |) / 2 ] × 100 (%)
*8 : fosc = 12.8 MHz, VCCRX = VpRX = VCCTX = VpTX = 2.7 V, Ta = +25°C
*9 : 2500 MHz to 2550 MHz, VCC = 2.7 V to 3.6 V, Pfinmin = −10 dBm
I1
I3
I2
IDOL
IDOH
I4
I2
I1
0.5
Vp/2
Vp − 0.5
Vp
Charge pump output voltage (V)
7
MB15F78SP
■ FUNCTIONAL DESCRIPTION
1. Pulse swallow function
fVCO = [(P × N) + A] × fOSC ÷ R
fVCO : Output frequency of external voltage controlled oscillator (VCO)
P : Preset divide ratio of dual modulus prescaler (16 or 32 for TX-PLL, 32 or 64 for RX-PLL)
N : Preset divide ratio of binary 11-bit programmable counter (3 to 2,047)
A : Preset divide ratio of binary 7-bit swallow counter (0 ≤ A ≤ 127, A < N)
fOSC : Reference oscillation frequency (OSCIN input frequency)
R : Preset divide ratio of binary 14-bit programmable reference counter (3 to 16,383)
2. Serial Data Input
Serial data is entered using three pins, Data pin, Clock pin, and LE pin. Programmable dividers of TX/RX-PLL sections, programmable reference dividers of TX/RX-PLL sections are controlled individually.
Serial data of binary data is entered through Data pin.
On rising edge of Clock, one bit of serial data is transferred into the shift register. On a rising edge of load enable
signal, the data stored in the shift register is transferred to one of latch of them depending upon the control bit data
setting.
The programmable The programmable
reference counter reference counter
for the TX-PLL
for the RX-PL
The programmable
counter and the swallow
counter for the TX-PLL
The programmable
counter and the swallow
counter for the RX-PLL
CN1
0
1
0
1
CN2
0
0
1
1
(1) Shift Register Configuration
• Programmable Reference Counter
Data Flow
(LSB)
1
2
3
4
5
6
7
8
9
10 11 12 13 14
(MSB)
15
16
17
18
19 20 21 22 23
CN1 CN2 T1 T2 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 CS X
CS
R1 to R14
T1, 2
CN1,2
X
: Charge pump currnet select bit
: Divide ratio setting bits for the programmable reference counter (3 to 16,383)
: Test purpose bit
: Control bit
: Dummy bits (Set “0” or “1”)
Note : Data input with MSB first.
8
X
X
X
MB15F78SP
• Programmable Counter
Data Flow
(LSB)
1
2
3
4
5
6
7
8
9
(MSB)
10 11 12 13 14 15 16 17 18 19 20 21
22
23
CN1 CN2 LDS SW FC A1 A2 A3 A4 A5 A6 A7 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11
A1 to A7
N1 to N11
LDS
SW
FC
CN1, 2
: Divide ratio setting bits for the swallow counter (0 to 127)
: Divide ratio setting bits for the programmable counter (3 to 2,047)
: LD/fout signal select bit
: Divide ratio setting bit for the prescaler
: Phase control bit for the phase detector
: Control bit
Note : Data input with MSB first.
(2) Data setting
• Binary 14-bit Programmable Reference Counter Data Setting
Divide ratio
R14
R13
R12
R11
R10
R9
R8
R7
R6
R5
R4
R3
R2
R1
3
0
0
0
0
0
0
0
0
0
0
0
0
1
1
4
•
•
•
16383
0
•
•
•
1
0
•
•
•
1
0
•
•
•
1
0
•
•
•
1
0
•
•
•
1
0
•
•
•
1
0
•
•
•
1
0
•
•
•
1
0
•
•
•
1
0
•
•
•
1
0
•
•
•
1
1
•
•
•
1
0
•
•
•
1
0
•
•
•
1
Note : Divide ratio less than 3 is prohibited.
