STMicroelectronics M74HC623 Octal bus transceiver hc620 3 state inverting hc623 3 state non inverting Datasheet

M54/74HC620
M54/74HC623
OCTAL BUS TRANSCEIVER
HC620 3 STATE INVERTING HC623 3 STATE NON INVERTING
.
.
.
.
.
.
.
.
HIGH SPEED
tPD = 10 ns (TYP.) AT VCC = 5 V
LOW POWER DISSIPATION
ICC = 4 µA (MAX.) AT TA = 25 °C
HIGH NOISE IMMUNITY
VNIH = VNIL = 28 % VCC (MIN.)
OUTPUT DRIVE CAPABILITY
15 LSTTL LOADS
SYMMETRICAL OUTPUT IMPEDANCE
|IOH| = IOL = 6 mA (MIN.)
BALANCED PROPAGATION DELAYS
tPLH = tPHL
WIDE OPERATING VOLTAGE RANGE
VCC (OPR) = 2 V to 6 V
PIN AND FUNCTION COMPATIBLE
WITH LS620/623
B1R
(Plastic Package)
F1R
(Ceramic Package)
M1R
(Micro Package)
C1R
(Chip Carrier)
ORDER CODES :
M54HCXXXF1R
M74HCXXXM1R
M74HCXXXB1R
M74HCXXXC1R
DESCRIPTION
The M54/74HC620/623 are high speed CMOS
OCTAL BUS TRANSCEIVERS fabricated in silicon
2
gate C MOS technology. They have the same high
speed performance of LSTTL combined with true
CMOS low power consumption.
PIN CONNECTIONS (top view)
These octal bus transceivers are designed for asynchronous two-way communication between data
buses. The control function implementation allows
maximum flexibility in timing.
These devices allow data transmission from the A
bus to B bus or from the B to the A bus depending
upon the logic levels at the enable inputs (GBA and
GAB). The enable inputs can be used to disable the
device so that the buses are effectively isolated.
The dual-enable configuration gives these devices
the capability to store data by simultaneous enabling
of GBA and GAB.
Each output reinforces its input in this transceiver
configuration. Thus, when both control inputs are
enabled and all other data sources to the two sets
of bus lines are at high impedance, both sets of bus
lines (16 in all) will remain at their last states. The 8bit codes appearing on the two sets of buses will be
identical for the ’HC623 or complementary for the
’HC620. All inputs are equipped with protection circuits against static discharge and transient excess
voltage.
October 1992
NC =
No Internal
Connection
1/11
M54/M74HC620/623
INPUT AND OUTPUT EQUIVALENT CIRCUIT
TRUTH TABLE
INPUTS
OUTPUS
GAB
GBA
A Bus
B Bus
HC620
HC623
L
H
L
H
Output
Input
Input
Output
A=B
B=A
A=B
B=A
L
H
High Impedance
Z
Z
H
L
High Impedance
Z
Z
LOGIC DIAGRAM
2/11
FUNCTION
M54/M74HC620/623
PIN DESCRIPTION
PIN No
SYMBOL
1, 19
2, 3, 4, 5, 6, 7, 8, 9
GBA , GAB
A1 to A8
11, 12, 13, 14, 15, 16, 17, 18
B1 to B8
10
20
GND
VCC
NAME AND FUNCTION
Direction Controls
Data Inputs/Outputs
Data Inputs/Outputs
Ground (0V)
Positive Supply Voltage
IEC LOGIC SYMBOLS
HC620
HC623
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
VCC
Supply Voltage
VI
VO
DC Input Voltage
DC Output Voltage
IIK
IOK
IO
ICC or IGND
Value
Unit
-0.5 to +7
V
-0.5 to VCC + 0.5
-0.5 to VCC + 0.5
V
V
DC Input Diode Current
± 20
mA
DC Output Diode Current
DC Output Source Sink Current Per Output Pin
± 20
± 35
mA
mA
DC VCC or Ground Current
± 70
mA
500 (*)
-65 to +150
mW
o
C
PD
Tstg
Power Dissipation
Storage Temperature
TL
Lead Temperature (10 sec)
300
o
C
Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition isnotimplied.
