PD - 97189B IRGB4061DPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features • • • • • • • • • • Low VCE (ON) Trench IGBT Technology Low switching losses Maximum Junction temperature 175 °C 5 μS short circuit SOA Square RBSOA 100% of the parts tested for 4X rated current (ILM) Positive VCE (ON) Temperature co-efficient Ultra fast soft Recovery Co-Pak Diode Tight parameter distribution Lead Free Package C VCES = 600V IC = 18A, TC = 100°C tSC ≥ 5μs, TJ(max) = 175°C G VCE(on) typ. = 1.65V E n-channel Benefits C • High Efficiency in a wide range of applications • Suitable for a wide range of switching frequencies due to Low VCE (ON) and Low Switching losses • Rugged transient Performance for increased reliability • Excellent Current sharing in parallel operation • Low EMI E C G TO-220AB G Gate C Collector E Emitter Absolute Maximum Ratings Max. Units VCES Collector-to-Emitter Voltage Parameter 600 V IC @ TC = 25°C Continuous Collector Current 36 IC @ TC = 100°C Continuous Collector Current 18 ICM ILM Pulse Collector Current Clamped Inductive Load Current IF @ TC = 25°C Diode Continous Forward Current IF @ TC = 100°C IFM Diode Continous Forward Current Diode Maximum Forward Current VGE Continuous Gate-to-Emitter Voltage ±20 Transient Gate-to-Emitter Voltage ±30 PD @ TC = 25°C Maximum Power Dissipation 206 PD @ TC = 100°C Maximum Power Dissipation 103 TJ Operating Junction and TSTG Storage Temperature Range 72 c 72 A 36 18 e 72 V W -55 to +175 °C Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal Resistance Min. Typ. Max. Units RθJC (IGBT) Thermal Resistance Junction-to-Case-(each IGBT) Parameter ––– ––– 0.73 °C/W RθJC (Diode) Thermal Resistance Junction-to-Case-(each Diode) ––– ––– 2.00 RθCS Thermal Resistance, Case-to-Sink (flat, greased surface) ––– 0.50 ––– RθJA Thermal Resistance, Junction-to-Ambient (typical socket mount) ––– 80 ––– 1 www.irf.com 09/06/07 IRGB4061DPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. V(BR)CES Collector-to-Emitter Breakdown Voltage Parameter 600 — — ΔV(BR)CES/ΔTJ Temperature Coeff. of Breakdown Voltage — 0.40 — — 1.65 1.95 — 2.05 — — 2.15 — 4.0 — 6.5 VCE(on) VGE(th) Collector-to-Emitter Saturation Voltage Gate Threshold Voltage Max. Units ΔVGE(th)/ΔTJ Threshold Voltage temp. coefficient — -18 — gfe ICES Forward Transconductance — 12 — Collector-to-Emitter Leakage Current — 2.0 25 — 550 — — 2.30 3.30 — 1.6 — — — ±100 VFM IGES Diode Forward Voltage Drop Gate-to-Emitter Leakage Current V Conditions VGE = 0V, IC = 100μA Ref.Fig f CT6 V/°C VGE = 0V, IC = 1mA (25°C-175°C) IC = 18A, VGE = 15V, TJ = 25°C V CT6 5,6,7 IC = 18A, VGE = 15V, TJ = 150°C 9,10,11 IC = 18A, VGE = 15V, TJ = 175°C V VCE = VGE, IC = 500μA 9, 10, mV/°C VCE = VGE, IC = 1.0mA (25°C - 175°C) S VCE = 50V, IC = 18A, PW = 80μs μA VGE = 0V, VCE = 600V V IF = 18A 11, 12 VGE = 0V, VCE = 600V, TJ = 175°C 8 IF = 18A, TJ = 175°C nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. Qg Total Gate Charge (turn-on) Parameter — 35 Max. Units 55 Qge Gate-to-Emitter Charge (turn-on) — 10 15 Conditions nC Gate-to-Collector Charge (turn-on) — 15 25 Turn-On Switching Loss — 95 140 Eoff Turn-Off Switching Loss — 350 405 Etotal Total Switching Loss — 445 545 td(on) Turn-On delay time — 40 55 IC = 18A, VCC = 400V, VGE = 15V RG = 22Ω, L = 200μH, LS = 150nH Rise time — 25 35 Turn-Off delay time — 105 120 tf Fall time — 25 35 Eon Turn-On Switching Loss — 285 — Eoff Turn-Off Switching Loss — 570 — Etotal Total Switching Loss — 855 — td(on) Turn-On delay time — 40 — tr Rise time — 25 — td(off) Turn-Off delay time — 120 — tf Fall time — 40 — Cies Input Capacitance — 1043 — CT1 VCC = 400V Qgc td(off) 24 VGE = 15V Eon tr Ref.Fig IC = 18A IC = 18A, VCC = 400V, VGE = 15V μJ CT4 RG = 22Ω, L = 200μH, LS = 150nH Energy losses include tail & diode reverse recovery ns CT4 IC = 18A, VCC = 400V, VGE=15V μJ RG=22Ω, L=200μH, LS=150nH, TJ = 175°C f Energy losses include tail & diode reverse recovery IC = 18A, VCC = 400V, VGE = 15V ns 13, 15 CT4 WF1, WF2 14, 16 RG = 22Ω, L = 200μH, LS = 150nH CT4 TJ = 175°C WF1 WF2 pF VGE = 0V Coes Output Capacitance — 87 — VCC = 30V Cres Reverse Transfer Capacitance — 32 — f = 1.0Mhz TJ = 175°C, IC = 72A RBSOA Reverse Bias Safe Operating Area FULL SQUARE SCSOA Short Circuit Safe Operating Area 5 23 4 VCC = 480V, Vp =600V CT2 Rg = 22Ω, VGE = +15V to 0V — — μs VCC = 400V, Vp =600V 22, CT3 Rg = 22Ω, VGE = +15V to 0V Erec trr Reverse Recovery Energy of the Diode Irr WF4 — μJ TJ = 175°C 100 — ns VCC = 400V, IF = 18A 23 — A VGE = 15V, Rg = 22Ω, L =200μH, Ls = 150nH — 260 Diode Reverse Recovery Time — Peak Reverse Recovery Current — 17, 18, 19 20, 21 WF3 Notes: VCC = 80% (VCES), VGE = 20V, L = 100μH, RG = 22Ω. This is only applied to TO-220AB package. Pulse width limited by max. junction temperature. Refer to AN-1086 for guidelines for measuring V(BR)CES safely. 2 www.irf.com IRGB4061DPbF 40 250 35 200 30 150 Ptot (W) IC (A) 25 20 15 100 10 50 5 0 0 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 T C (°C) T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 10μsec IC (A) IC (A) 10 100μsec 10 1 1msec Tc = 25°C Tj = 175°C Single Pulse DC 0.1 1 1 10 100 1000 10000 10 100 VCE (V) VCE (V) Fig. 3 - Forward SOA TC = 25°C, TJ ≤ 175°C; VGE =15V Fig. 4 - Reverse Bias SOA TJ = 175°C; VGE =15V 90 90 80 70 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 70 60 50 40 50 40 30 30 20 20 10 10 0 0 0 1 2 3 4 VCE (V) 5 6 7 Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80μs www.irf.com VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 80 ICE (A) ICE (A) 60 1000 8 0 1 2 3 4 5 6 7 8 VCE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80μs 3 IRGB4061DPbF 90 100 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 80 70 60 50 IF (A) ICE (A) 60 -40°c 25°C 175°C 80 40 40 30 20 20 10 0 0 0 1 2 3 4 5 6 7 8 0.0 1.0 2.0 VCE (V) 20 20 18 18 16 16 14 14 ICE = 9.0A ICE = 18A ICE = 36A 10 8 12 8 6 4 4 2 2 0 5 10 15 5 20 10 20 180 18 160 16 140 14 T J = 25°C T J = 175°C 120 ICE (A) ICE = 9.0A ICE = 18A 10 ICE = 36A 8 20 Fig. 10 - Typical VCE vs. VGE TJ = 25°C Fig. 9 - Typical VCE vs. VGE TJ = -40°C 12 15 VGE (V) VGE (V) VCE (V) 5.0 ICE = 9.0A ICE = 18A ICE = 36A 10 6 0 100 80 60 6 4 40 2 20 0 0 5 10 15 VGE (V) Fig. 11 - Typical VCE vs. VGE TJ = 175°C 4 4.0 Fig. 8 - Typ. Diode Forward Characteristics tp = 80μs VCE (V) VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 175°C; tp = 80μs 12 3.0 VF (V) 20 0 5 10 15 20 VGE (V) Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10μs www.irf.com IRGB4061DPbF 1400 1000 1200 Swiching Time (ns) Energy (μJ) 1000 EOFF 800 600 EON 400 tdOFF 100 tF tdON 200 tR 0 10 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 45 IC (A) IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 175°C; L = 200μH; VCE = 400V, RG = 22Ω; VGE = 15V Fig. 14 - Typ. Switching Time vs. IC TJ = 175°C; L = 200μH; VCE = 400V, RG = 22Ω; VGE = 15V 900 1000 800 700 Swiching Time (ns) EOFF Energy (μJ) 600 500 EON 400 300 tdOFF 100 tdON 200 tF 100 tR 0 10 0 25 50 75 100 125 0 25 Fig. 15 - Typ. Energy Loss vs. RG TJ = 175°C; L = 200μH; VCE = 400V, ICE = 18A; VGE = 15V 100 125 Fig. 16 - Typ. Switching Time vs. RG TJ = 175°C; L = 