Freescale MPX5010GP Integrated silicon pressure sensor on-chip signal conditioned, temperature compensated and calibrated Datasheet

Freescale Semiconductor
Technical Data
MPX5010
Rev 11, 01/2007
Integrated Silicon Pressure Sensor
On-Chip Signal Conditioned,
Temperature Compensated and
Calibrated
MPX5010
MPXV5010G
SERIES
INTEGRATED
PRESSURE SENSOR
0 to 10 kPa (0 to 1.45 psi)
0.2 to 4.7 V OUTPUT
The MPX5010/MPXV5010G series piezoresistive transducers are state-ofthe-art monolithic silicon pressure sensors designed for a wide range of
applications, but particularly those employing a microcontroller or
microprocessor with A/D inputs. This transducer combines advanced
micromachining techniques, thin-film metallization, and bipolar processing to
provide an accurate, high level analog output signal that is proportional to the
applied pressure.
Features
• 5.0% Maximum Error over 0° to 85°C
• Ideally Suited for Microprocessor or Microcontroller-Based Systems
• Durable Epoxy Unibody and Thermoplastic (PPS) Surface Mount Package
• Temperature Compensated over –40° to +125°C
• Patented Silicon Shear Stress Strain Gauge
• Available in Differential and Gauge Configurations
• Available in Surface Mount (SMT) or Through-hole (DIP) Configurations
Application Examples
• Hospital Beds
• HVAC
• Respiratory Systems
• Process Control
ORDERING INFORMATION
Device
Case
MPX Series
Packing
Device
Options
Type
No.
Order No.
Options
Marking
SMALL OUTLINE PACKAGE (MPXV5010G SERIES)
Basic Gauge, Element Only, SMT
482
MPXV5010G6U
Rails MPXV5010G
Elements Gauge, Element Only, DIP
482B MPXV5010G7U
Rails MPXV5010G
Ported Gauge, Axial Port, SMT
482A MPXV5010GC6U Rails MPXV5010G
Elements Gauge, Axial Port, DIP
482C MPXV5010GC7U Rails MPXV5010G
Gauge, Axial Port, SMT
482A MPXV5010GC6T1 Tape & MPXV5010G
Reel
Gauge, Side Port, SMT
1369 MPXV5010GP
Trays MPXV5010G
Gauge, Dual Port, SMT
1351 MPXV5010DP
Trays MPXV5010G
UNIBODY PACKAGE (MPX2202 SERIES)
Basic Differential
867
MPX5010D
—
MPXV5010D
Element
Ported Differential, Gauge
867C MPX5010DP
—
MPXV5010DP
Elements Gauge
867B MPX5010GP
—
MPXV5010GP
Gauge, Axial
867E MPX5010GS
—
MPXV5010D
Gauge, Axial PC Mount
867F MPX5010GSX
—
MPXV5010D
SMALL OUTLINE PACKAGE
MPXV5010G6U
CASE 482-01
MPXV5010GC6U/C6T1
CASE 482A-01
J
MPXV5010G7U
CASE 482B-03
MPXV5010GP
CASE 1369-01
MPXV5010GC7U
CASE 482C-03
MPXV5010DP
CASE 1351-01
UNIBODY PACKAGE PIN NUMBERS(1)
1
Vout
4
N/C
2
3
Gnd
VS
5
6
N/C
N/C
1. Pins 4, 5, and 6 are internal device connections. Do
not connect to external circuitry or ground. Pin 1 is
noted by the notch in the lead.
SMALL OUTLINE PACKAGE
PIN NUMBERS(1)
1
2
N/C
VS
5
6
N/C
N/C
3
4
Gnd
Vout
7
8
N/C
N/C
1. Pins 1, 5, 6, 7, and 8 are internal device
connections. Do not connect to external circuitry or
ground. Pin 1 is noted by the notch in the lead.
UNIBODY PACKAGES
MPX5010D
CASE 867-08
MPX5010GP
CASE 867B-04
© Freescale Semiconductor, Inc., 2007. All rights reserved.
