STMicroelectronics L9777C High precision output voltage Datasheet

L9777
Low power voltage regulator
Datasheet - production data
 Adjustable reset threshold
 External capacitor to set NMI/ reset power up
delay and watchdog frequency
 Over temperature protection
 Wide temperature range (TJ = -40 °C to 150 °C)
 Short circuit proof
'!0'03
PowerSSO-12 (exposed DIE Pad)
 Suitable for use in automotive electronics
Description
Features
The L9777 is a monolithic integrated low drop
regulator which can supply up to 200 mA,
available in the PowerSSO-12 package.
 Operating DC supply voltage range 5.6 V to
31 V
 Low current consumption (110 μA typ @ Iout = 0)
 High precision output voltage (2 %)
 Low dropout voltage
 VDD tracking regulator switchable on/off by
VDD_EN pin
 Reset circuit sensing the output voltage down
to 1 V.
 Double reset function
It is designed to supply microprocessor systems
under severe conditions of automotive
applications and therefore equipped with
additional protection functions against over load,
short circuit and over temperature.
Of course the L9777 can also be used in other
applications where a regulated voltage is
required.
Table 1. Device summary
Order code
Package
Packing
L9777A
PowerSSO-12
Tray
L9777B
PowerSSO-12
Tray
L9777B13TR
PowerSSO-12
Tape and reel
L9777C
PowerSSO-12
Tray
L9777C13TR
PowerSSO-12
Tape and reel
February 2014
This is information on a product in full production.
DocID13496 Rev 4
1/25
www.st.com
Contents
L9777
Contents
1
Block diagrams and pins configuration . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1
Block diagram (option A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2
Option B features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3
Option C features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3
NMI and RESET driver delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4
RESET adjustable threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5
Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4
VDD regulated voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5
VDD_LOW (option C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6
Device options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.1
Option A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.2
Option B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.3
Option C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7
Electrical and thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2/25
DocID13496 Rev 4
L9777
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Electrical and thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
DocID13496 Rev 4
3/25
3
List of figures
L9777
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
4/25
Block diagram (option A). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Package pin configuration (options A and B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Block diagram (option B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Block diagram (option C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Package pin configuration (option C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
VCC versus output current IVCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Filter time between VCC and NMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Reset time diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Filter time between NMI and RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
RESET and NMI drivers fall time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Resistor divider to adjust the under voltage threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Watchdog timing waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
VDD_LOW filter time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
PowerSSO-12 mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 23
DocID13496 Rev 4
L9777
Block diagrams and pins configuration
1
Block diagrams and pins configuration
1.1
Block diagram (option A)
Figure 1. Block diagram (option A)
6$$?%.
6$$
)6$$M!
# 6$$
)6$$?%.
6)
6BATT
6##
)6##M!
2
# 6##
3TART UP
6-584(
2
'.$
6##
6
6OLTAGE
2EFERENCE
6/&&
2!$*
?
)7$?%.
7$?%.
4)-).'
22%3%4
2.-)
# 4)-).'
2%3%4
$ELAY
WATCHDOG
7$
.-)
27$
,OW
6OLTAGE
2ESET
$
6$
#$
'!0'03
1.2
Option B features




VDD can sustain short to 40 V regardless of VI battery voltage
Current capability of VDD scaled down to 50 mA with dropout of 1.5 V (Max.)
In default condition, VDD and WD functions are disabled using 2 pull down current on
VDD_EN and WD_EN pin
Standby current consumption reduced to 100 μA (Typ.)
Figure 2. Package pin configuration (options A and B)
2%3%4
2!$*
.-)
'.$
$
6$$
6$$?%.
6##
7$
4)-).'
7$?%.
6)
'!0'03
DocID13496 Rev 4
5/25
24
Block diagrams and pins configuration
L9777
Figure 3. Block diagram (option B)
6$$?%.
)6$$?%.
6$$
)6$$ M!
