LPC1850/30/20/10 32-bit ARM Cortex-M3 MCU; up to 200 kB SRAM; Ethernet, two High-speed USB, LCD, and external memory controller Rev. 1 — 3 January 2011 Objective data sheet 1. General description The LPC1850/30/20/10 are ARM Cortex-M3 based microcontrollers for embedded applications. The ARM Cortex-M3 is a next generation core that offers system enhancements such as low power consumption, enhanced debug features, and a high level of support block integration. The LPC1850/30/20/10 operate at CPU frequencies of up to 150 MHz. The ARM Cortex-M3 CPU incorporates a 3-stage pipeline and uses a Harvard architecture with separate local instruction and data buses as well as a third bus for peripherals. The ARM Cortex-M3 CPU also includes an internal prefetch unit that supports speculative branching. The LPC1850/30/20/10 include up to 200 kB of on-chip SRAM, a quad SPI Flash Interface (SPIFI), a State Configurable Timer (SCT) subsystem, two High-speed USB controllers, Ethernet, LCD, an external memory controller, and multiple digital and analog peripherals. 2. Features and benefits Processor core ARM Cortex-M3 processor, running at frequencies of up to 150 MHz. ARM Cortex-M3 built-in Memory Protection Unit (MPU) supporting eight regions. ARM Cortex-M3 built-in Nested Vectored Interrupt Controller (NVIC). Non-maskable Interrupt (NMI) input. JTAG and Serial Wire Debug, serial trace, eight breakpoints, and four watch points. ETM and ETB support. System tick timer. On-chip memory 136 kB SRAM for code and data use. Two 32 kB SRAM blocks with separate bus access. Both SRAM blocks can be powered down individually. 32 kB ROM containing boot code and on-chip software drivers. 32-bit One-Time Programmable (OTP) memory for general-purpose customer use. Clock generation unit Crystal oscillator with an operating range of 1 MHz to 25 MHz. 12 MHz internal RC oscillator trimmed to 1 % accuracy. Ultra-low power RTC crystal oscillator. LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Two PLLs allow CPU operation up to the maximum CPU rate without the need for a high-frequency crystal. Second PLL can be used for USB. Clock output. Serial interfaces: Quad SPI Flash Interface (SPIFI) with four lanes and data rates of up to 40 MB per second total. 10/100T Ethernet MAC with RMII and MII interfaces and DMA support for high throughput at low CPU load. One High-speed USB 2.0 Host/Device/OTG interface with DMA support and on-chip PHY. One High-speed USB 2.0 Host/Device interface with DMA support, on-chip full-speed PHY and ULPI interface to external high-speed PHY. Four 550 UARTs with DMA support: one UART with full modem interface; one UART with IrDA interface; three USARTs support synchronous mode and a smart card interface conforming to ISO7816 specification. One C_CAN 2.0B controller with one channel. Two SSP controllers with FIFO and multi-protocol support. Both SSPs with DMA support. One Fast-mode Plus I2C-bus interface with monitor mode and with open-drain I/O pins conforming to the full I2C-bus specification. Supports data rates of up to 1 Mbit/s. One standard I2C-bus interface with monitor mode and standard I/O pins. One I2S interface with DMA support and with one input and one output. Digital peripherals: External Memory Controller (EMC) supporting external SRAM, ROM, NOR flash, and SDRAM devices. LCD controller with DMA support and a programmable display resolution of up to 1024H × 768V. Supports monochrome and color STN panels and TFT color panels; supports 1/2/4/8 bpp CLUT and 16/24-bit direct pixel mapping. SD/MMC card interface. Eight-channel General-Purpose DMA (GPDMA) controller can access all memories on the AHB and all DMA-capable AHB slaves. Up to 80 General-Purpose Input/Output (GPIO) pins with configurable pull-up/pull-down resistors and open-drain modes. GPIO registers are located on the AHB for fast access. GPIO ports have DMA support. State Configurable Timer (SCT) subsystem on AHB. Four general-purpose timer/counters with capture and match capabilities. One motor control PWM for three-phase motor control. One Quadrature Encoder Interface (QEI). Repetitive Interrupt timer (RI timer). Windowed watchdog timer. Ultra-low power Real-Time Clock (RTC) on separate power domain with 256 bytes of battery powered backup registers. Alarm timer; can be battery powered. Analog peripherals: One 10-bit DAC with DMA support and a data conversion rate of 400 kSamples/s. LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 2 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Two 10-bit ADCs with DMA support and a data conversion rate of 400 kSamples/s. Security: AES decryption engine programmable through an on-chip API. Two 128-bit secure OTP memories for AES key storage and customer use. Unique ID for each device. Power: Single 3.3 V (2.2 V to 3.6 V) power supply with on-chip internal voltage regulator for the core supply and the RTC power domain. RTC power domain can be powered separately by a 3 V battery supply. Four reduced power modes: Sleep, Deep-sleep, Power-down, and Deep power-down. Overdrive mode to increase CPU and bus clock frequency. Processor wake-up from Sleep mode via wake-up interrupts from various peripherals. Wake-up from Deep-sleep, Power-down, and Deep power-down modes via external interrupts and interrupts generated by battery powered blocks in the RTC power domain. Brownout detect with four separate thresholds for interrupt and forced reset. Power-On Reset (POR). Available as 208-pin and 144-pin LQFP packages and as 100-pin, 180-pin, and 256-pin LBGA packages. 