Freescale ATC100B5R6BT250XT Rf ldmos wideband integrated power amplifier Datasheet

Freescale Semiconductor
Technical Data
Document Number: MW7IC2240N
Rev. 0, 11/2007
RF LDMOS Wideband Integrated
Power Amplifiers
The MW7IC2240N wideband integrated circuit is designed with on - chip
matching that makes it usable from 2000 to 2200 MHz. This multi - stage
structure is rated for 24 to 32 Volt operation and covers all typical cellular base
station modulation formats including TD - SCDMA.
Typical Performance
• Typical Single - Carrier W - CDMA Performance: VDD = 28 Volts,
IDQ1 = 90 mA, IDQ2 = 420 mA, Pout = 4 Watts Avg., Full Frequency Band
(2110 - 2170 MHz), Channel Bandwidth = 3.84 MHz. PAR = 7.5 dB @
0.01% Probability on CCDF.
Power Gain — 30 dB
Power Added Efficiency — 14%
ACPR @ 5 MHz Offset — - 50 dBc in 3.84 MHz Bandwidth
• Capable of Handling 5:1 VSWR, @ 28 Vdc, 2140 MHz, 40 Watts CW
Output Power
• Pout @ 1 dB Compression Point = 40 Watts CW
• Stable into a 5:1 VSWR. All Spurs Below - 60 dBc @ 100 mW to 10 Watts
CW Pout.
Features
• Characterized with Series Equivalent Large - Signal Impedance Parameters
and Common Source Scattering Parameters
• On - Chip Matching (50 Ohm Input, DC Blocked, >3 Ohm Output)
• Integrated Quiescent Current Temperature Compensation with Enable/
Disable Function (1)
• Integrated ESD Protection
• 225°C Capable Plastic Package
• RoHS Compliant
• In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.
VDS1
RFin
RFout/VDS2
VGS1
Quiescent Current
Temperature Compensation (1)
VGS2
VDS1
MW7IC2240NR1
MW7IC2240GNR1
MW7IC2240NBR1
2110 - 2170 MHz, 4 W Avg., 28 V
SINGLE W - CDMA
RF LDMOS WIDEBAND
INTEGRATED POWER AMPLIFIERS
CASE 1886 - 01
TO - 270 WB - 16
PLASTIC
MW7IC2240NR1
CASE 1887 - 01
TO - 270 WB - 16 GULL
PLASTIC
MW7IC2240GNR1
CASE 1329 - 09
TO - 272 WB - 16
PLASTIC
MW7IC2240NBR1
GND
VDS1
NC
NC
NC
1
2
3
4
5
16
15
GND
NC
RFin
6
14
RFout/VDS2
NC
VGS1
VGS2
VDS1
GND
7
8
9
10
11
13
12
NC
GND
(Top View)
Note: Exposed backside of the package is
the source terminal for the transistors.
Figure 1. Functional Block Diagram
Figure 2. Pin Connections
1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control
for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1977 or AN1987.
© Freescale Semiconductor, Inc., 2007. All rights reserved.
RF Device Data
Freescale Semiconductor
MW7IC2240NR1 MW7IC2240GNR1 MW7IC2240NBR1
1
Table 1. Maximum Ratings
Symbol
Value
Unit
Drain - Source Voltage
Rating
VDSS
- 0.5, +65
Vdc
Gate - Source Voltage
VGS
- 0.5, +5
Vdc
Operating Voltage
VDD
32, +0
Vdc
Storage Temperature Range
Tstg
- 65 to +150
°C
Case Operating Temperature
TC
150
°C
Operating Junction Temperature (1,2)
TJ
225
°C
Input Power
Pin
20
dBm
Symbol
Value (2,3)
Unit
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
RθJC
°C/W
4 W Avg.
(Pout = 3.95 W Avg., Case Temperature = 68°C) Stage 1, 28 Vdc, IDQ1 = 90 mA
Stage 2, 28 Vdc, IDQ2 = 420 mA
3.9
1.3
40 W Avg.
(Pout = 39.4 W Avg., Case Temperature = 80°C) Stage 1, 28 Vdc, IDQ1 = 90 mA
Stage 2, 28 Vdc, IDQ2 = 420 mA
3.2
1.2
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22 - A114)
1B (Minimum)
Machine Model (per EIA/JESD22 - A115)
A (Minimum)
Charge Device Model (per JESD22 - C101)
II (Minimum)
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1955.