• Binary 11-bit Programmable Counter Data Setting
Divide ratio
N11
N10
N9
N8
N7
N6
N5
N4
N3
N2
N1
3
0
0
0
0
0
0
0
0
0
1
1
4
•
•
•
2047
0
•
•
•
1
0
•
•
•
1
0
•
•
•
1
0
•
•
•
1
0
•
•
•
1
0
•
•
•
1
0
•
•
•
1
0
•
•
•
1
1
•
•
•
1
0
•
•
•
1
0
•
•
•
1
Note : Divide ratio less than 3 is prohibited.
• Binary 7-bit Swallow Counter Data Setting
Divide ratio A7 A6 A5 A4 A3 A2 A1
0
0
0
0
0
0
0
0
1
•
•
•
127
0
•
•
•
1
0
•
•
•
1
0
•
•
•
1
0
•
•
•
1
0
•
•
•
1
0
•
•
•
1
1
•
•
•
1
9
MB15F78SP
• Prescaler Data Setting
SW = “H”
SW = “L”
Prescaler divide ratio TX-PLL
16/17
32/33
Prescaler divide ratio RX-PLL
32/33
64/65
Divide ratio
• Charge Pump Current Setting
• LD/fout Output Select Data Setting
Current value
CS
LD/fout output signal
LDS
±6.0 mA
1
fout signal
1
±1.5 mA
0
LD signal
0
• Test Purpose Bit Setting
LD/fout pin state
T1
T2
Outputs frTX.
0
0
Outputs frRX.
1
0
Outputs fpTX.
0
1
Outputs fpRX.
1
1
• Phase Comparator Phase Switching Data Setting
FC = “H”
FC = “L”
DoTX/DoRX
DoTX/DoRX
fr > fp
H
L
fr < fp
L
H
fr = fp
Z
Z
Phase comparator input
Z : High-impedance
Depending upon the VCO and LPF polarity, FC bit should be set.
High
(1)
(1) VCO polarity FC = “H”
(2) VCO polarity FC = “L”
VCO Output
Frequency
(2)
LPF Output voltage
Note : Give attention to the polarity for using active type LPF.
10
Max.
MB15F78SP
3. Power Saving Mode (Intermittent Mode Control Circut)
Status
PSTX/PSRX pins
Normal mode
H
Power saving mode
L
The intermittent mode control circuit reduces the PLL power consumption.
By setting the PS pins low, the device enters into the power saving mode, reducing the current consumption.
See the Electrical Characteristics chart for the specific value.
The phase detector output, Do, becomes high impedance.
For the dual PLL, the lock detector, LD, is as shown in the LD Output Logic table.
Setting the PS pins high, releases the power saving mode, and the device works normally.
The intermittent mode control circuit also ensures a smooth startup when the device returns to normal operation.
When the PLL is returned to normal operation, the phase comparator output signal is unpredictable. This is
because of the unknown relationship between the comparison frequency (fp) and the reference frequency (fr)
which can cause a major change in the comparator output, resulting in a VCO frequency jump and an increase
in lockup time.
To prevent a major VCO frequency jump, the intermittent mode control circuit limits the magnitude of the error
signal from the phase detector when it returns to normal operation.
Notes: •When power (VCC) is first applied, the device must be in standby mode, PSTX = PSRX = Low, for at least 1 µs.
•PS pins must be set at “L” for Power-ON
OFF
V CC
ON
tV ≥ 1 µs
Clock
Data
LE
tPS ≥ 100 ns
PS TX
PS RX
(1)
(2)
(3)
(1) PSTX = PSRX = “L” (power saving mode) at Power-ON
(2) Set serial data 1 µs later after power supply remains stable (VCC > 2.2 V).
(3) Release power saving mode (PSTX, PSRX : “L” → “H”) 100 ns later after setting serial data.
11
MB15F78SP
4. Serial data input timing
Frequency multiplier setting is performed through a serial interface using the Data pin, Clock pin, and LE pin.