3. Applications Industrial Consumer White goods RFID readers e-Metering 4. Ordering information Table 1. Ordering information Type number Package Name Description Version LPC1850FET256 LBGA256 plastic low profile ball grid array package; 256 balls; body 17 × 17 × 1 mm sot740-2 LPC1850 LQFP208 <tbd> <tbd> LPC1850 BGA180 <tbd> <tbd> LPC1830FET256 LBGA256 plastic low profile ball grid array package; 256 balls; body 17 × 17 × 1 mm sot740-2 LPC1830 LQFP208 <tbd> <tbd> LPC1830 BGA180 <tbd> <tbd> LPC1820 LQFP144 <tbd> <tbd> LPC1820FET100 BGA100 <tbd> <tbd> LPC1810 LQFP144 <tbd> <tbd> LPC1810FET100 BGA100 <tbd> <tbd> LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 3 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 4.1 Ordering options Table 2. Ordering options Type number SRAM LCD Ethernet USB0 (Host, Device, OTG) USB1 (Host, Device) Package LPC1850 200 kB yes yes yes yes LBGA256 LPC1850 200 kB yes yes yes yes LQFP208 LPC1850 200 kB yes yes yes yes BGA180 LPC1830 200 kB no yes yes yes LBGA256 LPC1830 200 kB no yes yes yes BGA180 LPC1830 200 kB no yes yes yes LQFP208 LPC1820 168 kB no no yes no BGA100 LPC1820 168 kB no no yes no LQFP144 LPC1810 136 kB no no no no BGA100 LPC1810 136 kB no no no no LQFP144 LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 4 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 5. Block diagram SWD/TRACE PORT/JTAG LPC1850/30/20/10 HIGH-SPEED PHY TEST/DEBUG INTERFACE ETHERNET(1) 10/100 MAC IEEE 1588 GPDMA ARM CORTEX-M3 HIGHSPEED USB0(1) HOST/ DEVICE/ OTG USB1(1) HOST/ DEVICE LCD(1) SD/ MMC(1) system bus D-code bus I-code bus masters slaves AHB MULTILAYER MATRIX slaves SPIFI BRIDGE 0 BRIDGE 1 BRIDGE 2 BRIDGE 3 BRIDGE BRIDGE WWDT RI TIMER I2C1 CGU ALARM TIMER 64/96 kB LOCAL SRAM USART0 MOTOR CONTROL PWM USART2 10-bit DAC CCU1 BACKUP REGISTERS 40 kB LOCAL SRAM UART1 I2C0 USART3 C_CAN CCU2 POWER MODE CONTROL 16/32 kB AHB SRAM SSP0 I2S0 TIMER2 10-bit ADC0 RGU CONFIGURATION REGISTERS 16 kB + 16 kB AHB SRAM(1) TIMER0 TIMER3 10-bit ADC1 EVENT ROUTER AES TIMER1 SSP1 OTP MEMORY HS GPIO EMC 32 kB ROM SCU QEI RTC OSC RTC SCT 12 MHz IRC RTC POWER DOMAIN = connected to GPDMA 002aaf218 (1) Not available on all parts (see Table 2). Fig 1. LPC1850/30/20/10 block diagram LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 5 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 6. Pinning information 6.1 Pinning LPC1850/30FET256 ball A1 index area 2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 A B C D E F G H J K L M N P R T 002aaf230 Transparent top view Fig 2. Pin configuration LBGA256 package 6.2 Pin description On the LPC1850/30/20/10, digital pins are grouped into 16 ports, named P0 to P9 and PA to PF, with up to 20 pins used per port. Each digital pin may support up to four different digital functions, including General Purpose I/O (GPIO), selectable through the SYSCON registers. Note that the pin name is not indicative of the GPIO port assigned to it. Analog functions and power pins are pinned out separately and do not share pins with digital functions. Pin description Symbol LBGA256 Table 3. Reset state Type Description [1] Multiplexed digital pins P0_0[2] P0_1[2] LPC1850_30_20_10 Objective data sheet L3 M2 I; PU I; PU I/O GPIO0[0] — General purpose digital input/output pin. I/O SSP1_MISO — Master In Slave Out for SSP1. I ENET_RXD1 — Ethernet receive data 1 (RMII/MII interface). - n.c. I/O GPIO0[1] — General purpose digital input/output pin. I/O SSP1_MOSI — Master Out Slave in for SSP1. I ENET_COL — Ethernet Collision detect (MII interface). - n.c. All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 6 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Pin description …continued Symbol P1_0[2] P1_1[2] P1_2[2] P1_3[2] P1_4[2] P1_5[2] P1_6[2] P1_7[2] P1_8[2] LPC1850_30_20_10 Objective data sheet LBGA256 Table 3. Reset state P2 I; PU R2 R3 P5 T3 R5 T4 T5 R7 Type Description [1] I; PU I; PU I; PU I; PU I; PU I; PU I; PU I; PU I/O GPIO0[4] — General purpose digital input/output pin. I CTIN_3 — SCT input 3. Capture input 1 of timer 1. I/O EXTBUS_A5 — External memory address line 5. - n.c. I/O GPIO0[8] — General purpose digital input/output pin. O CTOUT_7 — SCT output 7. Match output 3 of timer 1. I/O EXTBUS_A6 — External memory address line 6. Boot control pin 0 (see Table 5). - n.c. I/O GPIO0[9] — General purpose digital input/output pin. O CTOUT_6 — SCT output 6. Match output 2 of timer 1. I/O EXTBUS_A7 — External memory address line 7. Boot control pin 1 (see Table 5). - n.c. I/O GPIO0[10] — General purpose digital input/output pin. O CTOUT_8 — SCT output 8. Match output 0 of timer 2. - n.c. O EXTBUS_OE — LOW active Output Enable signal. I/O GPIO0[11] — General purpose digital input/output pin. O CTOUT_9 — SCT output 9. Match output 1 of timer 2. - n.c. O EXTBUS_BLS0 — LOW active Byte Lane select signal 0. I/O GPIO1[8] — General purpose digital input/output pin. O CTOUT_10 — SCT output 10. Match output 2 of timer 2. - n.c. O EXTBUS_CS0 — LOW active Chip Select 0 signal. I/O GPIO1[9] — General purpose digital input/output pin. I CTIN_5 — SCT input 5. Capture input 2 of timer 2. - n.c. O EXTBUS_WE — LOW active Write Enable signal. I/O GPIO1[0] — General purpose digital input/output pin. I U1_DSR — Data Set Ready input for UART1. O CTOUT_13 — SCT output 13. Match output 1 of timer 3. I/O EXTBUS_D0 — External memory data line 0. I/O GPIO1[1] — General purpose digital input/output pin. O U1_DTR — Data Terminal Ready output for UART1. O CTOUT_12 — SCT output 12. Match output 0 of timer 3. I/O EXTBUS_D1 — External memory data line 1. All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 7 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Pin description …continued Symbol P1_9[2] P1_10[2] P1_11[2] P1_12[2] P1_13[2] P1_14[2] P1_15[2] P1_16[2] P1_17[2] LPC1850_30_20_10 Objective data sheet LBGA256 Table 3. Reset state T7 I; PU R8 T9 R9 R10 R11 T12 M7 M8 Type Description [1] I; PU I; PU I; PU I; PU I; PU I; PU I; PU I; PU I/O GPIO1[2] — General purpose digital input/output pin. O U1_RTS — Request to Send output for UART1. O CTOUT_11 — SCT output 11. Match output 3 of timer 2. I/O EXTBUS_D2 — External memory data line 2. I/O GPIO1[3] — General purpose digital