(continued)
MW7IC2240NR1 MW7IC2240GNR1 MW7IC2240NBR1
2
RF Device Data
Freescale Semiconductor
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD 22 - A113, IPC/JEDEC J - STD - 020
Rating
Package Peak Temperature
Unit
3
260
°C
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 28 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
μAdc
Gate - Source Leakage Current
(VGS = 1.5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
μAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 23 μAdc)
VGS(th)
1.2
2
2.7
Vdc
Gate Quiescent Voltage
(VDD = 28 Vdc, ID = 90 mAdc)
VGS(Q)
—
2.9
—
Vdc
Fixture Gate Quiescent Voltage
(VDD = 28 Vdc, ID = 90 mAdc, Measured in Functional Test)
VGG(Q)
9.5
13
16.5
Vdc
Ciss
—
50
—
pF
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 28 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
μAdc
Gate - Source Leakage Current
(VGS = 1.5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
μAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 150 μAdc)
VGS(th)
1.2
2
2.7
Vdc
Gate Quiescent Voltage
(VDD = 28 Vdc, ID = 420 mAdc)
VGS(Q)
—
2.8
—
Vdc
Fixture Gate Quiescent Voltage
(VDD = 28 Vdc, ID = 420 mAdc, Measured in Functional Test)
VGG(Q)
7
9.8
12.5
Vdc
Drain - Source On - Voltage
(VGS = 10 Vdc, ID = 1 Adc)
VDS(on)
0.2
0.39
1.2
Vdc
Reverse Transfer Capacitance
(VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Crss
—
0.67
—
pF
Output Capacitance
(VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Coss
—
205
—
pF
Stage 1 — Off Characteristics
Stage 1 — On Characteristics
Stage 1 — Dynamic Characteristics (1)
Input Capacitance
(VDS = 28 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)
Stage 2 — Off Characteristics
Stage 2 — On Characteristics
Stage 2 — Dynamic Characteristics (1)
1. Part internally matched both on input and output.
(continued)
MW7IC2240NR1 MW7IC2240GNR1 MW7IC2240NBR1
RF Device Data
Freescale Semiconductor
3
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Functional Tests (In Freescale Wideband 2110 - 2170 MHz Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 90 mA, IDQ2 = 420 mA,
Pout = 4 W Avg., f1 = 2112.5 MHz and f2 = 2167.5 MHz, Single-Carrier W-CDMA, 3GPP Test Model 1, 64 DPCH, 50% Clipping, PAR = 7.5 dB
@ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset.
Power Gain
Gps
28
30
33
dB
Power Added Efficiency
PAE
12
14
—
%
ACPR
—
- 50
- 46
dBc
IRL
—
- 16
- 12
dB
Adjacent Channel Power Ratio
Input Return Loss
Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 90 mA, IDQ2 = 420 mA, 2110 - 2170 MHz
Pout @ 1 dB Compression Point, CW
P1dB
—
40
—
Video Bandwidth @ 40 W PEP Pout where IM3 = - 30 dBc
(Tone Spacing from 100 kHz to VBW)
ΔIMD3 = IMD3 @ VBW frequency - IMD3 @ 100 kHz <1 dBc (both
sidebands)
VBW
W
MHz
—
10
—
Gain Flatness in 60 MHz Bandwidth @ Pout = 4 W Avg.