Setting data is read into the shift register at the rise of the clock signal, and transferred to a latch at the rise of
the LE signal. The following diagram shows the data input timing.
1st data
2nd data
Control bit
Data
MSB
Invalid data
LSB
Clock
t1
t2
t5
t4
t7
LE
t3
Parameter
Min.
Typ.
Max.
Unit
Parameter
Min.
Typ.
Max.
Unit
t1
20


ns
t5
30


ns
t2
20


ns
t6
100


ns
t3
30


ns
t7
100


ns
t4
20


ns
Note : LE should be “L” when the data is transferred into the shift register.
12
t6
MB15F78SP
■ PHASE COMPARATOR OUTPUT WAVEFORM
fr TX /
fr RX
fp TX /
fp RX
t WU
t WL
LD
(FC bit = High)
Do TX /
Do RX
H
Z
L
(FC bit = Low)
Do TX /
Do RX
H
Z
L
LD Output Logic Table
TX-PLL section
RX-PLL section
LD output
Locking state/Power saving state
Locking state/Power saving state
H
Locking state/Power saving state
Unlocking state
L
Unlocking state
Locking state/Power saving state
L
Unlocking state
Unlocking state
L
Notes: • Phase error detection range = –2 π to + 2 π
• Pulses on DoTX/DoRX signals are output to prevent dead zone.
• LD output becomes low when phase error is tWU or more.
• LD output becomes high when phase error is tWL or less and continues to be so for three cycles or more.
• tWU and tWL depend on OSCIN input frequency as follows.
tWU > 2/fosc: e.g. tWU > 156.3 ns when fosc = 12.8 MHz
tWU < 4/fosc: e.g. tWL < 312.5 ns when fosc = 12.8 MHz
13
MB15F78SP
■ TEST CIRCUIT (for Measuring Input Sensitivity fin/OSCIN)
fout
Oscilloscope
1000 pF
VCCTX
VpTX
0.1 µF
1000 pF
S.G.
50 Ω
0.1 µF
1000 pF
LD/
fout
DoTX
VpTX
PSTX
VCCTX
GNDTX
XfinTX
finTX
GND
OSCIN
10
9
8
7
6
5
4
3
2
1
11
12
13
14
15
16
17
18
19
20
DoRX
VpRX
PSRX
VCCRX
GNDRX
XfinRX
finRX
LE
Data
Clock
50 Ω
1000 pF
Controller
(divide ratio setting)
1000 pF
VpRX
0.1 µF
VCCRX
0.1 µF
Note : The terminal number shows that of TSSOP-20
14
50 Ω
S.G.
S.G.
MB15F78SP
■ TYPICAL CHARACTERISTICS
1. finRX input sensitivity
RX-PLL input sensitivity vs. Input frequency
Input sensitivity PfinRX (dBm)
Ta = +25 °C
,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,
10
0
SPEC
−10
−20
VCC = 2.4 V
VCC = 2.7 V
VCC = 3.0 V
VCC = 3.6 V
−30
−40
−50
0
500
1000
1500
2000
2500
3000
Input frequency finRX (MHz)