MPX5010DP
CASE 867C-05
MPX5010GS
CASE 867E-03
MPX5010GSX
CASE 867F-03
VS
Thin Film
Temperature
Compensation
and
Gain Stage #1
Sensing
Element
GND
Gain Stage #2
and
Ground
Reference
Shift Circuitry
Vout
Pins 1 and 5 through 8 are NO CONNECTS
for surface mount package
Pins 4, 5, and 6 are NO CONNECTS for
unibody package
Figure 1. Fully Integrated Pressure Sensor Schematic
Table 1. Maximum Ratings(1)
Rating
Symbol
Value
Unit
Maximum Pressure (P1 > P2)
Pmax
75
kPa
Storage Temperature
Tstg
–40 to +125
°C
Operating Temperature
TA
–40 to +125
°C
1. Exposure beyond the specified limits may cause permanent damage or degradation to the device.
MPX5010
2
Sensors
Freescale Semiconductor
Table 2. Operating Characteristics (VS = 5.0 Vdc, TA = 25°C unless otherwise noted, P1 > P2. Decoupling circuit shown in
Figure 3 required to meet specification.)
Characteristic
Symbol
Min
Typ
Max
Unit
Pressure Range(1)
POP
0
—
10
kPa
Supply Voltage(2)
VS
4.75
5.0
5.25
Vdc
Supply Current
Io
—
5.0
10
mAdc
Minimum Pressure Offset(3)
@ VS = 5.0 Volts
(0 to 85°C)
Voff
0
0.2
0.425
Vdc
Full Scale Output(4)
@ VS = 5.0 Volts
(0 to 85°C)
VFSO
4.475
4.7
4.925
Vdc
Full Scale Span(5)
@ VS = 5.0 Volts
(0 to 85°C)
VFSS
4.275
4.5
4.725
Vdc
Accuracy(6)
(0 to 85°C)
—
—
—
±5.0
%VFSS
V/P
—
450
—-
mV/kPa
Response Time(7)
tR
—
1.0
—-
ms
Output Source Current at Full Scale Output
IO+
—
0.1
—-
mAdc
Warm-Up Time(8)
—
—
20
—-
ms
Offset Stability(9)
—
—
±0.5
—-
%VFSS
Sensitivity
1. 1.0 kPa (kiloPascal) equals 0.145 psi.
2. Device is ratiometric within this specified excitation range.
3. Offset (Voff) is defined as the output voltage at the minimum rated pressure.
4. Full Scale Output (VFSO) is defined as the output voltage at the maximum or full rated pressure.
5. Full Scale Span (VFSS) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the
minimum rated pressure.
6. Accuracy (error budget) consists of the following:
• Linearity:
Output deviation from a straight line relationship with pressure over the specified pressure range.
• Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to
and from the minimum or maximum operating temperature points, with zero differential pressure applied.
• Pressure Hysteresis:
Output deviation at any pressure within the specified range, when this pressure is cycled to and from the
minimum or maximum rated pressure, at 25°C.
• TcSpan:
Output deviation over the temperature range of 0° to 85°C, relative to 25°C.
• TcOffset:
Output deviation with minimum rated pressure applied, over the temperature range of 0° to 85°C, relative to
25°C.
• Variation from Nominal: The variation from nominal values, for Offset or Full Scale Span, as a percent of VFSS, at 25°C.
7. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to
a specified step change in pressure.
8. Warm-up Time is defined as the time required for the product to meet the specified output voltage after the Pressure has been stabilized.
9. Offset Stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.
Table 3. Mechanical Characteristics
Characteristics
Typ
Unit
Weight, Basic Element (Case 867)
4.0
grams
Weight, Basic Element (Case 482)
1.5
grams
MPX5010
Sensors
Freescale Semiconductor
3
ON-CHIP TEMPERATURE COMPENSATION, CALIBRATION AND SIGNAL CONDITIONING
The performance over temperature is achieved by
integrating the shear-stress strain gauge, temperature
compensation, calibration and signal conditioning circuitry
onto a single monolithic chip.
Figure 2 illustrates the Differential or Gauge configuration
in the basic chip carrier (Case 482). A fluorosilicone gel
isolates the die surface and wire bonds from the environment,
while allowing the pressure signal to be transmitted to the
sensor diaphragm.