200μH; VCE = 400V, ICE = 18A; VGE = 15V 35 40 RG = 10Ω 30 35 30 RG = 22Ω 25 25 20 IRR (A) IRR (A) 75 RG (Ω) Rg (Ω) RG = 47Ω 15 20 15 RG = 100Ω 10 10 5 5 0 0 0 10 20 30 IF (A) Fig. 17 - Typ. Diode IRR vs. IF TJ = 175°C www.irf.com 50 40 0 25 50 75 100 125 RG (Ω) Fig. 18 - Typ. Diode IRR vs. RG TJ = 175°C 5 IRGB4061DPbF 40 1600 35 1400 10Ω 30 36A QRR (μC) IRR (A) 22Ω 1200 25 20 15 47Ω 1000 18A 800 100Ω 10 9.0A 600 5 400 0 0 500 1000 0 1500 500 Fig. 20 - Typ. Diode QRR vs. diF/dt VCC = 400V; VGE = 15V; TJ = 175°C Fig. 19 - Typ. Diode IRR vs. diF/dt VCC = 400V; VGE = 15V; IF = 18A; TJ = 175°C 400 RG = 10Ω RG = 22Ω Time (μs) 250 RG = 47Ω 200 150 100 RG = 100Ω 50 20 120 18 110 16 100 14 90 12 80 10 70 8 60 6 50 4 40 2 30 20 0 0 0 10 20 30 40 8 10 12 IF (A) 16 18 Fig. 22 - VGE vs. Short Circuit Time VCC = 400V; TC = 25°C 16 VGE, Gate-to-Emitter Voltage (V) 10000 Capacitance (pF) 14 VGE (V) Fig. 21 - Typ. Diode ERR vs. IF TJ = 175°C Cies 1000 100 Coes Cres V CES = 300V 14 V CES = 400V 12 10 8 6 4 2 0 10 0 20 40 60 80 VCE (V) Fig. 23 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 6 Current (A) Energy (μJ) 300 1500 diF /dt (A/μs) diF /dt (A/μs) 350 1000 100 0 5 10 15 20 25 30 35 Q G, Total Gate Charge (nC) Fig. 24 - Typical Gate Charge vs. VGE ICE = 18A; L = 600μH www.irf.com IRGB4061DPbF 1 Thermal Response ( Z thJC ) D = 0.50 0.20 0.1 0.10 0.05 τJ 0.02 0.01 R1 R1 τJ τ1 0.01 R2 R2 τ2 τ1 Ri (°C/W) τi (sec) 0.3193 0.000273 τC τ 0.4104 τ2 0.004525 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) Thermal Response ( Z thJC ) 10 D = 0.50 1 0.20 0.10 0.05 0.1 τJ 0.02 0.01 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 R1 R1 τJ τ1 R2 R2 τ2 τ1 τ2 Ci= τi/Ri Ci τi/Ri R3 R3 τ3 τC τ τ3 Ri (°C/W) τi (sec) 0.244 0.000084 1.102 0.001770 0.655 0.013544 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 7 IRGB4061DPbF L L VC C D UT 0 80 V DU T 4 80V Rg 1K Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit d io de cl amp / DU T 4x DC L - 5V 360V DU T / D RIVER DUT VCC Rg Fig.C.T.3 - S.C. SOA Circuit R= Fig.C.T.4 - Switching Loss Circuit VCC ICM C force 400μH D1 10K C sense DUT VCC G force DUT 0.0075μ Rg E sense E force Fig.C.T.5 - Resistive Load Circuit 8 Fig.C.T.6 - BVCES Filter Circuit www.irf.com IRGB4061DPbF 600 500 30 600 25 500 20 400 300 15 300 5% ICE 10 VCE (V) VCE (V) 400 200 50 tr 90% ICE tf 60 40 TEST C 90% test 30 200 20 10% test 100 5% VCE 0 EOFF Loss -100 -5.70 -5.20 5 100 0 0 -5 -4.20 -4.70 QRR 0.15 500 250 400 200 tRR 10 VCE 300 150 0 Peak IRR 10% Peak IRR -20 200 100 100 50 0 -30 0.05 0.15 0 -100 -5.00 0.00 5.00 -50 10.00 time (μS) time (μS) Fig. WF3 - Typ. Diode Recovery Waveform @ TJ = 175°C using Fig. CT.4 Fig. WF4 - Typ. S.C. Waveform @ TJ = 25°C using Fig. CT.3 www.irf.com I CE (A) ICE VCE (V) I RR (A) 0.05 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175°C using Fig. CT.4 30 -40 -0.05 -0.05 -10 0.25 Time (μs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175°C using Fig. CT.4 -10 0 EON -100 -0.15 Time(μs) 20 10 5% VCE 9 IRGB4061DPbF TO-220AB Package Outline (Dimensions are shown in millimeters (inches)) 10- For the most current drawing please refer to IR website at http://www.irf.com/package/pkigbt.html TO-220AB Part Marking Information EXAMPLE: T HIS IS AN IRF1010 LOT CODE 1789 AS S EMBLED ON WW 19, 2000 IN THE AS S EMBLY LINE "C" Note: "P" in as sembly line position indicates "Lead - Free" INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER DAT E CODE YEAR 0 = 2000 WEEK 19 LINE C TO-220AB packages are not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 09/07 10 www.irf.com