2. finTX input sensitivity
TX-PLL input sensitivity vs. Input frequency
Input sensitivity PfinTX (dBm)
10
0
−10
−20
,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,
Ta = +25 °C
SPEC
VCC = 2.4 V
VCC = 2.7 V
VCC = 3.0 V
VCC = 3.6 V
−30
−40
−50
0
200
400
600
800
1000
1200
1400
Input frequency finTX (MHz)
15
MB15F78SP
3. OSCIN input sensitivity
,,,,
,,,,
Input sensitivity VOSC (dBm)
10
Input sensitivity vs. Input frequency
Ta = +25 °C
SPEC
0
−10
−20
−30
VCC = 2.4 V
−40
VCC = 2.7 V
−50
VCC = 3.0 V
VCC = 3.6 V
−60
0
20
40
60
80
100
120
140
Input frequency fOSC (MHz)
16
160
180
200
220
MB15F78SP
4. Do output current (RX PLL)
• 1.5 mA mode
IDO vs. VDO
Charge pump output current IDO (mA)
10.0
Ta = +25 °C
VCC = Vp = 2.7 V
IDOL
0.0
IDOH
−10.0
0.0
1.0
2.0
2.7
Charge pump output voltage VDO (V)
• 6.0 mA mode
IDO vs. VDO
Charge pump output current IDO (mA)
10.0
Ta = +25 °C
VCC = Vp = 2.7 V
IDOL
0.0
IDOH
−10.0
0.0
1.0
2.0
2.7
Charge pump output voltage VDO (V)
17
MB15F78SP
5. Do output current (TX PLL)
• 1.5 mA mode
IDO vs. VDO
Charge pump output current IDO (mA)
10.0
Ta = +25 °C
VCC = Vp = 2.7 V
IDOL
0.0
IDOH
−10.0
0.0
1.0
2.0
2.7
Charge pump output voltage VDO (V)
• 6.0 mA mode
IDO vs. VDO
Charge pump output current IDO (mA)
10.0
Ta = +25 °C
VCC = Vp = 2.7 V
IDOL
0.0
IDOH
−10.0
0.0
1.0
2.0
Charge pump output voltage VDO (V)
18
2.7
MB15F78SP
6. fin input impedance
finTX input impedance
4 : −11.723 Ω
−45.613 Ω
2.9077 pF
1 200.000 000 MHz
1 : 749.72 Ω
−841.66 Ω
50 MHz
2 : 32.047 Ω
−182.58 Ω
400 MHz
3 : 14.746 Ω
−84.391 Ω
800 MHz
1
2
4
3
START 50.000 000 MHz
STOP 1 200.000 000 MHz
finRX input impedance
4 : 24.681 Ω
15.306 Ω
974.39 pH
2 500.000 000 MHz
1 : 314.47 Ω
−609.53 Ω
100 MHz
2 : 15.457 Ω
−64.836 Ω
1 GHz
4
3 : 15.612 Ω
−6.8101 Ω
2 GHz
1
3
2
START 100.000 000 MHz
STOP 2 500.000 000 MHz
19
MB15F78SP
7. OSCIN input impedance
OSCIN input impedance
4 : 34.313 Ω
−679.06 Ω
2.3437 pF
100.000 000 MHz
1 : 12.448 kΩ
−10.978 kΩ
3 MHz
2 : 521.62 Ω
−3.3743 kΩ
20 MHz
3 : 133.38 Ω
−1.7066 kΩ
40 MHz
4
1
2
3
START 3.000 000 MHz
20
STOP 100.000 000 MHz
MB15F78SP
■ REFERENCE INFORMATION
(for Look-up time, Phase noise and Reference leakage)
Test Circuit
S.G.