input/output pin. I U1_RI — Ring Indicator input for UART1. O CTOUT_14 — SCT output 14. Match output 2 of timer 3. I/O EXTBUS_D3 — External memory data line 3. I/O GPIO1[4] — General purpose digital input/output pin. I U1_CTS — Clear to Send input for UART1. O CTOUT_15 — SCT output 15. Match output 3 of timer 3. I/O EXTBUS_D4 — External memory data line 4. I/O GPIO1[5] — General purpose digital input/output pin. I U1_DCD — Data Carrier Detect input for UART1. - n.c. I/O EXTBUS_D5 — External memory data line 5. I/O GPIO1[6] — General purpose digital input/output pin. O U1_TXD — Transmitter output for UART1. - n.c. I/O EXTBUS_D6 — External memory data line 6. I/O GPIO1[7] — General purpose digital input/output pin. I U1_RXD — Receiver input for UART1. - n.c. I/O EXTBUS_D7 — External memory data line 7. I/O GPIO0[2] — General purpose digital input/output pin. O U2_TXD — Transmitter output for UART2. - n.c. I ENET_RXD0 — Ethernet receive data 0 (RMII/MII interface). I/O GPIO0[3] — General purpose digital input/output pin. I U2_RXD — Receiver input for UART2. - n.c. I ENET_CRS (ENET_CRS_DV) — Ethernet Carrier Sense (MII interface) or Ethernet Carrier Sense/Data Valid (RMII interface). I/O GPIO0[12] — General purpose digital input/output pin. I/O U2_UCLK — Serial clock input/output for UART2 in synchronous mode. - n.c. I/O ENET_MDIO — Ethernet MIIM data input and output. All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 8 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Pin description …continued Symbol P1_18[2] P1_19[2] P1_20[2] P2_0[2] P2_1[2] P2_2[2] P2_3[2] P2_4[2] LPC1850_30_20_10 Objective data sheet LBGA256 Table 3. Reset state N12 I; PU M11 [1] <tbd> M10 I; PU T16 N15 <tbd> <tbd> M15 <tbd> J12 K11 Type Description <tbd> <tbd> I/O GPIO0[13] — General purpose digital input/output pin. I/O U2_DIR — RS-485/EIA-485 output enable/direction control for UART2. - n.c. O ENET_TXD0 — Ethernet transmit data 0 (RMII/MII interface). I ENET_TX_CLK (ENET_REF_CLK) — Ethernet Transmit Clock (MII interface) or Ethernet Reference Clock (RMII interface). I/O SSP1_SCK — Serial clock for SSP1. - n.c. - n.c. I/O GPIO0[15] — General purpose digital input/output pin. I/O SSP1_SSEL — Slave Select for SSP1. - n.c. O ENET_TXD1 — Ethernet transmit data 1 (RMII/MII interface). - n.c. O U0_TXD — Transmitter output for USART0. I/O EXTBUS_A13 — External memory address line 13. O USB0_PWR_EN — VBUS drive signal (towards external charge pump or power management unit); indicates that Vbus must be driven (active high). - n.c. I U0_RXD — Receiver input for USART0. I/O EXTBUS_A12 — External memory address line 12. O USB0_PWR_FAULT — Port power fault signal indicating overcurrent condition; this signal monitors over-current on the USB bus (external circuitry required to detect over-current condition). - n.c. I/O U0_UCLK — Serial clock input/output for USART0 in synchronous mode. I/O EXTBUS_A11 — External memory address line 11. O USB0_IND1 — USB0 port indicator LED control output 1. - n.c. I/O I2C1_SDA — I2C1 data input/output (this pin does not use a specialized I2C pad). O U3_TXD — Transmitter output for USART3. I CTIN_1 — SCT input 1. Capture input 1 of timer 0. Capture input 1 of timer 2. - n.c. I/O I2C1_SCL — I2C1 clock input/output (this pin does not use a specialized I2C pad). I U3_RXD — Receiver input for USART3. I CTIN_0 — SCT input 0. Capture input 0 of timer 0, 1, 2, 3. All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 9 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Pin description …continued Symbol P2_5[3] LBGA256 Table 3. Reset state K14 <tbd> Type Description [1] - n.c. I CTIN_2 — SCT input 2. Capture input 2 of timer 0. I USB1_VBUS — Monitors the presence of USB1 bus power. Note: This signal must be HIGH for USB reset to occur. P2_6[2] P2_7[2] P2_8[2] P2_9[2] P2_10[2] P2_11[2] P2_12[2] P2_13[2] LPC1850_30_20_10 Objective data sheet K16 H14 J16 H16 G16 F16 E15 C16 <tbd> I; PU <tbd> I; PU I; PU I; PU I; PU I; PU I ADCTRIG1 — ADC trigger input 1. - n.c. I/O U0_DIR — RS-485/EIA-485 output enable/direction control for USART0. I/O EXTBUS_A10 — External memory address line 10. O USB0_IND0 — USB0 port indicator LED control output 0. I/O GPIO0[7] — General purpose digital input/output pin. This pin is sampled at RESET for ISP entry. O CTOUT_1 — SCT output 1. Match output 1 of timer 0. I/O U3_UCLK — Serial clock input/output for USART3 in synchronous mode. I/O EXTBUS_A9 — External memory address line 9. - n.c. O CTOUT_0 — SCT output 0. Match output 0 of timer 0. I/O U3_DIR — RS-485/EIA-485 output enable/direction control for USART3. I/O EXTBUS_A8 — External memory address line 8. Boot control pin 2 (see Table 5). I/O GPIO1[10] — General purpose digital input/output pin. O CTOUT_3 — SCT output 3. Match output 3 of timer 0. I/O U3_BAUD3 — <tbd>for USART3. I/O EXTBUS_A0 — External memory address line 0. I/O GPIO0[14] — General purpose digital input/output pin. O CTOUT_2 — SCT output 2. Match output 2 of timer 0. O U2_TXD — Transmitter output for USART2. I/O EXTBUS_A1 — External memory address line 1. I/O GPIO1[11] — General purpose digital input/output pin. O CTOUT_5 — SCT output 5. Match output 1 of timer 1. I U2_RXD — Receiver input for USART2. I/O EXTBUS_A2 — External memory address line 2. I/O GPIO1[12] — General purpose digital input/output pin. O CTOUT_4 — SCT output 4. Match output 0 of timer 1. - n.c. I/O EXTBUS_A3 — External memory address line 3. I/O GPIO1[13] — General purpose digital input/output pin. I CTIN_4 — SCT input 4. Capture input 2 of timer 1. - n.c. I/O EXTBUS_A4 — External memory address line 4. All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 10 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Pin description …continued Symbol P3_0[2] P3_1[2] P3_2[2] P3_3[2] P3_4[2] P3_5[2] P3_6[2] P3_7[2] LPC1850_30_20_10 Objective data sheet LBGA256 Table 3. Reset state F13 <tbd> G11 F11 B14 A15 C12 B13 C11 Type Description [1] <tbd> <tbd> <tbd> I; PU I; PU I; PU <tbd> I/O I2S_RX_SCK — Receive Clock. It is driven by the master and received by the slave. Corresponds to the signal SCK in the I2S-bus specification. O I2S_RX_MCLK — I2S receive master clock. I/O I2S_TX_SCK — I2S transmit clock. It is driven by the master and received by the slave. Corresponds to the signal SCK in the I2S-bus specification. O I2S_TX_MCLK — I2S transmit master clock. I/O I2S_TX_WS — Transmit Word Select. It is driven by the master and received by the slave. Corresponds to the signal WS in the I2S-bus specification. I/O I2S_RX_WS — Receive Word Select. It is driven by the master and received by the slave. Corresponds to the signal WS in the I2S-bus specification. I CAN1_RD — CAN1 receiver input. O USB1_IND1 — USB1 port indicator LED control output 1. I/O I2S_TX_SDA — I2S transmit data. It is driven by the transmitter and read by the receiver. Corresponds to the signal SD in the I2S-bus specification. I/O I2S_RX_SDA — I2S Receive data. It is driven by the transmitter and read by the receiver. Corresponds to the signal SD in the I2S-bus specification. O CAN1_TD — CAN1 transmitter output. O USB1_IND0 — USB1 port indicator LED control output 0. - n.c. - n.c. I/O SSP0_SCK — Serial clock for SSP0. O SPIFI_SCK — Serial clock for SPIFI. I/O GPIO1[14] — General purpose digital input/output pin. - n.c. - n.c. I/O SPIFI_SIO3 — I/O lane 3 for SPIFI. I/O GPIO1[15] — General purpose digital input/output pin. - n.c. - n.c. I/O SPIFI_SIO2 — I/O lane 2 for SPIFI. I/O GPIO0[6] — General purpose digital input/output pin. - n.c. I/O SSP0_SSEL — Slave Select for SSP0. I/O SPIFI_MISO — Input I1 in SPIFI quad mode; SPIFI output IO1. - n.c. - n.c. I/O SSP0_MISO — Master In Slave Out for SSP0. I/O SPIFI_MOSI — Input I0 in SPIFI quad mode; SPIFI output IO0. All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 11 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Pin description …continued Symbol P3_8[2] P4_0[2] P4_1[2] P4_2[2] P4_3[2] P4_4[2] P4_5[2] P4_6[2] P4_7[2] LPC1850_30_20_10 Objective data sheet LBGA256 Table 3. Reset state C10 <tbd> D5 A1 D3 C2 B1 D2 C1 H4 Type Description [1] I; PU I; PU I; PU I; PU I; PU I; PU I; PU <tbd> - n.c. - n.c. I/O SSP0_MOSI — Master Out Slave in for SSP0. I/O SPIFI_CS — SPIFI serial flash chip select. I/O GPIO2[0] — General purpose digital input/output pin. O MCOA0 — Motor control PWM channel 0, output A. I NMI — External interrupt input to NMI. - n.c. I/O GPIO2[1] — General purpose digital input/output pin. O CTOUT_1 — SCT output 1. Match output 1 of timer 0. O LCDVD0 — LCD data. - n.c. I/O GPIO2[2] — General purpose digital input/output pin. O CTOUT_0 — SCT output 0. Match output 0 of timer 0. O LCDVD3 — LCD data. - n.c. I/O GPIO2[3] — General purpose digital input/output pin. O CTOUT_3 — SCT output 0. Match output 3 of timer 0. O LCDVD2 — LCD data. - n.c. I/O GPIO2[4] — General purpose digital input/output pin. O CTOUT_2 — SCT output 2. Match output 2 of timer 0. O LCDVD1 — LCD data. - n.c. I/O GPIO2[5] — General purpose digital input/output pin. O CTOUT_5 — SCT output 5. Match output 1 of timer 1. O LCDFP — Frame pulse (STN). Vertical synchronization pulse (TFT). - n.c. I/O GPIO2[6] — General purpose digital input/output pin. O CTOUT_4 — SCT output 4. Match output 0 of timer 1. O LCDENAB/LCDM — STN AC bias drive or TFT data enable input. - n.c. O LCDDCLK — LCD panel clock. I GP_CLKIN — General purpose clock input to the CGU. - n.c. - n.c. All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 12 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Pin description …continued Symbol P4_8[2] P4_9[2] P4_10[2] P5_0[2] P5_1[2] P5_2[2] P5_3[2] P5_4[2] P5_5[2] LPC1850_30_20_10 Objective data sheet LBGA256 Table 3. Reset state E2 <tbd> L2 M3 N3 P3 R4 T8 P9 P10 Type Description [1] <tbd> <tbd> I; PU I; PU I; PU I; PU I; PU I; PU - n.c. I CTIN_5 — SCT input 5. Capture input 2 of timer 2. O LCDVD9 — LCD data. - n.c. - n.c. I CTIN_6 — SCT input 6. Capture input 1 of timer 3. O LCDVD11 — LCD data. - n.c. - n.c. I CTIN_2 — SCT input 2. Capture input 2 of timer 0. O LCDVD10 — LCD data. - n.c. I/O GPIO2[9] — General purpose digital input/output pin. O MCOB2 — Motor control PWM channel 2, output B. I/O EXTBUS_D12 — External memory data line 12. - n.c. I/O GPIO2[10] — General purpose digital input/output pin. I MCI2 — Motor control PWM channel 2, input. I/O EXTBUS_D13 — External memory data line 13. - n.c. I/O GPIO2[11] — General purpose digital input/output pin. I MCI1 — Motor control PWM channel 1, input. I/O EXTBUS_D14 — External memory data line 14. - n.c. I/O GPIO2[12] — General purpose digital input/output pin. I MCI0 — Motor control PWM channel 0, input. I/O EXTBUS_D15 — External memory data line 15. - n.c. I/O GPIO2[13] — General purpose digital input/output pin. O MCOB0 — Motor control PWM channel 0, output B. I/O EXTBUS_D8 — External memory data line 8. - n.c. I/O GPIO2[14] — General purpose digital input/output pin. O MCOA1 — Motor control PWM channel 1, output A. I/O EXTBUS_D9 — External memory data line 9. - n.c. All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 13 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Pin description …continued Symbol P5_6[2] P5_7[2] P6_0 P6_1[2] P6_2[2] P6_3[2] P6_4[2] P6_5[2] LPC1850_30_20_10 Objective data sheet LBGA256 Table 3. Reset state T13 I; PU R12 [1] I; PU M12 <tbd> R15 L13 P15 R16 P16 Type Description I; PU I; PU I; PU I; PU I; PU I/O GPIO2[15] — General purpose digital input/output pin. O MCOB1 — Motor control PWM channel 1, output B. I/O EXTBUS_D10 — External memory data line 10. - n.c. I/O GPIO2[7] — General purpose digital input/output pin. O MCOA2 — Motor control PWM channel 2, output A. I/O EXTBUS_D11 — External memory data line 11. - n.c. I/O I2S_RX_SCK — Receive Clock. It is driven by the master and