6##
6)
6BATT
# 6$$
)6##M!
2
# 6##
3TART UP
6-584(
2
'.$
6OLTAGE
2EFERENCE
6
6/&&
2!$*
?
7$?%.
4)-).'
22%3%4
2.-)
# 4)-).'
2%3%4
)7$?%.
$ELAY
WATCHDOG
7$
.-)
27$
,OW
6OLTAGE
2ESET
$
6$
#$
'!0'03
Figure 4. Block diagram (option C)
6$$?%.
)6$$ M!
)6$$?%.
6$$
# 6$$
M6
6)
6BATT
6##
)6##M!
2
# 6##
3TART UP
6-584(
2
'.$
6OLTAGE
2EFERENCE
6
6/&&
2!$*
?
7$?%.
26$$?,/7
2.-)
)7$?%.
WATCHDOG
7$
27$
$
6$
,OW
6OLTAGE
2ESET
6$$?,/7
.-)
,OW
6OLTAGE
2ESET
#$
'!0'03
6/25
DocID13496 Rev 4
L9777
1.3
Block diagrams and pins configuration
Option C features



VDD can sustain short to 40 V regardless of VI battery voltage
Current capability of VDD scaled down to 50 mA with dropout of 1.5V (Max.)
In default condition, VDD and WD functions are disabled using 2 pull down current on
VDD_EN and WD_EN pin
Double reset function removed and pin RESET used to detect undervoltage condition
on VDD regulated voltage (VDD_LOW pin)

Figure 5. Package pin configuration (option C)
6$$?,/7
2!$*
.-)
'.$
$
6$$
6$$?%.
6##
7$
.#
7$?%.
6)
'!0'03
Table 2. Pin description
Pin#
I/O
Name
Function
OPTION A & B: RESET output.
This pin is set low if NMI output goes low for adjustable filter time
RESET/VDD_LOW
OPTION C: VDD_LOW output
This pin is set low when undervoltage on VDD is detected
1
O
2
O
NMI
3
I
D
NMI/RESET power up delay.
External cap on this pin sets the time response of the VCC low
voltage detector and the time response of the watchdog monitor.
VDD control.
OPTION A: If this pin is low VDD output voltage is not available
(connect this pin to VCC or left floating to switch on VDD output
voltage)
OPTION B & C: If this pin is low or left floating VDD output
voltage is not available (connect this pin to VCC to switch on
VDD regulator)
4
I
VDD_EN
5
I
WD
Non maskable Interrupt Output
This pin is set low when low voltage on VCC is detected or
frequency of WD signal is too low.
Watchdog input.
If the frequency at this input pin is too low, the NMI output is
activated low
DocID13496 Rev 4
7/25
24
Block diagrams and pins configuration
L9777
Table 2. Pin description (continued)
Pin#
I/O
Function
Watchdog function enable/disable
OPTION A: If this pin is low the watchdog function is disabled, if
connected to VCC or left floating the watchdog function is
enabled.
OPTION B & C: If this pin is low or floating, the watchdog
function is disabled, if connected to VCC the watchdog function is
enabled.
6
I
WD_EN
7
I
VI
Input voltage
Block to GND with a capacitor of value at least 100 nF
OPTION A & B: RESET filter time
External cap on this pin sets the delay time between NMI and
RESET output
OPTION C: not used and should be left floating or shorted to
ground.
8
I
TIMING
9
O
VCC
Voltage regulator output
External cap CVCC 220 nF is needed to stabilize the regulator
10
O
VDD
VDD
Output regulated voltage switched on/off by VDD_EN pin.
External cap CVDD=100 nF is needed to stabilize the regulator
GND
Ground
RADJ
VCC under voltage Threshold Adjustment
By connecting this pin to an external resistor divider vs. VCC, is
possible to set the VCC under voltage threshold.
If this pin is connected to GND the under voltage threshold is set
by internal circuit.