The MPX5010 and MPXV5010G series pressure sensor
operating characteristics, and internal reliability and
qualification tests are based on use of dry air as the pressure
media. Media, other than dry air, may have adverse effects on
Fluoro Silicone
Gel Die Coat
sensor performance and long-term reliability. Contact the
factory for information regarding media compatibility in your
application.
Figure 3 shows the recommended decoupling circuit for
interfacing the integrated sensor to the A/D input of a
microprocessor or microcontroller. Proper decoupling of the
power supply is recommended.
Figure 4 shows the sensor output signal relative to
pressure input. Typical, minimum, and maximum output
curves are shown for operation over a temperature range of
0° to 85°C using the decoupling circuit shown in Figure 3. The
output will saturate outside of the specified pressure range.
Stainless
Steel Cap
Die
+5 V
P1
Thermoplastic
Case
Wire Bond
Vout
OUTPUT
Vs
Lead
Frame
IPS
1.0 µF
P2
0.01 µF
GND
470 pF
Die Bond
Differential Sensing
Element
Figure 2. Cross-Sectional Diagram SOP
(not to scale)
Figure 3. Recommended Power Supply Decoupling
and Output Filtering
(For additional output filtering, please refer to
Application Note AN1646.)
5.0
Transfer Function:
Vout = VS*(0.09*P+0.04) ± ERROR
VS = 5.0 Vdc
TEMP = 0 to 85°C
4.5
4.0
3.5
Output (V)
3.0
2.5
TYPICAL
MAX
2.0
MIN
1.5
1.0
0.5
0
0
1
2
3
4
5
6
7
8
9
10
11
Differential Pressure (kPa)
Figure 4. Output versus Pressure Differential
MPX5010
4
Sensors
Freescale Semiconductor
Transfer Function (MPX5010, MPXV5010G)
Nominal Transfer Value: Vout = VS x (0.09 x P + 0.04)
± (Pressure Error x Temp. Factor x 0.09 x VS)
VS = 5.0 V ± 0.25 Vdc
Temperature Error Band
MPX5010, MPXV5010G SERIES
4.0
3.0
Temperature
Error
Factor
2.0
Temp
Multiplier
–40
0 to 85
+125
3
1
3
1.0
0.0
–40
–20
0
20
40
80
60
100
120
140
Temperature in °C
NOTE: The Temperature Multiplier is a linear response from 0° to –40°C and from 85° to 125°C.
Pressure Error Band
0.5
0.4
0.3
Pressure
Error
(kPa)
0.2
0.1
0
–0.1
Pressure (kPa)
0
1
2
3
4
5
6
7
8
9
10
–0.2
–0.3
–0.4
–0.5
Pressure
0 to 10 (kPa)
Error (Max)
±0.5 (kPa)
MPX5010
Sensors
Freescale Semiconductor
5
PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE
Freescale designates the two sides of the pressure sensor
as the Pressure (P1) side and the Vacuum (P2) side. The
Pressure (P1) side is the side containing fluorosilicone gel
which protects the die from harsh media. The MPX pressure
Part Number
sensor is designed to operate with positive differential
pressure applied, P1 > P2.
The Pressure (P1) side may be identified by using the
table below:
Pressure (P1)
Side Identifier
Case Type
MPX5010D
867
Stainless Steel Cap
MPX5010DP
867C
Side with Part Marking
MPX5010GP
867B
Side with Port Attached
MPX5010GS
867E
Side with Port Attached
MPX5010GSX
867F
Side with Port Attached
MPXV5010G6U
482
Stainless Steel Cap
MPXV5010G7U
482B
Stainless Steel Cap
MPXV5010GC6U/T1
482A
Side with Port Attached
MPXV5010GC7U
482C
Side with Port Attached
MPXV5010GP
1369
Side with Port Attached
MPXV5010DP
1351
Side with Part Marking
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS
Surface mount board layout is a critical portion of the total
design. The footprint for the surface mount packages must be
the correct size to ensure proper solder connection interface
between the board and the package. With the correct
footprint, the packages will self align when subjected to a
solder reflow process. It is always recommended to design
boards with a solder mask layer to avoid bridging and
shorting between solder pads.