(*) 500 mW: ≅ 65 oC derate to 300 mW by 10mW/oC: 65 oC to 85 oC
3/11
M54/M74HC620/623
RECOMMENDED OPERATING CONDITIONS
Symbol
Parameter
VCC
VI
Supply Voltage
Input Voltage
VO
Output Voltage
Top
Operating Temperature: M54HC Series
M74HC Series
Input Rise and Fall Time
tr, tf
Value
Unit
2 to 6
0 to VCC
V
V
0 to VCC
V
o
-55 to +125
-40 to +85
0 to 1000
VCC = 2 V
VCC = 4.5 V
0 to 500
VCC = 6 V
0 to 400
C
C
ns
o
DC SPECIFICATIONS
Test Conditions
Symbol
VIH
V IL
V OH
VOL
Parameter
High Level Input
Voltage
Low Level Input
Voltage
High Level
Output Voltage
Low Level Output
Voltage
VCC
(V)
2.0
Min.
1.5
4.5
3.15
6.0
2.0
4.2
Typ.
6.0
2.0
Max.
-40 to 85 oC -55 to 125 oC
74HC
54HC
Min.
1.5
Max.
3.15
Min.
1.5
4.2
0.5
0.5
1.35
1.35
1.35
1.8
2.0
1.9
1.9
4.4
4.5
4.4
4.4
6.0
4.5
5.9
4.18
6.0
4.31
5.9
4.13
5.9
4.10
6.0
IO=-7.8 mA
5.68
5.8
5.63
5.60
2.0
4.5
4.5
6.0
V
1.8
1.9
VI =
IO=-20 µA
VIH
or
V IL IO=-6.0 mA
4.5
V
0.5
1.8
Unit
Max.
3.15
4.2
4.5
6.0
II
Value
TA = 25 oC
54HC and 74HC
V
0.0
0.0
0.1
0.1
0.1
0.1
0.1
0.1
0.0
0.1
0.1
0.1
0.17
0.18
0.26
0.26
0.33
0.33
0.40
0.40
VI = VCC or GND
±0.1
±1
±1
µA
VI =
IO= 20 µA
VIH
or
V IL IO= 6.0 mA
IO= 7.8 mA
V
Input Leakage
Current
6.0
IOZ
3 State Output
Off State Current
6.0
VI = VIH or VIL
VO = VCC or GND
±0.5
±5
±10
µA
ICC
Quiescent Supply
Current
6.0
VI = VCC or GND
4
40
80
µA
4/11
M54/M74HC620/623
AC ELECTRICAL CHARACTERISTICS (C L = 50 pF, Input t r = tf = 6 ns)
Test Conditions
Symbol
Parameter
VCC
(V)
CL
(pF)
tTLH
tTHL
Output Transition
Time
2.0
4.5
50
tPLH
tPHL
Propagation
Delay Time
(for HC620)
6.0
2.0
4.5
6.0
tPLH
tPHL
tPZL
tPZH
tPLZ
tPHZ
CIN
CPD (*)
Propagation
Delay Time
(for HC623)
Output Enable
Time
Output Disable
Time
Input Capacitance
Power Dissipation
Capacitance
2.0
4.5
6.0
2.0
4.5
TA = 25 oC
54HC and 74HC
Min.
50
150
50
Value
-40 to 85 oC -55 to 125 oC
74HC
54HC
Min.
Max.
75
15
Min.
Max.
90
18
Unit
Typ.
25
7
Max.