received by the slave. Corresponds to the signal SCK in the I2S-bus specification. O I2S_RX_MCLK — I2S receive master clock. - n.c. - n.c. I/O GPIO3[0] — General purpose digital input/output pin. O EXTBUS_DYCS1 — SDRAM chip select 1. I/O U0_UCLK — Serial clock input/output for USART0 in synchronous mode. I/O I2S_RX_WS — Receive Word Select. It is driven by the master and received by the slave. Corresponds to the signal WS in the I2S-bus specification. I/O GPIO3[1] — General purpose digital input/output pin. O EXTBUS_CKEOUT1 — SDRAM clock enable 1. I/O U0_DIR — RS-485/EIA-485 output enable/direction control for USART0. I/O I2S_RX_SDA — I2S Receive data. It is driven by the transmitter and read by the receiver. Corresponds to the signal SD in the I2S-bus specification. I/O GPIO3[2] — General purpose digital input/output pin. O USB0_PWR_EN — VBUS drive signal (towards external charge pump or power management unit); indicates that Vbus must be driven (active high). - n.c. O EXTBUS_CS1 — LOW active Chip Select 1 signal. I/O GPIO3[3] — General purpose digital input/output pin. I CTIN_6 — SCT input 6. Capture input 1 of timer 3. O U0_TXD — Transmitter output for USART0. O EXTBUS_CAS — LOW active SDRAM Column Address Strobe. I/O GPIO3[4] — General purpose digital input/output pin. O CTOUT_6 — SCT output 6. Match output 2 of timer 1. I U0_RXD — Receiver input for USART0. O EXTBUS_RAS — LOW active SDRAM Row Address Strobe. All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 14 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Pin description …continued Symbol P6_6[2] P6_7[2] P6_8[2] P6_9[2] P6_10[2] P6_11[2] P6_12[2] P7_0[2] P7_1[2] LPC1850_30_20_10 Objective data sheet LBGA256 Table 3. Reset state L14 I; PU J13 H13 J15 H15 H12 G15 B16 C14 Type Description [1] <tbd> <tbd> I; PU I; PU I; PU I; PU I; PU I; PU I/O GPIO0[5] — General purpose digital input/output pin. O EXTBUS_BLS1 — LOW active Byte Lane select signal 1. - n.c. O USB0_PWR_FAULT — Port power fault signal indicating overcurrent condition; this signal monitors over-current on the USB bus (external circuitry required to detect over-current condition). - n.c. I/O EXTBUS_A15 — External memory address line 15. - n.c. O USB0_IND1 — USB0 port indicator LED control output 1. - n.c. I/O EXTBUS_A14 — External memory address line 14. - n.c. O USB0_IND0 — USB0 port indicator LED control output 0. I/O GPIO3[5] — General purpose digital input/output pin. - n.c. - n.c. O EXTBUS_DYCS0 — SDRAM chip select 0. I/O GPIO3[6] — General purpose digital input/output pin. O MCABORT — Motor control PWM, LOW-active fast abort. - n.c. O EXTBUS_DQMOUT1 — Data mask 1 used with SDRAM and static devices. I/O GPIO3[7] — General purpose digital input/output pin. - n.c. - n.c. O EXTBUS_CKEOUT0 — SDRAM clock enable 0. I/O GPIO2[8] — General purpose digital input/output pin. O CTOUT_7 — SCT output 7. Match output 3 of timer 1. - n.c. O EXTBUS_DQMOUT0 — Data mask 0 used with SDRAM and static devices. I/O GPIO3[8] — General purpose digital input/output pin. O CTOUT_14 — SCT output 14. Match output 2 of timer 3. - n.c. O LCDLE — Line end signal. I/O GPIO3[9] — General purpose digital input/output pin. O CTOUT_15 — SCT output 15. Match output 3 of timer 3. I/O I2S_TX_WS — Transmit Word Select. It is driven by the master and received by the slave. Corresponds to the signal WS in the I2S-bus specification. O LCDVD19 — LCD data. All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 15 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Pin description …continued Symbol P7_2[2] P7_3[2] P7_4[2] P7_5[2] P7_6[2] P7_7[2] P8_0[2] P8_1[2] P8_2[2] LPC1850_30_20_10 Objective data sheet LBGA256 Table 3. Reset state A16 I; PU C13 C8 A7 C7 B6 E5 H5 K4 Type Description [1] I; PU I; PU I; PU I; PU I; PU I; PU I; PU I; PU I/O GPIO3[10] — General purpose digital input/output pin. I CTIN_4 — SCT input 4. Capture input 2 of timer 1. I/O I2S_TX_SDA — I2S transmit data. It is driven by the transmitter and read by the receiver. Corresponds to the signal SD in the I2S-bus specification. O LCDVD18 — LCD data. I/O GPIO3[11] — General purpose digital input/output pin. I CTIN_3 — SCT input 3. Capture input 1 of timer 1. - n.c. O LCDVD17 — LCD data. I/O GPIO3[12] — General purpose digital input/output pin. O CTOUT_13 — SCT output 13. Match output 1 of timer 3. - n.c. O LCDVD16 — LCD data. I/O GPIO3[13] — General purpose digital input/output pin. O CTOUT_12 — SCT output 12. Match output 0 of timer 3. - n.c. O LCDVD8 — LCD data. I/O GPIO3[14] — General purpose digital input/output pin. O CTOUT_11 — SCT output 1. Match output 3 of timer 2. - n.c. O LCDLP — Line synchronization pulse (STN). Horizontal synchronization pulse (TFT). I/O GPIO3[15] — General purpose digital input/output pin. O CTOUT_8 — SCT output 8. Match output 0 of timer 2. - n.c. O LCDPWR — LCD panel power enable. I/O GPIO4[0] — General purpose digital input/output pin. O USB0_PWR_FAULT — Port power fault signal indicating overcurrent condition; this signal monitors over-current on the USB bus (external circuitry required to detect over-current condition). - n.c. I MCI2 — Motor control PWM channel 2, input. I/O GPIO4[1] — General purpose digital input/output pin. O USB0_IND1 — USB0 port indicator LED control output 1. - n.c. I MCI1 — Motor control PWM channel 1, input. I/O GPIO4[2] — General purpose digital input/output pin. O USB0_IND0 — USB0 port indicator LED control output 0. - n.c. I MCI0 — Motor control PWM channel 0, input. All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 16 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Pin description …continued Symbol P8_3[2] P8_4[2] P8_5[2] P8_6[2] P8_7[2] P8_8[2] P9_0[2] P9_1[2] P9_2[2] LPC1850_30_20_10 Objective data sheet LBGA256 Table 3. Reset state J3 I; PU J2 J1 K3 K1 L1 T1 N6 N8 Type Description [1] I; PU I; PU I; PU I; PU <tbd> I; PU I; PU I; PU I/O GPIO4[3] — General purpose digital input/output pin. I/O USB1_ULPI_D2 — ULPI link bidirectional data line 2. - n.c. O LCDVD12 — LCD data. I/O GPIO4[4] — General purpose digital input/output pin. I/O USB1_ULPI_D1 — ULPI link bidirectional data line 1. - n.c. O LCDVD7 — LCD data. I/O GPIO4[5] — General purpose digital input/output pin. I/O USB1_ULPI_D0 — ULPI link bidirectional data line 0. - n.c. O LCDVD6 — LCD data. I/O GPIO4[6] — General purpose digital input/output pin. I USB1_ULPI_NXT — ULPI link NXT signal. Data flow control signal from the PHY. - n.c. O LCDVD5 — LCD data. I/O GPIO4[7] — General purpose digital input/output pin. O USB1_ULPI_STP — ULPI link STP signal. Asserted to end or interrupt transfers to the PHY. - n.c. O LCDVD4 — LCD data. - n.c. I USB1_ULPI_CLK — ULPI link CLK signal. 