GF
—
0.1
—
dB
Average Deviation from Linear Phase in 60 MHz Bandwidth
@ Pout = 40 W CW
Φ
—
1.08
—
°
Delay
—
1.98
—
ns
Part - to - Part Insertion Phase Variation @ Pout = 40 W CW,
f = 2140 MHz, Six Sigma Window
ΔΦ
—
18.3
—
°
Gain Variation over Temperature
( - 30°C to +85°C)
ΔG
—
0.05
—
dB/°C
ΔP1dB
—
0.004
—
dBm/°C
Average Group Delay @ Pout = 40 W CW, f = 2140 MHz
Output Power Variation over Temperature
( - 30°C to +85°C)
MW7IC2240NR1 MW7IC2240GNR1 MW7IC2240NBR1
4
RF Device Data
Freescale Semiconductor
+
C23
VDD2
1
2
3
4
5
VDD1
C4
RF
INPUT
Z1
C6
NC
16
DUT
C12
C14
C19
C20
Z12
C8
Z3
Z2
C10
15
NC
NC
NC
14
Z4
Z5
Z6
Z7
C16
Z9
Z8
Z10
Z11
RF
OUTPUT
6
C18
C1
7 NC
8
9
VGG1
VGG2
R1
10
11 NC
R2
C9
C17
Z13
Quiescent Current
Temperature
Compensation
13
12
C11
C2
Z1
Z2
Z3
Z4
Z5
Z6
Z7
C3
C5
2.197″
0.016″
0.106″
0.409″
0.161″
0.254″
0.388″
C13
C15
C21
C22
C7
x 0.083″
x 0.083″
x 0.055″
x 0.322″
x 0.322″
x 0.322″
x 0.123″
Microstrip
x 0.055″ Taper
Microstrip
Microstrip
Microstrip
Microstrip
Microstrip
Z8
Z9
Z10
Z11
Z12, Z13
PCB
0.204″ x 0.083″ Microstrip
0.273″ x 0.083″ Microstrip
0.176″ x 0.083″ Microstrip
0.364″ x 0.083″ Microstrip
0.564″ x 0.083″ Microstrip
Arlon Cuclad 250GX - 0300 - 55 - 22, 0.030″, εr = 2.5
Figure 3. MW7IC2240NR1(GNR1)(NBR1) Test Circuit Schematic
Table 6. MW7IC2240NR1(GNR1)(NBR1) Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
C1
8.2 pF Chip Capacitor
ATC100B8R2BT250XT
ATC
C2, C16
0.4 pF Chip Capacitors
ATC700B0R4BT500XT
ATC
C3, C14, C15
4.7 μF, 50 V Chip Capacitors
GRM31CR71H475KA12L
Murata
C4, C5, C19, C20, C21, C22
10 μF, 50 V Chip Capacitors
GRM55DR61H106KA88B
Murata
C6, C7, C10, C11
5.6 pF Chip Capacitors
ATC100B5R6BT250XT
ATC
C8, C9
0.3 pF Chip Capacitors
ATC700B0R3BT500XT
ATC
C12, C13
0.1 μF Chip Capacitors
C1206C104K5RAC
Kemet
C17
0.6 pF Chip Capacitor
ATC100B0R6BT250XT
ATC
C18
6.8 pF Chip Capacitor
ATC100B6R8BT250XT
ATC
C23
470 μF, 63 V Electrolytic Capacitor
477KXM063M
Illinois
R1, R2
10 KΩ, 1/4 W Chip Resistors
CRCW12061001FKEA
Vishay
MW7IC2240NR1 MW7IC2240GNR1 MW7IC2240NBR1
RF Device Data
Freescale Semiconductor
5
C23
C10 C12
C14
C4
C19
C6
C7
C3
C1 R1
VGG1
C16
CUT OUT AREA
C2
MW7IC2240N
Rev. 2a
C8
C9
C18
C17
C5
R2
C20
C21
C22
C11 C13
C15
Figure 4. MW7IC2240NR1(GNR1)(NBR1) Test Circuit Component Layout
MW7IC2240NR1 MW7IC2240GNR1 MW7IC2240NBR1
6
RF Device Data
Freescale Semiconductor
32
16
15
31.8
PAE
14
VDD = 28 Vdc, Pout = 4 W (Avg.)
IDQ1 = 90 mA, IDQ2 = 420 mA
Gps
31.2
−47
Single−Carrier W−CDMA 3.84 MHz
Channel Bandwidth, Input Signal
PAR = 7.5 dB @ 0.01% Probability
(CCDF)
ACPR−U
31
30.8
ACPR−L
30.6
30.4
13
−48
−4
−49
−8
−50
−51
IRL
30.2
−52
30
2060
2080
2100
2120
2140
2160
2180
−20
−24
−53
2220
2200
−12
−16
IRL, INPUT RETURN
LOSS (dB)
31.4
ACPR (dBc)
Gps, POWER GAIN (dB)
31.6
PAE, POWER
ADDED
EFFICIENCY (%)
TYPICAL CHARACTERISTICS
f, FREQUENCY (MHz)
25
31.4
PAE
Gps, POWER GAIN (dB)
31.2
31
30.8
24
Gps
ACPR−U
30.6
30.4
ACPR−L
23
VDD = 28 Vdc, Pout = 10 W (Avg.)