OSCIN
LPF
DO
fVCO = 1733 MHz
KV = 44 MHz/V
fr = 200 kHz
fOSC = 13 MHz
LPF
fin
VCC = 3.0 V
VVCO = 3.5 V
Ta = +25 °C
CP : 6 mA mode
27 kΩ
Spectrum
Analyzer
2200 pF
VCO
2.0 kΩ
180 pF
0.022 pF
• PLL Reference Leakage
VAVG 34
10 dB/
∆MKR −73.67 dB
200 kHz
∆MKR
200 kHz
D −73.67 dB
S
CENTER 1.733000 GHz
RBW 3.0 kHz VBW 3.0 kHz
SPAN1.000 MHz
SWP 280 ms
• PLL Phase Noise
VAVG 42
10 dB/
∆MKR −53.33 dB
14.75 kHz
∆MKR
14.75 kHz
−53.33 dB
D
S
CENTER 1.73300000 GHz
RBW 100 Hz VBW 100 Hz
SPAN 50.00 kHz
SWP 4.00 s
(Continued)
21
MB15F78SP
(Continued)
• PLL Lock-up time
• PLL Lock-up time
1733 MHz→1803 MHz within ± 1 kHz
Lch→Hch 400 µs
1803 MHz→1733 MHz within ± 1 kHz
Hch→Lch 378 µs
1.90300 GHz
1.83300 GHz
1.80300 GHz
1.73300 GHz
1.70300 GHz
−2.189 ms
T1 400 µs
1.63300 GHz
−2.189 ms
T1 400 µs
1.803005250 GHz
1.733004500 GHz
1.803001250 GHz
1.733000500 GHz
1.802997250 GHz
−2.189 ms
T1 400 µs
22
311 µs
2.811 ms
500.0 µs/div
T2 800 µs
∆ 400 µs
311 µs
2.811 ms
500.0 µs/div
T2 778 µs
∆ 378 µs
1.732996500 GHz
311 µs
2.811 ms
500.0 µs/div
T2 800 µs
∆ 400 µs
−2.189 ms
T1 400 µs
311 µs
2.811 ms
500.0 µs/div
T2 778 µs
∆ 378 µs
MB15F78SP
■ APPLICATION EXAMPLE
VCO
OUTPUT
from controller
LPF
2.7 V
1000 pF
2.7 V
1000 pF
0.1 µF
0.1µ F
Clock
Data
LE
finRX
XfinRX
GNDRX
VCCRX
PSRX
VpRX
DoRX
20
19
18
17
16
15
14
13
12
11
MB15F78SP
1
2
3
4
5
6
7
8
9
10
OSCIN
GND
finTX
XfinTX
GNDTX
VCCTX
PSTX
VpTX
DoTX
LD/fout
Lock Det.
1000 pF
1000 pF
2.7 V
2.7 V
1000 pF
0.1 µF
0.1 µF
TCXO
OUTPUT
VCO
LPF
Notes : • Clock, Data, LE : Schmitt trigger circuit is provided (insert a pull-down or pull-up register to
prevent oscillation when open-circuit in the input).
• The terminal number shows that of TSSOP-20.
23
MB15F78SP
■ USAGE PRECAUTIONS
(1) VCCRX, VpRX, VCCTX and VpTX must equal equal voltage.
Even if either RX-PLL or TX-PLL is not used, power must be supplied to both VCCRX, VpRX, VCCTX and VpTX
to keep them equal. It is recommended that the non-use PLL is controlled by power saving function.
(2) To protect against damage by electrostatic discharge, note the following handling precautions:
-Store and transport devices in conductive containers.
-Use properly grounded workstations, tools, and equipment.
-Turn off power before inserting or removing this device into or from a socket.
-Protect leads with conductive sheet, when transporting a board mounted device.
■ ORDERING INFORMATION
Part number
24
Package
MB15F78SPPFT
20-pin, plastic TSSOP
(FPT-20P-M06)
MB15F78SPPV
20-pad, plastic BCC
(LCC-20P-M04)
Remarks
MB15F78SP
■ PACKAGE DIMENSIONS
20-pin plastic TSSOP
(FPT-20P-M06)
Note 1 ) * : These dimensions do not include resin protrusion.
Note 2 ) Pins width and pins thickness include plating thickness.
* 6.50±0.10(.256±.004)
0.17±0.05
(.007±.002)
20
11
* 4.40±0.10
6.40±0.20
(.173±.004) (.252±.008)
INDEX
Details of "A" part
1.05±0.05
(Mounting height)
(.041±.002)
LEAD No.