60 MHz clock generated by the PHY. - n.c. - n.c. I/O GPIO4[12] — General purpose digital input/output pin. O MCABORT — Motor control PWM, LOW-active fast abort. - n.c. - n.c. I/O GPIO4[13] — General purpose digital input/output pin. O MCOA2 — Motor control PWM channel 2, output A. - n.c. - n.c. I/O GPIO4[14] — General purpose digital input/output pin. O MCOB2 — Motor control PWM channel 2, output B. - n.c. - n.c. All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 17 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Pin description …continued Symbol P9_3[2] P9_4[2] P9_5[2] P9_6[2] PA_0[2] PA_1[2] PA_2[2] PA_3[2] PA_4[2] LPC1850_30_20_10 Objective data sheet LBGA256 Table 3. Reset state M6 I; PU N10 M9 L11 L12 J14 K15 H11 G13 Type Description [1] <tbd> <tbd> I; PU <tbd> I; PU I; PU I; PU <tbd> I/O GPIO4[15] — General purpose digital input/output pin. O MCOA0 — Motor control PWM channel 0, output A. O USB1_IND1 — USB1 Port indicator LED control output 1. - n.c. - n.c. O MCOB0 — Motor control PWM channel 0, output B. O USB1_IND0 — USB1 Port indicator LED control output 0. - n.c. - n.c. O MCOA1 — Motor control PWM channel 1, output A. O USB1_VBUS_EN — USB1 VBUS power enable. - n.c. I/O GPIO4[11] — General purpose digital input/output pin. O MCOB1 — Motor control PWM channel 1, output B. O USB1_PWR_FAULT — USB1 Port power fault signal indicating over-current condition; this signal monitors over-current on the USB1 bus (external circuitry required to detect over-current condition). - n.c. - n.c. O SPIFI_SCK — Serial clock for SPIFI. - n.c. - n.c. I/O GPIO4[8] — General purpose digital input/output pin. I QEI_IDX — Quadrature Encoder Interface INDEX input. - n.c. - n.c. I/O GPIO4[9] — General purpose digital input/output pin. I QEI_PHB — Quadrature Encoder Interface PHB input. - n.c. - n.c. I/O GPIO4[10] — General purpose digital input/output pin. I QEI_PHA — Quadrature Encoder Interface PHA input. - n.c. I/O SPIFI_SIO3 — I/O lane 3 for SPIFI. - n.c. O CTOUT_9 — SCT output 9. Match output 1 of timer 2. - n.c. I/O EXTBUS_A23 — External memory address line 23. All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 18 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Pin description …continued Symbol PB_0[2] PB_1[2] PB_2[2] PB_3[2] PB_4[2] PB_5[2] PB_6[2] PC_0[2] PC_1[2] LPC1850_30_20_10 Objective data sheet LBGA256 Table 3. Reset state B15 <tbd> A14 B12 A13 B11 A12 A6 D4 E4 Type Description [1] <tbd> <tbd> <tbd> <tbd> <tbd> <tbd> <tbd> <tbd> - n.c. O CTOUT_10 — SCT output 10. Match output 2 of timer 2. O LCDVD23 — LCD data. - n.c. - n.c. I USB1_ULPI_DIR — ULPI link DIR signal. Controls the ULP data line direction. O LCDVD22 — LCD data. - n.c. - n.c. I/O USB1_ULPI_D7 — ULPI link bidirectional data line 7. O LCDVD21 — LCD data. - n.c. - n.c. I/O USB1_ULPI_D6 — ULPI link bidirectional data line 6. O LCDVD20 — LCD data. - n.c. - n.c. I/O USB1_ULPI_D5 — ULPI link bidirectional data line 5. O LCDVD15 — LCD data. - n.c. - n.c. I/O USB1_ULPI_D4 — ULPI link bidirectional data line 4. O LCDVD14 — LCD data. - n.c. - n.c. I/O USB1_ULPI_D3 — ULPI link bidirectional data line 3. O LCDVD13 — LCD data. - n.c. I/O ENET_RX_CLK (ENET_REF_CLK) — Ethernet Receive Clock (MII interface) or Ethernet Reference Clock (RMII interface). I USB1_ULPI_CLK — ULPI link CLK signal. 60 MHz clock generated by the PHY. - n.c. I/O SDIO_CLK — SD/MMC card clock. I/O USB1_ULPI_D7 — ULPI link bidirectional data line 7. O SDIO_VOLT0 — SD/MMC bus voltage select output 0. I U1_RI — Ring Indicator input for UART 1. O ENET_MDC — Ethernet MIIM clock. All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 19 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Pin description …continued Symbol PC_2[2] PC_3[2] PC_4[2] PC_5[2] PC_6[2] PC_7[2] PC_8[2] PC_9[2] PC_10[2] LPC1850_30_20_10 Objective data sheet LBGA256 Table 3. Reset state F6 <tbd> F5 F4 G4 H6 G5 N4 K2 M5 Type Description [1] <tbd> <tbd> <tbd> <tbd> <tbd> <tbd> <tbd> <tbd> I/O USB1_ULPI_D6 — ULPI link bidirectional data line 6. O SDIO_RST — SD/MMC reset signal for MMC4.4 card. I U1_CTS — Clear to Send input for UART 1. O ENET_TXD2 — Ethernet transmit data 2 (MII interface). I/O USB1_ULPI_D5 — ULPI link bidirectional data line 5. O SDIO_VOLT1 — SD/MMC bus voltage select output 1. O U1_RTS — Request to Send output for UART 1. Can also be configured to be an RS-485/EIA-485 output enable signal for UART 1. O ENET_TXD3 — Ethernet transmit data 3 (MII interface). I/O SDIO_D0 — SD/MMC data bus line 0. I/O USB1_ULPI_D4 — ULPI link bidirectional data line 4. I/O SPIFI_CS — SPIFI serial flash chip select. O ENET_TX_EN — Ethernet transmit data enable (RMII/MII interface). I/O SDIO_D1 — SD/MMC data bus line 1. I/O USB1_ULPI_D3 — ULPI link bidirectional data line 3. I/O SPIFI_MISO — Input I1 in SPIFI quad mode; SPIFI output IO1. O ENET_TX_ER — Ethernet Transmit Error (MII interface). I/O SDIO_D2 — SD/MMC data bus line 2. I/O USB1_ULPI_D2 — ULPI link bidirectional data line 2. - n.c. I ENET_RXD2 — Ethernet receive data 2 (RMII/MII interface). I/O SDIO_D3 — SD/MMC data bus line 3. I/O USB1_ULPI_D1 — ULPI link bidirectional data line 1. - n.c. I ENET_RXD3 — Ethernet receive data 3 (RMII/MII interface). I SDIO_CD — SD/MMC card detect input. I/O USB1_ULPI_D0 — ULPI link bidirectional data line 0. I/O SPIFI_SIO2 — I/O lane 2 for SPIFI. I ENET_RX_DV — Ethernet Receive Data Valid (MII interface). O SDIO_POW — <tbd>. I USB1_ULPI_NXT — ULPI link NXT signal. Data flow control signal from the PHY. - n.c. I ENET_RX_ER — Ethernet receive error (RMII/MII interface). I/O SDIO_CMD — SD/MMC command signal. O USB1_ULPI_STP — ULPI link STP signal. Asserted to end or interrupt transfers to the PHY. I U1_DSR — Data Set Ready input for UART 1. - n.c. All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 20 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Pin description …continued Symbol PC_11[2] PC_12[2] PC_13[2] PC_14[2] PD_0[2] PD_1[2] PD_2[2] PD_3[2] PD_4[2] LPC1850_30_20_10 Objective data sheet LBGA256 Table 3. Reset state L5 <tbd> L6 M1 N1 N2 P1 R1 P4 T2 Type Description [1] <tbd> <tbd> <tbd> <tbd> <tbd> <tbd> <tbd> <tbd> I/O SDIO_D4 — SD/MMC data bus line 4. I USB1_ULPI_DIR — ULPI link DIR signal. Controls the ULP data line direction. I U1_DCD — Data Carrier Detect input for UART 1. - n.c. I/O SDIO_D5 — SD/MMC data bus line 5. - n.c. O U1_DTR — Data Terminal Ready output for UART 1. Can also be configured to be an RS-485/EIA-485 output enable signal for UART 1. - n.c. I/O SDIO_D6 — SD/MMC data bus line 6. - n.c. O U1_TXD — Transmitter output for UART 1. - n.c. I/O SDIO_D7 — SD/MMC data bus line 7. - n.c. I U1_RXD — Receiver input for UART 1. - n.c. - n.c. O CTOUT_15 — SCT output 15. Match output 3 of timer 3. O EXTBUS_DQMOUT2 — Data mask 2 used with SDRAM and static devices. - n.c. - n.c. - n.c. O EXTBUS_CKEOUT2 — SDRAM clock enable 2. - n.c. - n.c. O CTOUT_7 — SCT output 7. Match output 3 of timer 1. I/O EXTBUS_D16 — External memory data line 16. - n.c. - n.c. O CTOUT_6 — SCT output 7. Match output 2 of timer 1. I/O EXTBUS_D17 — External memory data line 17. - n.c. - n.c. O CTOUT_8 — SCT output 8. Match output 0 of timer 2. I/O EXTBUS_D18 — External memory data line 18. - n.c. All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 21 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Pin description …continued Symbol PD_5[2] PD_6[2] PD_7[2] PD_8[2] PD_9[2] PD_10[2] PD_11[2] PD_12[2] PD_13[2] LPC1850_30_20_10 Objective data sheet LBGA256 Table 3. Reset state P6 <tbd> R6 T6 P8 T11 P11 N9 N11 T14 Type Description [1] <tbd> <tbd> <tbd> <tbd> <tbd> <tbd> <tbd> <tbd> - n.c. O CTOUT_9 — SCT output 9. Match output 1 of timer 2. I/O EXTBUS_D19 — External memory data line 19. - n.c. - n.c. O CTOUT_10 — SCT output 10. Match output 2 of timer 2. I/O EXTBUS_D20 — External memory data line 20. - n.c. - n.c. I CTIN_5 — SCT input 5. Capture input 2 of timer 2. I/O EXTBUS_D21 — External memory data line 21. - n.c. - n.c. I CTIN_6 — SCT input 6. Capture input 1 of timer 3. I/O EXTBUS_D22 — External memory data line 22. - n.c. - n.c. O CTOUT_13 — SCT output 13. Match output 1 of timer 3. I/O EXTBUS_D23 — External memory data line 23. - n.c. - n.c. I CTIN_1 — SCT input 1. Capture input 1 of timer 0. Capture input 1 of timer 2. O EXTBUS_BLS3 — LOW active Byte Lane select signal 3. - n.c. - n.c. - n.c. O EXTBUS_CS3 — LOW active Chip Select 3 signal. - n.c. - n.c. - n.c. O EXTBUS_CS2 — LOW active Chip Select 2 signal. - n.c. - n.c. I CTIN_0 — SCT input 0. Capture input 0 of timer 0, 1, 2, 3. O EXTBUS_BLS2 — LOW active Byte Lane select signal 2. - n.c. All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 22 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Pin description …continued Symbol PD_14[2] PD_15[2] PD_16[2] PE_0[2] PE_1[2] PE_2[2] PE_3[2] PE_4[2] PE_5[2] LPC1850_30_20_10 Objective data sheet LBGA256 Table 3. Reset state R13 <tbd> T15 R14 P14 N14 [1] <tbd> <tbd> <tbd> <tbd> M14 <tbd> K12 K13 N16 Type Description <tbd> <tbd> <tbd> - n.c. - n.c. O EXTBUS_DYCS2 — SDRAM chip select 2. - n.c. - n.c. - n.c. I/O EXTBUS_A17 — External memory address line 17. - n.c. - n.c. - n.c. I/O EXTBUS_A16 — External memory address line 16. - n.c. - n.c. - n.c. - n.c. I/O EXTBUS_A18 — External memory address line 18. - n.c. - n.c. - n.c. I/O EXTBUS_A19 — External memory address line 19. I ADCTRIG0 — ADC trigger input 0. I CAN1_RD — CAN1 receiver input. I/O SPIFI_MOSI — Input I0 in SPIFI quad mode; SPIFI output IO0. I/O EXTBUS_A20 — External memory address line 20. - n.c. O CAN1_TD — CAN1 transmitter output. I ADCTRIG1 — ADC trigger input 1. I/O EXTBUS_A21 — External memory address line 21. - n.c. I NMI — External interrupt input to NMI. - n.c. I/O EXTBUS_A22 — External memory address line 22. - n.c. O CTOUT_3 — SCT output 3. Match output 3 of timer 0. O U1_RTS — Request to Send output for UART 1. Can also be configured to be an RS-485/EIA-485 output enable signal for UART 1. I/O EXTBUS_D24 — External memory data line 24. All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 23 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Pin description …continued Symbol PE_6[2] PE_7[2] PE_8[2] PE_9[2] PE_10[2] PE_11[2] PE_12[2] PE_13[2] PE_14[2] LPC1850_30_20_10 Objective data sheet LBGA256 Table 3. Reset state [1] M16 <tbd> F15 F14 E16 E14 D16 D15 G14 C15 Type Description <tbd> <tbd> <tbd> <tbd> <tbd> <tbd> <tbd> <tbd> - n.c. O CTOUT_2 — SCT output 2. Match output 2 of timer 0. I U1_RI — Ring Indicator input for UART 1. I/O EXTBUS_D25 — External memory data line 25. - n.c. O CTOUT_5 — SCT output 5. Match output 1 of timer 1. I U1_CTS — Clear to Send input for UART1. I/O EXTBUS_D26 — External memory data line 26. - n.c. O CTOUT_4 — SCT output 4. Match output 0 of timer 0. I U1_DSR — Data Set Ready input for UART 1. I/O EXTBUS_D27 — External memory data line 27. - n.c. I CTIN_4 — SCT input 4. Capture input 2 of timer 1. I U1_DCD — Data Carrier Detect input for UART 1. I/O EXTBUS_D28 — External memory data line 