−38
IDQ1 = 90 mA, IDQ2 = 420 mA
Single−Carrier W−CDMA 3.84 MHz
−39
Channel Bandwidth, Input Signal
PAR = 7.5 dB @ 0.01% Probability (CCDF) −40
−41
30.2
30
IRL
−42
29.8
29.6
2060
−43
2080
2100
2120
2140
2160
2180
−4
−8
−44
2220
2200
−12
−16
−20
IRL, INPUT RETURN
LOSS (dB)
26
ACPR (dBc)
31.6
PAE, POWER
ADDED
EFFICIENCY (%)
Figure 5. Power Gain, Input Return Loss, Power Added
Efficiency and ACPR versus Frequency @ Pout = 4 Watts Avg.
−24
f, FREQUENCY (MHz)
Figure 6. Power Gain, Input Return Loss, Power Added
Efficiency and ACPR versus Frequency @ Pout = 10 Watts Avg.
34
33
IDQ2 = 630 mA
Gps, POWER GAIN (dB)
Gps, POWER GAIN (dB)
420 mA
31
315 mA
30
210 mA
29
28
VDD = 28 Vdc, IDQ1 = 90 mA
f1 = 2135 MHz, f2 = 2145 MHz
Two−Tone Measurement, 10 MHz Tone Spacing
27
IDQ1 = 135 mA
33
525 mA
32
32
112.5 mA
31
90 mA
30
67.5 mA
29
28
45 mA
27
26
26
1
10
100
1
VDD = 28 Vdc, IDQ2 = 420 mA
f1 = 2135 MHz, f2 = 2145 MHz
Two−Tone Measurement, 10 MHz Tone Spacing
10
Pout, OUTPUT POWER (WATTS) PEP
Pout, OUTPUT POWER (WATTS) PEP
Figure 7. Two - Tone Power Gain versus
Output Power @ IDQ1 = 90 mA
Figure 8. Two - Tone Power Gain versus
Output Power @ IDQ2 = 420 mA
100
MW7IC2240NR1 MW7IC2240GNR1 MW7IC2240NBR1
RF Device Data
Freescale Semiconductor
7
TYPICAL CHARACTERISTICS
−10
VDD = 28 Vdc, IDQ1 = 90 mA
f1 = 2135 MHz, f2 = 2145 MHz
Two−Tone Measurements, 10 MHz Tone Spacing
−20
IDQ2 = 210 mA
−30
IMD, THIRD ORDER
INTERMODULATION DISTORTION (dBc)
315 mA
630 mA
−40
525 mA
−50
135 mA
VDD = 28 Vdc, IDQ2 = 420 mA
f1 = 2135 MHz, f2 = 2145 MHz
Two−Tone Measurements, 10 MHz Tone Spacing
−20
IDQ1 = 45 mA
−30
67.5 mA
−40
112.5 mA
−50
135 mA
−60
−60
1
100
10
1
10
Pout, OUTPUT POWER (WATTS) PEP
VDD = 28 Vdc, IDQ1 = 90 mA
IDQ2 = 420 mA, f1 = 2135 MHz, f2 = 2145 MHz
Two−Tone Measurements, 10 MHz Tone Spacing
−30
3rd Order
−50
5th Order
7th Order
−60
1
10
VDD = 28 Vdc, Pout = 40 W (PEP), IDQ1 = 90 mA
IDQ2 = 420 mA, Two−Tone Measurements
(f1 + f2)/2 = Center Frequency of 2140 MHz
−20
IM3−U
−30
IM3−L
−40
IM5−U
IM7−U
−50
IM5−L
IM7−L
−60
100
1
10
100
Pout, OUTPUT POWER (WATTS) PEP
TWO−TONE SPACING (MHz)
Figure 11. Intermodulation Distortion
Products versus Output Power
Figure 12. Intermodulation Distortion
Products versus Tone Spacing
38
54
53
P6dB = 47.77 dBm (59.84 W)
Ideal
Gps, POWER GAIN (dB)
50
P1dB = 46.23 dBm (42 W)
49
48
Actual
47
46
45
43
11
12
13
14
15
16
17
TC = −30_C
−30_C
25_C
18
19
20
21
32
30
45
40
35
30
85_C
25
28
20
26
VDD = 28 Vdc
IDQ1 = 90 mA
IDQ2 = 420 mA
f = 2140 MHz
PAE
22
20
22
85_C
25_C
24
VDD = 28 Vdc, IDQ1 = 90 mA, IDQ2 = 420 mA
Pulsed CW, 12 μsec(on), 1% Duty Cycle
f = 2140 MHz
44
Gps
34
P3dB = 57.22 dBm (52.76 W)
51
50
36
52
Pout, OUTPUT POWER (dBm)
−10
IMD, INTERMODULATION DISTORTION (dBc)
IMD, INTERMODULATION DISTORTION (dBc)