11
12
8/25
Name
I
DocID13496 Rev 4
L9777
2
Absolute maximum ratings
Absolute maximum ratings
Table 3. Absolute maximum ratings
Symbol
Parameter
Min.
Max.
Unit
-0.3
40
V
Input voltage VI
VVI
Voltage
IVI
Current
Internal limited
VCC
VVCC
Voltage
IVCC
Current
-0.3
5.5
V
Internal limited
NMI
VNMI
Voltage
INMI
Current
VD
Voltage
-0.3
VCC+0.3
V
Internal limited
D
-0.3
Current
VCC+0.3
V
Internal limited
RADJ
VRADJ
Voltage
IRADJ
Current
-0.3
VCC+0.3
V
Internal limited
WD
VWD
Voltage
IWD
Current
-0.3
VCC+0.3
V
Internal limited
WD_EN
VWD_EN
Voltage
IWD_EN
Current
-0.3
VCC+0.3
V
Internal limited
VDD_EN
VVDD_EN
Voltage
IVDD_EN
Current
-0.3
VCC+0.3
V
Internal limited
RESET
VRESET
Voltage
IRESET
Current
-0.3
VCC+0.3
V
Internal limited
DocID13496 Rev 4
9/25
24
Absolute maximum ratings
L9777
Table 3. Absolute maximum ratings (continued)
Symbol
Parameter
Min.
Max.
Unit
-0.3
-
V
Timing
VI + 0.3
(Opt. A)
40V
(Opt. B)
Not connected (Opt. C)
VTIMING
Voltage
ITIMING
Current
Internal limited
VDD
VVDD
Voltage
IVDD
Current
-0.3
VI + 0.3
40V
40V
(Opt. A)
(Opt. B)
(Opt. C)
V
Internal limited
Temperature
TJ
Junction temperature
-40
150
°C
-1.5
1.5
kV
ESD voltage level
VESD
10/25
HBM-MIL STD 883C
DocID13496 Rev 4
L9777
Functional description
3
Functional description
3.1
Voltage regulator
This device supply an always active 5 V regulated voltage on pin VCC with a current
capability up to 200 mA. VCC voltage has an accuracy of 2% over a wide supply voltage
(VI = 5.6 V to 31 V) and temperature range (TJ = -40 °C to 150 °C).
A short circuit protection to GND is provided (see Figure 6).
By means of tracking regulator, it is available a second output regulated voltage on pin VDD
with a current capability up to 50 mA. This regulated output is switchable on/off by external
pin VDD_EN.
Figure 6. VCC versus output current IVCC
6##
6##2%&
)3(/24
),)-
)6##
'!0'03
3.2
Reset
The reset circuit monitors the output voltage VCC. In case of internal reset threshold, if the
output voltage stays lower than VCCUN for a filter time TRR, then NMI goes low.
This filter time depends on the distance between the VCC output and the under voltage
reset threshold (VCCUN): this solution increases the noise immunity of the voltage regulator
be-cause the filter time between the reset event and the falling of NMI output changes
according to the depth of spike on output voltage (see following picture).
A minimum filter time of 1 μs (TRR1) is guaranteed if VCC goes down to 2.5 V and
VS > 5.6 V.
Figure 7. Filter time between VCC and NMI
6##
6##
6##5.
6
6
.-)
.-)
422
422
'!0'03
Otherwise, in case of external reset threshold fixed by means of external resistor divider on
pin RADJ, there is only a constant filter time (TRRADJ) of 1 μs min value.
DocID13496 Rev 4
11/25
24
Functional description
L9777
In both cases, if the output voltage VCC becomes lower than 2.0V (typ) than NMI may go
immediately low without any delay. The NMI low signal is guaranteed for an output voltage
VCC greater than 1V.