0.100 TYP 8X
2.54
0.660
16.76
0.060 TYP 8X
1.52
0.300
7.62
0.100 TYP 8X
2.54
inch
mm
SCALE 2:1
Figure 5. SOP Footprint (Case 482)
MPX5010
6
Sensors
Freescale Semiconductor
PACKAGE DIMENSIONS
-A-
D 8 PL
0.25 (0.010)
4
5
M
T B
S
A
S
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION A AND B DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006).
5. ALL VERTICAL SURFACES 5˚ TYPICAL DRAFT.
-BG
8
1
S
N
H
C
J
-TSEATING
PLANE
PIN 1 IDENTIFIER
K
M
DIM
A
B
C
D
G
H
J
K
M
N
S
INCHES
MIN
MAX
0.415 0.425
0.415 0.425
0.212 0.230
0.038 0.042
0.100 BSC
0.002 0.010
0.009 0.011
0.061 0.071
0˚
7˚
0.405 0.415
0.709 0.725
MILLIMETERS
MIN
MAX
10.54
10.79
10.54
10.79
5.38
5.84
0.96
1.07
2.54 BSC
0.05
0.25
0.23
0.28
1.55
1.80
0˚
7˚
10.29
10.54
18.01
18.41
CASE 482-01
ISSUE O
SMALL OUTLINE PACKAGE
-A-
D
4
0.25 (0.010)
5
N
8 PL
M
T B
S
A
S
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION A AND B DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006).
5. ALL VERTICAL SURFACES 5˚ TYPICAL DRAFT.
-BG
8
1
S
W
V
C
H
J
-TK
M
PIN 1 IDENTIFIER
DIM
A
B
C
D
G
H
J
K
M
N
S
V
W
INCHES
MIN
MAX
0.415 0.425
0.415 0.425
0.500 0.520
0.038 0.042
0.100 BSC
0.002 0.010
0.009 0.011
0.061 0.071
0˚
7˚
0.444 0.448
0.709 0.725
0.245 0.255
0.115 0.125
MILLIMETERS
MIN
MAX
10.54
10.79
10.54
10.79
12.70
13.21
0.96
1.07
2.54 BSC
0.05
0.25
0.23
0.28
1.55
1.80
0˚
7˚
11.28
11.38
18.01
18.41
6.22
6.48
2.92
3.17
SEATING
PLANE
CASE 482A-01
ISSUE A
SMALL OUTLINE PACKAGE
MPX5010
Sensors
Freescale Semiconductor
7
PACKAGE DIMENSIONS
-ANOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006).
5. ALL VERTICAL SURFACES 5˚ TYPICAL DRAFT.
6. DIMENSION S TO CENTER OF LEAD WHEN
FORMED PARALLEL.
4
5
-BG
8
1
0.25 (0.010)
M
T B
D 8 PL
S
A
S
DETAIL X
S
PIN 1 IDENTIFIER
N
C
-T-
SEATING
PLANE
DIM
A
B
C
D
G
J
K
M
N
S
INCHES
MILLIMETERS
MIN
MAX MIN
MAX
0.415
0.425 10.54
10.79
0.415
0.425 10.54
10.79
0.210
0.220
5.33
5.59
0.026
0.034
0.66
0.864
0.100 BSC
2.54 BSC
0.009
0.011
0.23
0.28
0.100
0.120
2.54
3.05
0˚
15˚
0˚
15˚
0.405
0.415 10.29
10.54
0.540
0.560 13.72
14.22
K
M
J
DETAIL X
CASE 482B-03
ISSUE B
SMALL OUTLINE PACKAGE
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006).
5. ALL VERTICAL SURFACES 5˚ TYPICAL DRAFT.
6. DIMENSION S TO CENTER OF LEAD WHEN
FORMED PARALLEL.