Figure 10. Third Order Intermodulation Distortion
versus Output Power @ IDQ2 = 420 mA
−10
−40
100
Pout, OUTPUT POWER (WATTS) PEP
Figure 9. Third Order Intermodulation Distortion
versus Output Power @ IDQ1 = 90 mA
−20
90 mA
1
10
Pin, INPUT POWER (dBm)
Pout, OUTPUT POWER (WATTS) CW
Figure 13. Pulsed CW Output Power versus
Input Power
Figure 14. Power Gain and Power Added
Efficiency versus CW Output Power
15
10
PAE, POWER ADDED EFFICIENCY (%)
IMD, THIRD ORDER
INTERMODULATION DISTORTION (dBc)
−10
5
100
MW7IC2240NR1 MW7IC2240GNR1 MW7IC2240NBR1
8
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS
36
32
IDQ1 = 90 mA
IDQ2 = 420 mA
f = 2140 MHz
30
29
28
27
32 V
28 V
TC = −30_C
34
Gps, POWER GAIN (dB)
Gps, POWER GAIN (dB)
31
32
25_C
30
85_C
28
26
IDQ1 = 90 mA
IDQ2 = 420 mA
Pout = 15 W
VDD = 24 V
26
2060
25
0
10
20
30
40
50
60
70
80
2080
2100
2120
2140
2160
2180
2200
Pout, OUTPUT POWER (WATTS) CW
f, FREQUENCY (MHz)
Figure 15. Power Gain versus Output Power
Figure 16. Power Gain versus Frequency
2220
109
MTTF (HOURS)
108
1st Stage
107
2nd Stage
106
105
90
110
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (°C)
This above graph displays calculated MTTF in hours when the device
is operated at VDD = 28 Vdc, Pout = 4 W Avg., and PAE = 14%.
MTTF calculator available at http:/www.freescale.com/rf. Select
Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
Figure 17. MTTF versus Junction Temperature
MW7IC2240NR1 MW7IC2240GNR1 MW7IC2240NBR1
RF Device Data
Freescale Semiconductor
9
W - CDMA TEST SIGNAL
100
−10
3.84 MHz
Channel BW
−20
10
1
−40
Input Signal
Compressed Output
Signal @ 4 W Pout
0.1
−50
(dB)
PROBABILITY (%)
−30
0.01
−70
W−CDMA. ACPR Measured in 3.84 MHz
Channel Bandwidth @ "5 MHz Offset.
PAR = 7.5 dB @ 0.01% Probability on
CCDF
0.001
0.0001
0
2
4
6
−60
−80
−ACPR in 3.84 MHz
Integrated BW
−90
8
10
−ACPR in 3.84 MHz
Integrated BW
−100
PEAK−TO−AVERAGE (dB)
Figure 18. CCDF W - CDMA 3GPP, Test Model 1,
64 DPCH, 50% Clipping, Single - Carrier Test Signal
−110
−9
−7.2 −5.4 −3.6 −1.8
0
1.8
3.6
5.4
7.2
9
f, FREQUENCY (MHz)
Figure 19. Single - Carrier W - CDMA Spectrum
MW7IC2240NR1 MW7IC2240GNR1 MW7IC2240NBR1
10
RF Device Data
Freescale Semiconductor
Zo = 50 Ω
Zin
f = 2060 MHz
f = 2220 MHz
f = 2220 MHz
Zload
f = 2060 MHz
VDD = 28 Vdc, IDQ1 = 90 mA, IDQ2 = 420 mA, Pout = 4 W Avg.
f
MHz
Zin
W
Zload
W
2060
48.171 + j6.940
6.868 - j9.687
2080
52.454 + j11.553
6.432 - j8.942
2100
55.468 + j8.729
6.051 - j8.216
2120
56.312 + j12.000
5.729 - j7.545
2140
58.860 + j9.463
5.444 - j6.869
2160
57.596 + j11.427
5.193 - j6.201
2180
59.603 + j10.690
4.958 - j5.578
2200
56.867 + j10.012
4.743 - j4.969
58.144 + j9.805
4.577 - j4.353
2220
Zin
=
Device input impedance as measured from
gate to ground.