1
10
0.65(.026)
"A"
0.24±0.08
(.009±.003)
0.13(.005)
M
0~8°
+0.03
(0.50(.020))
0.10(.004)
C
1999 FUJITSU LIMITED F20026S-2C-2
0.45/0.75
(.018/.030)
+.001
0.07 –0.07 .003 –.003
(Stand off)
0.25(.010)
Dimensions in mm (inches)
(Continued)
25
MB15F78SP
(Continued)
20-pad plastic BCC
(LCC-20P-M04)
3.60±0.10(.142±.004)
16
16
3.00(.118)TYP
0.80(.031)MAX
(Mounting height)
11
11
11
11
0.25±0.10
(.010±.004)
0.50(.020)
TYP
0.25±0.10
(.010±.004)
INDEX AREA
3.40±0.10
(.134±.004)
2.70(.106)
TYP
"D"
"A"
1
1
6
6
6
6
0.085±0.04
(.003±.002)
(Stand off)
0.05(.002)
16
16
Details of "A" part
0.50±0.10
(.020±.004)
Details of "B" part
0.50±0.10
(.020±.004)
"B"
"C"
0.50(.020)
TYP
2.80(.110)REF
Details of "C" part
0.50±0.10
(.020±.004)
1
1
Details of "D" part
0.30±0.10
(.012±.004)
C0.20(.008)
0.60±0.10
(.024±.004)
C
C
26
1999 FUJITSU LIMITED C20055S-1C-1
0.30±0.10
(.012±.004)
0.60±0.10
(.024±.004)
0.40±0.10
(.016±.004)
Dimensions in mm (inches)
MB15F78SP
FUJITSU LIMITED
For further information please contact:
Japan
FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka,
Nakahara-ku, Kawasaki-shi,
Kanagawa 211-8588, Japan
Tel: +81-44-754-3763
Fax: +81-44-754-3329
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC.
3545 North First Street,
San Jose, CA 95134-1804, U.S.A.
Tel: +1-408-922-9000
Fax: +1-408-922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: +1-800-866-8608
Fax: +1-408-922-9179
http://www.fujitsumicro.com/
Europe
FUJITSU MICROELECTRONICS EUROPE GmbH
Am Siebenstein 6-10,
D-63303 Dreieich-Buchschlag,
Germany
Tel: +49-6103-690-0
Fax: +49-6103-690-122
http://www.fujitsu-fme.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE. LTD.
#05-08, 151 Lorong Chuan,
New Tech Park,
Singapore 556741
Tel: +65-281-0770
Fax: +65-281-0220
http://www.fmap.com.sg/
Korea
FUJITSU MICROELECTRONICS KOREA LTD.
1702 KOSMO TOWER, 1002 Daechi-Dong,
Kangnam-Gu,Seoul 135-280
Korea
Tel: +82-2-3484-7100
Fax: +82-2-3484-7111
F0005
 FUJITSU LIMITED Printed in Japan
All Rights Reserved.
The contents of this document are subject to change without notice.
Customers are advised to consult with FUJITSU sales
representatives before ordering.
The information and circuit diagrams in this document are
presented as examples of semiconductor device applications, and
are not intended to be incorporated in devices for actual use. Also,
FUJITSU is unable to assume responsibility for infringement of
any patent rights or other rights of third parties arising from the use
of this information or circuit diagrams.
The contents of this document may not be reproduced or copied
without the permission of FUJITSU LIMITED.
FUJITSU semiconductor devices are intended for use in standard
applications (computers, office automation and other office
equipments, industrial, communications, and measurement
equipments, personal or household devices, etc.).
CAUTION:
Customers considering the use of our products in special
applications where failure or abnormal operation may directly
affect human lives or cause physical injury or property damage, or
where extremely high levels of reliability are demanded (such as
aerospace systems, atomic energy controls, sea floor repeaters,
vehicle operating controls, medical devices for life support, etc.)
are requested to consult with FUJITSU sales representatives before
such use. The company will not be responsible for damages arising
from such use without prior approval.
Any semiconductor devices have inherently a certain rate of failure.
You must protect against injury, damage or loss from such failures
by incorporating safety design measures into your facility and
equipment such as redundancy, fire protection, and prevention of
over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or
technologies subject to certain restrictions on export under the
Foreign Exchange and Foreign Trade Control Law of Japan, the
prior authorization by Japanese government should be required for
export of those products from Japan.
Similar pages