-A4
5
N
-BG
0.25 (0.010)
8
1
M
T B
D 8 PL
S
A
S
DIM
A
B
C
D
G
J
K
M
N
S
V
W
DETAIL X
S
W
V
PIN 1
IDENTIFIER
C
-T-
INCHES
MILLIMETERS
MAX
MAX MIN
MIN
10.79
0.425 10.54
0.415
10.79
0.425 10.54
0.415
13.21
0.520 12.70
0.500
0.864
0.66
0.034
0.026
0.100 BSC
2.54 BSC
0.28
0.23
0.011
0.009
3.05
2.54
0.120
0.100
15˚
0˚
15˚
0˚
11.38
0.448 11.28
0.444
14.22
0.560 13.72
0.540
6.48
6.22
0.255
0.245
3.17
2.92
0.125
0.115
SEATING
PLANE
K
M
J
DETAIL X
CASE 482C-03
ISSUE B
SMALL OUTLINE PACKAGE
MPX5010
8
Sensors
Freescale Semiconductor
PACKAGE DIMENSIONS
C
R
POSITIVE PRESSURE
(P1)
M
B
-AN
PIN 1
SEATING
PLANE
1
2
3
4
5
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION -A- IS INCLUSIVE OF THE MOLD
STOP RING. MOLD STOP RING NOT TO EXCEED
16.00 (0.630).
DIM
A
B
C
D
F
G
J
L
M
N
R
S
L
6
-TG
J
S
F
D 6 PL
0.136 (0.005)
STYLE 1:
PIN 1.
2.
3.
4.
5.
6.
VOUT
GROUND
VCC
V1
V2
VEX
STYLE 2:
PIN 1.
2.
3.
4.
5.
6.
OPEN
GROUND
-VOUT
VSUPPLY
+VOUT
OPEN
M
T A
M
STYLE 3:
PIN 1.
2.
3.
4.
5.
6.
INCHES
MILLIMETERS
MAX
MIN
MAX MIN
16.00
0.595
0.630 15.11
13.56
0.514
0.534 13.06
5.59
0.200
0.220
5.08
0.84
0.027
0.033
0.68
1.63
0.048
0.064
1.22
0.100 BSC
2.54 BSC
0.40
0.014
0.016
0.36
18.42
0.695
0.725 17.65
30˚ NOM
30˚ NOM
12.57
0.475
0.495 12.07
11.43
0.430
0.450 10.92
0.090
0.105
2.29
2.66
OPEN
GROUND
+VOUT
+VSUPPLY
-VOUT
OPEN
CASE 867-08
ISSUE N
UNIBODY PACKAGE
MPX5010
Sensors
Freescale Semiconductor
9
PACKAGE DIMENSIONS
PAGE 1 OF 2
CASE 867B-04
ISSUE G
UNIBODY PACKAGE
MPX5010
10
Sensors
Freescale Semiconductor
PACKAGE DIMENSIONS
PAGE 2 OF 2
CASE 867B-04
ISSUE G
UNIBODY PACKAGE
MPX5010
Sensors
Freescale Semiconductor
11
PACKAGE DIMENSIONS
P
0.25 (0.010)
M
T Q
-A-
M
U
W
X
R
PORT #1
POSITIVE
PRESSURE
(P1)
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: INCH.
DIM
A
B
C
D
F
G
J
K
L
N
P
Q
R
S
U
V
W
X
L
V
PORT #2 VACUUM (P2)
PORT #1 POSITIVE
PRESSURE (P1)
N
-Q-
PORT #2
VACUUM
(P2)
B
PIN 1
1
2
3
4
5
K
6
C
SEATING
PLANE
-T-
-T-
S
SEATING
PLANE
D 6 PL
0.13 (0.005)
G
J
F
M
A
INCHES
MIN
MAX
1.145
1.175
0.685
0.715
0.405
0.435
0.027
0.033
0.048
0.064
0.100 BSC
0.014
0.016
0.695
0.725
0.290
0.300
0.420
0.440
0.153
0.159
0.153
0.159
0.063
0.083
0.220
0.240
0.910 BSC
0.182
0.194
0.310
0.330
0.248
0.278
STYLE 1:
PIN 1.
2.
3.
4.