When VCC returns over VCCUN threshold NMI goes high with a filter time TRD. This time is
obtained by 127 period of an oscillator with an additional initial time. The oscillator period is
given by:
 VDU – VDRL   CD - + --------------------------------------------------------- VDU – VDRL   CD TOSC = ---------------------------------------------------------IRC
IRD
where:
ICR = 20 μA (typ) is a current internally generated,
IDR = 20 μA (typ) is a current internally generated,
VDU = 1.24 V and VDRL = 0.62 V are two typical internal thresholds,
CD is the external capacitance on pin D.
TRD is given by:
TRD (s) = T0 + 127 x TOSC = 0.62*10-3 + 7.874* 106 * CD (typ)
Where T0 is the initial ramp between 0 V and VDU as in Figure 8.
Figure 8. Reset time diagram
225.
6##5.
6##
422
422
6$5
6$
6$2,
42$ 4
.-)
4/3#
42$ 4
4/3#
42%3$&
42%3$2
2%3%4
42%3$&
42%3$&
6"'!0
64)-).'
'!0'03
If NMI output goes to 0 V for filter time TRESDF (which is fixed by external cap on TIMING
pin) also the RESET signal goes to 0 V. RESET low signal is guaranteed for VCC > 1 V.
Figure 9. Filter time between NMI and RESET
42%3$&
42%3$&
.-)
2%3%4
'!0'03
12/25
DocID13496 Rev 4
L9777
3.3
Functional description
NMI and RESET driver delay
NMI and RESET pins are driven by bipolar transistor with a maximum current capability
internally limited of value respectively INMIL and IRESL.
For this reason, when the drivers are activated, the capacitors present on pin NMI or
RESET are discharged with constant current. The waveform on output pin is a voltage ramp
with a slope linearly dependent on external capacitance.
The fall time needed by drivers to discharge external capacitor can be calculated in first
approximation using this expression.
 V  C ext 
t fall = ---------------------------I lim
Where V is the voltage difference between 90% and 10% of total voltage swing of the
transition, Cext is the total pin capacitance and Ilim is the current limitation of the driver
(IRESL and INMIL).
Figure 10. RESET and NMI drivers fall time
2%3%4 6
6SW
6SW
6SW
62%3,
4FALL
4)-% —S
'!0'03
DocID13496 Rev 4
13/25
24
Functional description
3.4
L9777
RESET adjustable threshold
The under voltage threshold value (VCCUN) can be set between 0.7VCC (typ.) and
0.96VCC (typ) by connecting external resistor divider to RADJ pin (see Figure 11). This
feature can be used with microprocessors that guarantee a safe operation with supply
voltage lower than internal reset threshold. The calculation of this threshold is given by:
VCCUN_ext = VRADJTH (1+R1/R2)
(neglecting RADJ input current)
where: VRADJTH=1.2V (typ) and VCCUN_ext is the reset threshold.
If this features is not needed, RADJ pin has to be connected to GND, in this case the
internal under voltage threshold value is 0.94 * VCC (typ.).
Figure 11. Resistor divider to adjust the under voltage threshold
6##
,
2
2!$*
2
'!0'03
3.5
Watchdog
The watchdog input WD monitors a connected microcontroller. If pulses are missing, the
output NMI is set to low. The minimum WD frequency to avoid reset event can be set with
the external capacitor CD. The watchdog circuit charges and discharges the capacitor CD
with the constant currents IWC and IWD, counting the number of oscillations as for TRD
delay time. If no rising edge is sensed on pin WD between 48 oscillation periods (TWOP TWOL, time A to B in Figure 12), a watchdog reset is generated. To prevent this reset the
microcontroller must generate a positive edge during this time window in order to reset the
counter.
Minimum frequency of microprocessor input signal can be calculated using following
equation:
TWOP - TWOL = 48 * TOSC = 2.976*106*CD s
Every WD positive edge resets the counter and makes a synchronization between internal
oscillator and external WD input signal.