Zload =
Test circuit impedance as measured
from drain to ground.
Output
Matching
Network
Device
Under Test
Z
in
Z
load
Figure 20. Series Equivalent Input and Load Impedance
MW7IC2240NR1 MW7IC2240GNR1 MW7IC2240NBR1
RF Device Data
Freescale Semiconductor
11
Table 7. Common Source S - Parameters (VDD = 28 V, IDQ1 = 90 mA, IDQ2 = 420 mA, TC = 255C, 50 Ohm System)
S11
S21
S12
S22
f
MHz
|S11|
∠φ
|S21|
∠φ
|S12|
∠φ
|S22|
∠φ
1500
0.452
134
0.356
7.81
0.001
- 108
0.979
160
1550
0.407
117
0.757
- 7.8
0.000
- 67.7
0.969
157
1600
0.354
96.5
1.430
- 31
0.000
- 65.8
0.955
154
1650
0.316
85.1
2.330
- 52.1
0.001
- 27.1
0.935
151
1700
0.279
68
3.690
- 73.6
0.001
- 43.4
0.909
148
1750
0.222
49.5
5.800
- 93.3
0.002
- 21.9
0.878
143
1800
0.140
30.4
9.570
- 113
0.003
- 24.8
0.833
137
1850
0.046
21.9
17.000
- 137
0.004
- 33.7
0.737
124
1900
0.094
135
33.600
- 173
0.007
- 41.8
0.476
91.7
1950
0.238
56.4
58.300
124
0.009
- 86.4
0.396
- 79.7
2000
0.254
- 29.2
47.800
59.5
0.006
- 118
0.873
- 149
2050
0.241
- 84.1
34.300
22.9
0.004
- 122
0.927
- 171
2100
0.252
- 120
27.700
- 3.98
0.004
- 125
0.911
- 179
2150
0.201
- 142
23.900
- 28.2
0.003
- 128
0.891
177
2200
0.174
- 162
21.100
- 51.8
0.003
- 130
0.878
175
2250
0.148
168
18.800
- 75.9
0.003
- 131
0.872
175
2300
0.135
103
15.800
- 100
0.003
- 139
0.882
175
2350
0.197
35.4
12.600
- 118
0.003
- 155
0.906
174
2400
0.244
1.73
11.100
- 132
0.002
- 156
0.919
173
2450
0.291
- 11.1
10.400
- 147
0.002
- 157
0.926
171
2500
0.340
- 19
9.750
- 163
0.002
- 147
0.933
170
2550
0.391
- 26.9
9.230
- 179
0.001
- 150
0.938
169
2600
0.435
- 35.2
8.760
164
0.001
- 144
0.942
168
2650
0.475
- 44.4
8.290
146
0.001
- 137
0.945
166
2700
0.455
- 46
7.050
129
0.001
- 90.2
0.950
166
2750
0.535
- 60.2
6.690
112
0.001
- 106
0.955
164
2800
0.571
- 71.2
5.980
95.1
0.001
- 103
0.955
163
2850
0.598
- 82
5.170
78.5
0.002
- 96.5
0.954
162
2900
0.623
- 92.9
4.370
63.1
0.002
- 103
0.955
162
2950
0.643
- 102
3.690
48.7
0.002
- 96.2
0.954
161
3000
0.668
- 109
3.100
35.4
0.002
- 106
0.951
161
3050
0.681
- 116
2.580
22.7
0.002
- 107
0.952
161
3100
0.694
- 121
2.130
11
0.002
- 87.9
0.957
160
3150
0.712
- 124
1.760
- 0.057
0.002
- 96.1
0.959
160
3200
0.724
- 127
1.440
- 10.9
0.002
- 99.6
0.959
160
3250
0.726
- 130
1.170
- 21.1
0.002
- 82.4
0.962
159
3300
0.705
- 130
0.928
- 28.7
0.003
- 66.9
0.963
159
3350
0.743
- 132
0.780
- 37
0.003
- 77.2
0.959
158
3400
0.748
- 135
0.652
- 44.3
0.003
- 88
0.955
157
3450
0.753
- 137
0.555
- 50.3
0.003
- 78.6
0.955
156
MW7IC2240NR1 MW7IC2240GNR1 MW7IC2240NBR1
12
RF Device Data
Freescale Semiconductor
Table 7. Common Source S - Parameters (VDD = 28 V, IDQ1 = 90 mA, IDQ2 = 420 mA, TC = 255C, 50 Ohm System)