60
12
6
41
12
10
10
100
20
17
13
125
25
21
15
150
30
26
55
16
14
38
12
130
26
22
85
17
165
33
28
105
21
195
39
33
130
26
10
51
16
14
14
130
26
22
18
165
33
28
22
195
39
33
ns
ns
ns
ns
ns
6.0
2.0
4.5
6.0
150
2.0
4.5
6.0
50
RL = 1 KΩ
57
19
16
150
30
26
190
38
32
225
45
38
ns
2.0
4.5
150
RL = 1 KΩ
69
23
180
36
225
45
270
54
ns
20
43
31
125
38
155
46
190
18
15
25
21
31
26
38
32
ns
5
32
34
10
10
10
pF
0
2.0
4.5
6.0
50
RL = 1 KΩ
for HC620
for HC623
pF
CPD isdefined as the value of the IC’s internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer
to Test Circuit). Average operting current can be obtained by the following equation. ICC(opr) = CPD •VCC •fIN + ICC
5/11
M54/M74HC620/623
SWITCHING CHARACTERISTICS TEST WAVEFORM
V CC
GND
TEST CIRCUIT ICC (Opr.)
C PD CALCULATION
CPD is to be calculated with the following formula
by using the measured value of ICC (Opr.) in the
test circuit opposite.
ICC (Opr.)
CPD =
fIN x VCC
In determining the typical value of CPD, a relatively high frequency of 1 MHz was applied to fIN,
in order to eliminate any error caused by the
quiescent supply current.
INPUT WAVEFORM IS THE SAME AS THAT IN CASE OF
SWITCHING CHARACTERISTICSTEST.
6/11
M54/M74HC620/623
Plastic DIP20 (0.25) MECHANICAL DATA
mm
DIM.
MIN.
a1
0.254
B
1.39
TYP.
inch
MAX.
MIN.
TYP.
MAX.
0.010
1.65
0.055
0.065
b
0.45
0.018
b1
0.25
0.010
D
25.4
1.000
E
8.5
0.335
e
2.54
0.100
e3
22.86
0.900
F
7.1
0.280
I
3.93
0.155
L
Z
3.3
0.130
1.34
0.053
P001J
7/11
M54/M74HC620/623
Ceramic DIP20 MECHANICAL DATA
mm
DIM.
MIN.
TYP.
inch
MAX.
MIN.
TYP.
MAX.
A
25
0.984
B
7.8
0.307
D
E
3.3
0.5
e3
0.130
1.78
0.020
22.86
0.070
0.900
F
2.29
2.79
0.090
0.110
G
0.4
0.55
0.016
0.022
I
1.27
1.52
0.050
0.060
L
0.22
0.31
0.009
0.012
M
0.51
1.27
0.020
0.050
N1
P
Q
4° (min.), 15° (max.)
7.9
8.13
5.71
0.311
0.320
0.225
P057H
8/11
M54/M74HC620/623
SO20 MECHANICAL DATA
mm
DIM.
MIN.
TYP.
A
a1
inch
MAX.
MIN.
TYP.
2.65
0.10
0.104
0.20
a2
MAX.
0.004
0.007
2.45
0.096
b
0.35
0.49
0.013
0.019
b1
0.23
0.32
0.009
0.012
C
0.50
0.020
c1
45° (typ.)
D
12.60
13.00
0.496
0.512
E
10.00
10.65
0.393
0.419
e
1.27
0.050
e3
11.43
0.450
F
7.40
7.60
0.291
0.299
L
0.50
1.27
0.19
0.050
M
S
0.75
0.029
8° (max.)
P013L
9/11
M54/M74HC620/623
PLCC20 MECHANICAL DATA
mm
DIM.
MIN.
TYP.
inch
MAX.
MIN.
TYP.
MAX.
A
9.78
10.03
0.385
0.395
B
8.89
9.04
0.350
0.356
D
4.2
4.57
0.165
0.180
d1
2.54
0.100
d2
0.56
0.022
E
7.37
8.38
0.290
0.330
e
1.27
0.050
e3
5.08
0.200
F
0.38
0.015
G
0.101
0.004
M
1.27
0.050
M1
1.14
0.045
P027A
10/11
M54/M74HC620/623
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No
license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned
in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
SGS-THOMSON Microelectronics products are not authorized for use ascritical components in life support devices or systems without express
written approval of SGS-THOMSON Microelectonics.
 1994 SGS-THOMSON Microelectronics - All Rights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A
11/11
Similar pages