Synchronization is realized changing the current from charging to discharging if rising edge
is detected during rising ramp on CD (time D in Figure 12). Otherwise if rising edge is
detected during falling ramp on CD, no current inversion is performed (time E). This
operation leads to a maximum error of half oscillation period on TWOP - TWOL time
window. When NMI goes low for watchdog reset, the counter will go on for other 16 counts,
returning to initial state (time B to C in Figure 12). During this time (TWOL) the NMI remains
low and WD edges are masked, so the TWOL reset time is fully guaranteed.
The Watchdog operation is not active only if WD_EN input pin is set low.
14/25
DocID13496 Rev 4
L9777
Functional description
In this case the capacitor CD, when not used for VCC undervoltage condition, is pulled
down to 0V by an active switch.
At time F we can see that during TWOL reset time, WD_EN pin is not sensed, so the watchdog function can be disabled only when TWOL is finished. In this way a full reset time is
guaranteed even in this condition.
Figure 12. Watchdog timing waveforms
!
"
#
$
%
&
7$?%.
4HE WATCHDOG DISABLE IS SENSED ONLY
WHEN 47/, IS FINISCHED
47/0
.-)
.O CURRENT
INVERSION
47/,
#OUNTER STATE IS INCREMENTED WHEN THE
HIGH THRESHOLD IS REACHED
47/,
6$4((
6$4(,
#$
OSC
OSC
OSC
#URRENT INVERSION
ON CAP #$
7$
#/5.4%2
2%3%4
42%3$&
FILTER TIME
'!0'03
DocID13496 Rev 4
15/25
24
VDD regulated voltage
4
L9777
VDD regulated voltage
L9777 provides a second regulated voltage in tracking with VCC main regulator capable to
source load with up to 100 mA output current capability.
VDD tracking regulator function is controlled by VDD_EN input pin. If pin is set high VDD
voltage becomes available. If pin is set low or left floating regulator is disabled.
Note that VDD regulator will be disable also in case of undervoltage condition on VCC main
regulator, so at power up regulator will start up only when VCC rises over undervoltage
threshold without TRD power up delay time, even if VDD_EN pin is set high.
16/25
DocID13496 Rev 4
L9777
5
VDD_LOW (option C)
VDD_LOW (option C)
VDD_LOW circuit monitors VDD regulated voltage. When VDD falls below VDDUN for a
filter time TFVDD VDD_LOW output voltage is set low.
VDDUN is a reference voltage 300 mV (Typ) lower than VCC regulated voltage.
Filter time TFVDD is spike dependent as TRR1 for VCC regulator so the same
consideration applies also in this case.
Figure 13. VDD_LOW filter time
6$$
6##
6$$5.
6$$5. M6
6
6$$?,/7
6$$?,/7
4&6$$
4&6$$
'!0'03
DocID13496 Rev 4
17/25
24
Device options
6
Device options
6.1
Option A
L9777
This is the standard configuration with VDD output capable to source up to 100 mA to an
external load with low dropout (400 mV max.) and double reset function provided (NMI and
RESET output).
Note that as we can see in absolute section VDD and TIMING pin are capable to sustain
only short to VI pin.
With this option input digital pins VDD_EN and WD_EN are both pulled up by 5μA typ
current source (minimum quiescent current is 110μA typ.).
6.2
Option B
With this option VDD and TIMING pins are both capable to sustain short to 40V regardless
of VI battery voltage. To provide this feature a series diode is introduced between VI pin and
VDD power PMOS source. In this configuration current capability on VDD output is scaled
down to 50 mA while dropout voltage increases to 1.5V (Max). All other features are unchanged and double reset capability is maintained.
In option B VDD_EN and WD_EN are both pulled down with 10μA typ internal current
source so minimum quiescent current is reduced to 100μA typ.
6.3
Option C
Using option C VDD is capable to sustain short to 40 V as in option B. VDD output current is
scaled down to 50 mA and dropout increase up to 1.5 V (Max).