5.
6.
M
MILLIMETERS
MIN
MAX
29.08
29.85
17.40
18.16
10.29
11.05
0.68
0.84
1.22
1.63
2.54 BSC
0.36
0.41
17.65
18.42
7.37
7.62
10.67
11.18
3.89
4.04
3.89
4.04
1.60
2.11
5.59
6.10
23.11 BSC
4.62
4.93
7.87
8.38
6.30
7.06
VOUT
GROUND
VCC
V1
V2
VEX
CASE 867C-05
ISSUE F
UNIBODY PACKAGE
-B-
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
A
C
DIM
A
B
C
D
E
F
G
J
K
N
S
V
V
PIN 1
PORT #1
POSITIVE
PRESSURE
(P1)
6
K
J
N
5
-T-
3
2
1
S
G
F
E
4
D 6 PL
0.13 (0.005)
M
T B
M
INCHES
MILLIMETERS
MAX
MAX
MIN
MIN
18.28
0.720 17.53
0.690
6.48
6.22
0.245
0.255
20.82
0.780
0.820 19.81
0.84
0.69
0.027
0.033
4.72
4.52
0.178
0.186
1.63
1.22
0.048
0.064
0.100 BSC
2.54 BSC
0.41
0.36
0.014
0.016
9.53
8.76
0.345
0.375
7.87
7.62
0.310
0.300
6.10
5.59
0.220
0.240
4.93
4.62
0.182
0.194
STYLE 1:
PIN 1.
2.
3.
4.
5.
6.
VOUT
GROUND
VCC
V1
V2
VEX
CASE 867E-03
ISSUE D
UNIBODY PACKAGE
MPX5010
12
Sensors
Freescale Semiconductor
PACKAGE DIMENSIONS
-TC
A
E
-Q-
U
N
V
B
R
PIN 1
PORT #1
POSITIVE
PRESSURE
(P1)
-P0.25 (0.010)
M
T Q
6
M
5
4
3
2
1
S
K
J
0.13 (0.005)
M
T P
S
D 6 PL
Q S
G
F
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
DIM
A
B
C
D
E
F
G
J
K
N
P
Q
R
S
U
V
INCHES
MILLIMETERS
MAX
MIN
MIN MAX
28.45
27.43
1.080 1.120
19.30
18.80
0.740 0.760
16.51
16.00
0.630 0.650
0.84
0.68
0.027 0.033
4.57
4.06
0.160 0.180
1.63
1.22
0.048 0.064
0.100 BSC
2.54 BSC
0.41
0.36
0.014 0.016
6.10
5.59
0.220 0.240
2.03
1.78
0.070 0.080
4.06
3.81
0.150 0.160
4.06
3.81
0.150 0.160
11.68
11.18
0.440 0.460
18.42
17.65
0.695 0.725
21.84
21.34
0.840 0.860
4.93
4.62
0.182 0.194
STYLE 1:
PIN 1.
2.
3.
4.
5.
6.
VOUT
GROUND
VCC
V1
V2
VEX
CASE 867F-03
ISSUE D
UNIBODY PACKAGE
MPX5010
Sensors
Freescale Semiconductor
13
PACKAGE DIMENSIONS
PAGE 1 OF 2
CASE 1351-01
ISSUE A
SMALL OUTLINE PACKAGE
MPX5010
14
Sensors
Freescale Semiconductor
PACKAGE DIMENSIONS
PAGE 2 OF 2
CASE 1351-01
ISSUE A
SMALL OUTLINE PACKAGE
MPX5010
Sensors
Freescale Semiconductor
15
PACKAGE DIMENSIONS
PAGE 1 OF 2
CASE 1369-01
ISSUE B
SMALL OUTLINE PACKAGE
MPX5010
16
Sensors
Freescale Semiconductor
PACKAGE DIMENSIONS
PAGE 2 OF 2
CASE 1369-01
ISSUE B
SMALL OUTLINE PACKAGE
MPX5010
Sensors
Freescale Semiconductor
17
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
[email protected]
MPX5010
Rev. 11
01/2007
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2007. All rights reserved.
Similar pages