(continued)
S11
S21
S12
S22
f
MHz
|S11|
∠φ
|S21|
∠φ
|S12|
∠φ
|S22|
∠φ
3500
0.759
- 140
0.486
- 56.1
0.004
- 81.1
0.954
155
3550
0.765
- 144
0.440
- 62.4
0.004
- 82
0.946
154
3600
0.770
- 148
0.401
- 69.7
0.004
- 85.9
0.941
153
3650
0.774
- 153
0.370
- 77.4
0.005
- 96.4
0.941
151
3700
0.780
- 159
0.338
- 85.1
0.006
- 94.9
0.940
150
3750
0.795
- 164
0.306
- 93.2
0.006
- 99.3
0.933
148
3800
0.810
- 170
0.273
- 101
0.008
- 110
0.928
146
3850
0.821
- 175
0.239
- 107
0.008
- 113
0.934
145
3900
0.839
- 178
0.207
- 111
0.008
- 112
0.936
144
3950
0.855
179
0.178
- 114
0.008
- 117
0.927
144
4000
0.862
176
0.156
- 116
0.008
- 123
0.935
144
MW7IC2240NR1 MW7IC2240GNR1 MW7IC2240NBR1
RF Device Data
Freescale Semiconductor
13
PACKAGE DIMENSIONS
MW7IC2240NR1 MW7IC2240GNR1 MW7IC2240NBR1
14
RF Device Data
Freescale Semiconductor
MW7IC2240NR1 MW7IC2240GNR1 MW7IC2240NBR1
RF Device Data
Freescale Semiconductor
15
MW7IC2240NR1 MW7IC2240GNR1 MW7IC2240NBR1
16
RF Device Data
Freescale Semiconductor
MW7IC2240NR1 MW7IC2240GNR1 MW7IC2240NBR1
RF Device Data
Freescale Semiconductor
17
MW7IC2240NR1 MW7IC2240GNR1 MW7IC2240NBR1
18
RF Device Data
Freescale Semiconductor
MW7IC2240NR1 MW7IC2240GNR1 MW7IC2240NBR1
RF Device Data
Freescale Semiconductor
19
MW7IC2240NR1 MW7IC2240GNR1 MW7IC2240NBR1
20
RF Device Data
Freescale Semiconductor
MW7IC2240NR1 MW7IC2240GNR1 MW7IC2240NBR1
RF Device Data
Freescale Semiconductor
21
MW7IC2240NR1 MW7IC2240GNR1 MW7IC2240NBR1
22
RF Device Data
Freescale Semiconductor
PRODUCT DOCUMENTATION
Refer to the following documents to aid your design process.
Application Notes
• AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
• AN1949: Mounting Method for the MHVIC910HR2 (PFP - 16) and Similar Surface Mount Packages
• AN1955: Thermal Measurement Methodology of RF Power Amplifiers
• AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over - Molded Plastic Packages
Engineering Bulletins
• EB212: Using Data Sheet Impedances for RF LDMOS Devices
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
0
Nov. 2007
Description
• Initial Release of Data Sheet
MW7IC2240NR1 MW7IC2240GNR1 MW7IC2240NBR1
RF Device Data
Freescale Semiconductor
23
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1 - 8 - 1, Shimo - Meguro, Meguro - ku,
Tokyo 153 - 0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1 - 800 - 441 - 2447 or 303 - 675 - 2140
Fax: 303 - 675 - 2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2007. All rights reserved.
MW7IC2240NR1 MW7IC2240GNR1 MW7IC2240NBR1
Document Number: MW7IC2240N
Rev. 0, 11/2007
24
RF Device Data
Freescale Semiconductor
Similar pages