Double reset feature is removed and RESET pin is used to monitor VDD output voltage
(VDD_LOW pin). A spike dependent filter time similar to VCC main regulator is provided and
same low voltage reset specifications applies to bipolar output driver (VDD_LOW driver).
For this reason TIMING pin is no more used and can be left floating or shorted to ground.
Note that NMI output pin behaves normally as in option A and becomes the main reset
signal for VCC and watchdog monitor.
As in option B VDD_EN and WD_EN are both pulled down with 10μA typ internal current
source so minimum quiescent current is reduced to 100μA typ.
18/25
DocID13496 Rev 4
L9777
7
Electrical and thermal characteristics
Electrical and thermal characteristics
VI = 5.6V to 31V, TJ = -40°C to +150°C unless otherwise specified.
Table 4. Electrical and thermal characteristics
Pin
Symbol
Parameter
Test condition
Min.
Typ.
Max.
Unit
General
VCC
VCCREF
Output voltage
VI = 5.6 to 31 V
IVCC = 0 to 200 mA
4.9
5.00
5.1
V
VCC
ISHORT
Short circuit current
VCC = 0 V
150
250
500
mA
VCC
ILIM1
210
300
600
mA
Output current limitation
Current consumption
with watchdog not active
IQS0 = IVI-IVCC
Option A
VI =13.5 V, IVCC = 0 mA,
WD_EN = 0 V
VDD_EN = 0 V
(VDD disabled)
-
110
220
μA
Option B
VI = 13.5 V, IVCC = 0 mA,
WD_EN floating or low,
VDD_EN floating or low
(VDD disabled)
-
100
200
μA
Option C
VI = 13.5 V, IVCC = 0 mA,
WD_EN floating or low,
VDD_EN floating or low
(VDD reset active)
-
400
700
μA
IQS200
Current consumption
IQS200 = IVI-IVCC
VI = 13.5 V, IVCC = 200 mA
-
2
3
mA
VI, VCC
VDP1
Dropout voltage
IVCC = 200 mA
-
200
400
mV
VCC
VLINE1
Line regulation voltage
VI = 5.6 to 31 V
IVCC = 0 to 200 mA
-
-
25
mV
VCC
VLOAD1
Load regulation voltage
IVCC = 0 to 200 mA
-
-
25
mV
VCC
SVR
Ripple rejection
fr = 100 Hz
55
-
-
dB
-
TW
Thermal protection
temperature
-
150
-
190
°C
-
TWH
Thermal protection
temperature hysteresis
-
-
10
-
°C
NMI
VNMIL
NMI output low voltage
Rext = 5 kΩ to VCC, VCC > 1 V
-
-
0.4
V
NMI
INMILK
NMI output leakage
current
VNMI = 5 V
-
-
1
μA
NMI
RNMI
Pull up internal
resistance
-
12
25
50
kΩ
IQS0
VI, VCC
NMI
DocID13496 Rev 4
19/25
24
Electrical and thermal characteristics
L9777
Table 4. Electrical and thermal characteristics (continued)
Pin
Symbol
NMI
VCCUN
RADJ
VRADJTH
RADJ
VRJMUXTH
D
Parameter
Test condition
Min.
Typ.
Max.
Unit
4.5V
0.94
VCC
0.96
VCC
-
Threshold for VCC under
voltage detection
1.15
1.20
1.25
V
Threshold for RADJ
multiplexer comparator
-
0.52
0.62
0.72
V
VDU
NMI timing high
threshold
-
1.14
1.24
1.34
V
D
VDRL
NMI timing low threshold -
0.52
0.62
0.72
V
D
IRC
Charge current
VI = 13.5 V
VD = 0.1 V
10
20
40
μA
D
IRD
Discharge current
VI = 13.5 V
VD = 2.5 V
10
20
40
μA
NMI
TRR1
NMI spike dependent
filter time in case of
internal reset threshold
VCC > 2 V
RADJ = 0 V
1
-
-
μA
NMI
TRRADJ
NMI fixed filter time in
case of external reset
threshold
External resistor
divider on RADJ
(see Figure 11). VCC > 2 V
1
2.5
5
μs
NMI
TRD
NMI power up delay
VI =13.5 V, CD=10 nF
45
80
115
ms
NMI
INMIL
NMI limitation current
-
5
-
25
mA
Reset output low voltage Rext = 5 kΩ to VCC, VCC > 1 V
-
-
0.4
V
RESET output leakage
current
-
-
-
1
μA
RESET limitation current -
5
25
mA
VCC under voltage
threshold
RADJ = 0 V
RESET (option A & B)
RESET
VRESL
RESET
IRESETLK
RESET
IRESL
RESET
TRESDF
RESET delay from NMI
falling edge
CTIMING = 2.2 nF
RESET
TRESDR
RESET delay from NMI
rising edge
RESET
RRESET
Pull up internal
resistance
350
550
750
μs
-
-
-
1
μs
-
12
25
50
kΩ
-
-
0.4
V
-
-
-
1
μA
VDD_LOW IVDD_LOWL RESET limitation current -
5
-
25
mA
12
25
50
kΩ
VDD_LOW (option C)
VDD_LOW VVDD_LOWL Reset output low voltage Rext = 5 kΩ to VCC, VCC > 1 V
VDD_LOW IVDD_LOWLK
VDD_LOW RVDD_LOW
20/25
RESET output leakage
current
Pull up internal
resistance
-
DocID13496 Rev 4
L9777
Electrical and thermal characteristics
Table 4. Electrical and thermal characteristics (continued)
Pin
Symbol
Parameter
VDD_EN
VVDDTHL
VDD_EN input low
threshold
VDD_EN
VVDDTHH
VDD_EN
Test condition
Min.
Typ.
Max.
Unit
-
-
-
0.30
VCC
V
VDD_EN input high
threshold
-
0.70
VCC
-
-
V
VVDDHY
VDD_EN hysteresis
-
200
500
800
mV
VDD_EN
IVDD_EN
Pull up current Option A
-
2.5
5
10
μA
VDD_EN
IVDD_EN
Pull down current
Option B and C
-
5
10
20
μA
Output voltage difference
IVDD=1 to 100 mA
between VDD and VCC
-25
-
25
mV
110
200
400
mA
VDD_EN
VDD (option A)
VDD,VCC
DIFFVR
VDD
ILIM2
VDD output limitation
current
-
VI,VDD
VDP2
Dropout voltage
IVDD = 100 mA
-
200
400
mV
VDD
VLINE2
VDD Line regulation
voltage
VI = 5.6 to 31 V
IVDD = 1 to 100 mA
-
-
25
mV
VDD
VLOAD2
VDD Load regulation
voltage
IVDD = 1 to 100 mA
-
-
25
mV
Output voltage difference
IVDD = 1 to 50mA VI = 6.6 to 31V
between VDD and VCC
-25
-
25
mV
55
100
240
mA
VDD (option B)
VDD,VCC
DIFFVR
VDD
ILIM2
VDD output limitation
current
VI = 6.6 to 31V
VI,VDD
VDP2
Dropout voltage
IVDD = 50mA; VI = 6.6 to 31V
-
-
1.5
V
VDD
VLINE2
VDD Line regulation
voltage
IVDD = 1 to 50mA VI = 6.6 to 31V
-
-
25
mV
VDD
VLOAD2
VDD Load regulation
voltage
IVDD = 1 to 50mA VI = 6.6 to 31V
-
-
25
mV
DocID13496 Rev 4
21/25
24
Electrical and thermal characteristics
L9777
Table 4. Electrical and thermal characteristics (continued)
Pin
Symbol
Parameter
Test condition
Min.
Typ.
Max.
Unit
Output voltage difference IVDD = 1 to 50 mA
between VDD and VCC VI = 6.6 to 31 V
-25
-
25
mV
55
100
240
mA
VDD (option C)
VDD,VCC
DIFFVR
VDD
ILIM2
VDD output limitation
current
VI = 6.6 to 31 V
VI,VDD
VDP2
Dropout voltage
IVDD = 50 mA; VI = 6.6 to 31 V
-
-
1.5
V
VDD
VLINE2
VDD Line regulation
voltage
VI = 6.6 to 31 V
IVDD = 1 to 50 mA
-
-
25
mV
VDD
VLOAD2
VDD Load regulation
voltage
IVDD = 1 to 50 mA
VI = 6.6 to 31 V
-
-
25
mV
VDD
VDDUN
VDD undervoltage
threshold
VI = 6.6 to 31 V
VCC400
VCC300
VCC200
mV
VDD
TFVDD
VDD spike dependent
undervoltage filter time
VDD transition from 5 V to 4 V
1
-
-
μs
WD
WD
VWDTHH
Input high voltage
-
-
-
0.3
VCC
V
WD
VWDTHL
Input low voltage
-
0.7
VCC
-
-
V
WD
VWDHY
WD input hysteresis
-
250
500
800
mV
WD
RWD
Pull down resistor
-
15
35
80
kΩ
D
IWDC
Charge current
VD = 0.1 V; VI = 13.5 V
10
20
40
μA
D
IWDD
Discharge current
VD = 2.5 V; VI = 13.5 V
10
20
40
μA
D
VDTHL
Low threshold
-
0.52
0.62
0.72
D
VDTHH
High threshold
-
1.14
1.24
1.34
V
D
TWOP
Watchdog period
CD =10 nF
20
40
80
ms
D
TWOL
Watchdog output low
time
CD =10 nF
5
10
20
ms
WD_EN
WD_EN
VWENTL
WD_EN input low
voltage
-
-
-
0.30
VCC
-
WD_EN
VWENTH
WD_EN input high
voltage
-
0.70
VCC
-
-
-
WD_EN
VWENHY
WD_EN input hysteresis -
200
500
800
mV
WD_EN
IWD_EN
Pull up current Option A
-
2.5
5
10
μA
WD_EN
IWD_EN
Pull down current
Option B and C
-
5
20
μA
22/25
DocID13496 Rev 4
10
L9777
8
Package information
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Figure 14. PowerSSO-12 mechanical data and package dimensions
MM
INCH
$)-
-).
490
-!8
-).
490
!
!
!
"
#
$ %
E
(
H
,
N
ƒ
8
9
/54,).% !.$
-%#(!.)#!, $!4 !
-!8
ƒ
DDD
ƒ
ƒ
0OWER33/ %XPOSED 0AD
.OTE $ DOES NOT INC LUDE M OLD FLASH OR PROTRUSIONS OR GA TE
BURRS -OLD FLASH POTRUSIONS OR GATE BURRS SHALL NOT EX
CEED MM INCH IN TOTAL
$
MM
'!5'% 0,!.%
H X #
!
!
"
DDD
3%!4).'
0,!.%
#
#
!
,
+
8
%
(
9
"/44/6)%7
E
#
'!0'03
DocID13496 Rev 4
23/25
24
Revision history
9
L9777
Revision history
Table 5. Revision history
24/25
Date
Revision
Description of changes
10-May-2007
1
Initial release.
14-Dec-2010
2
Changed ESD parameter values in Table 3.
Modified Section 1.3: Option C features on page 7.
Modified Section 6.3: Option C on page 18.
Updated Table 4: Electrical and thermal characteristics on
page 19.
Document status promoted from preliminary data to
datasheet.
11-Jan-2012
3
Update Table 1: Device summary on page 1.
Updated Figure 14: PowerSSO-12 mechanical data and
package dimensions on page 23.
20-Feb-2014
4
Updated disclaimer.
DocID13496 Rev 4
L9777
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2014 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
DocID13496 Rev 4
25/25
25
Similar pages