28. - n.c. I CTIN_3 — SCT input 3. Capture input 1 of timer 1. O U1_DTR — Data Terminal Ready output for UART 1. Can also be configured to be an RS-485/EIA-485 output enable signal for UART 1. I/O EXTBUS_D29 — External memory data line 29. - n.c. O CTOUT_12 — SCT output 12. Match output 0 of timer 3. O U1_TXD — Transmitter output for UART 1. I/O EXTBUS_D30 — External memory data line 30. - n.c. O CTOUT_11 — SCT output 11. Match output 3 of timer 2. I U1_RXD — Receiver input for UART 1. I/O EXTBUS_D31 — External memory data line 31. - n.c. O CTOUT_14 — SCT output 14. Match output 2 of timer 3. I/O I2C1_SDA — I2C1 data input/output (this pin does not use a specialized I2C pad). O EXTBUS_DQMOUT3 — Data mask 3 used with SDRAM and static devices. - n.c. - n.c. - n.c. O EXTBUS_DYCS3 — SDRAM chip select 3. All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 24 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Pin description …continued Symbol PE_15[2] PF_0[2] PF_1[2] PF_2[2] PF_3[2] PF_4[2] PF_5[2] PF_6[2] PF_7[2] LPC1850_30_20_10 Objective data sheet LBGA256 Table 3. Reset state E13 <tbd> D12 E11 D11 E10 D10 E9 E7 B7 Type Description [1] <tbd> <tbd> <tbd> <tbd> <tbd> <tbd> <tbd> <tbd> - n.c. O CTOUT_0 — SCT output 0. Match output 0 of timer 0. I/O I2C1_SCL — I2C1 clock input/output (this pin does not use a specialized I2C pad). O EXTBUS_CKEOUT3 — SDRAM clock enable 3. I/O SSP0_SCK — Serial clock for SSP0. - n.c. - n.c. - n.c. - n.c. - n.c. I/O SSP0_SSEL — Slave Select for SSP0. - n.c. - n.c. O U3_TXD — Transmitter output for USART3. I/O SSP0_MISO — Master In Slave Out for SSP0. - n.c. - n.c. I U3_RXD — Receiver input for USART3. I/O SSP0_MOSI — Master Out Slave in for SSP0. - n.c. I/O SSP1_SCK — Serial clock for SSP1. I GP_CLKIN — General purpose clock input to the CGU. O TRACECLK — Trace clock. - n.c. - n.c. I/O U3_UCLK — Serial clock input/output for USART3 in synchronous mode. I/O SSP1_SSEL — Slave Select for SSP1. O TRACEDATA[0] — Trace data, bit 0. - n.c. I/O U3_DIR — RS-485/EIA-485 output enable/direction control for USART3. I/O SSP1_MISO — Master In Slave Out for SSP1. O TRACEDATA[1] — Trace data, bit 1. - n.c. I/O U3_BAUD — <tbd> for USART3. I/O SSP1_MOSI — Master Out Slave in for SSP1. O TRACEDATA[2] — Trace data, bit 2. All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 25 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Pin description …continued Symbol PF_8[2] PF_9[2] PF_10[2] PF_11[2] LBGA256 Table 3. Reset state E6 <tbd> D6 A3 A2 Type Description [1] <tbd> <tbd> <tbd> - n.c. I/O U0_UCLK — Serial clock input/output for USART0 in synchronous mode. I CTIN_2 — SCT input 2. Capture input 2 of timer 0. O TRACEDATA[3] — Trace data, bit 3. - n.c. I/O U0_DIR — RS-485/EIA-485 output enable/direction control for USART0. O CTOUT_1 — SCT output 1. Match output 1 of timer 0. - n.c. - n.c. O U0_TXD — Transmitter output for USART0. I SDIO_WP — SD/MMC card write protect input. - n.c. - n.c. I U0_RXD — Receiver input for USART0. O SDIO_VOLT2 — SD/MMC bus voltage select output 2. - n.c. O EXTBUS_CLK0 — SDRAM clock 0. O CLKOUT — Clock output pin. - n.c. - n.c. O EXTBUS_CLK1 — SDRAM clock 1. O CLKOUT — Clock output pin. - n.c. - n.c. O EXTBUS_CLK3 — SDRAM clock 3. O CLKOUT — Clock output pin. - n.c. - n.c. O EXTBUS_CLK2 — SDRAM clock 2. O CLKOUT — Clock output pin. - n.c. - n.c. Clock pins CLK0[4] CLK1[2] CLK2[2] CLK3[2] N5 T10 D14 P12 <tbd> <tbd> <tbd> <tbd> Debug pins - DBGEN[2] L4 <tbd> TCK/SWDCLK[2] J5 <tbd> I Test Clock for JTAG interface (default) or Serial Wire (SW) clock. TRST[2] M4 <tbd> I Test Reset for JTAG interface. TMS/SWDIO[2] K6 <tbd> I Test Mode Select for JTAG interface (default) or SW debug data input/output. TDO/SWO[2] K5 <tbd> O Test Data Out for JTAG interface (default) or SW trace output. LPC1850_30_20_10 Objective data sheet I JTAG interface control signal. Also used for boundary scan. All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 26 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Pin description …continued LBGA256 Table 3. Symbol Reset state J4 <tbd> I Test Data In for JTAG interface. I2C0_SCL[8] L15 <tbd> I/O I2C clock input/output. Open-drain output (for I2C-bus compliance). I2C0_SDA[8] L16 <tbd> I/O I2C data input/output. Open-drain output (for I2C-bus compliance). USB0_DP[5] F2 <tbd> I/O USB0 bidirectional D+ line. USB0_DM[5] G2 <tbd> I/O USB0 bidirectional D− line. USB0_VBUS[5] F1 <tbd> I/O VBUS pin (power on USB cable). USB0_ID[6] H2 <tbd> I Indicates to the transceiver whether connected a A-device (ID LOW) or B-device (ID HIGH). USB0_RREF[6] H1 <tbd> USB1_DP[7] F12 <tbd> I/O USB1 bidirectional D+ line. USB1_DM[7] G12 <tbd> I/O USB1 bidirectional D− line. TDI[2] I2C-bus Type Description [1] pins USB0 pins 12.0 kΩ (accuracy 1 %) on-board resistor to ground for current reference. USB1 pins Reset and wake-up pins RESET[9] D9 <tbd> I External reset input: A LOW on this pin resets the device, causing I/O ports and peripherals to take on their default states, and processor execution to begin at address 0. WAKEUP0[9] A9 <tbd> I External wake-up input; can raise an interrupt and can cause wake-up from any of the low power modes. WAKEUP1 A10 <tbd> I External wake-up input; can raise an interrupt and can cause wake-up from any of the low power modes. WAKEUP2 C9 <tbd> I External wake-up input; can raise an interrupt and can cause wake-up from any of the low power modes. WAKEUP3 D8 <tbd> I External wake-up input; can raise an interrupt and can cause wake-up from any of the low power modes. ADC0[6] E3 <tbd> ADC0/1 input channel 0. Shared between ADC0, ADC1, and DAC. ADC1[6] C3 <tbd> ADC0/1 input channel 1. ADC2[6] A4 <tbd> ADC0/1 input channel 2. ADC3[6] B5 <tbd> ADC0/1 input channel 3. ADC4[6] C6 <tbd> ADC0/1 input channel 4. ADC5[6] B3 <tbd> ADC0/1 input channel 5. ADC6[6] A5 <tbd> ADC0/1 input channel 6. ADC7[6] C5 <tbd> ADC0/1 input channel 7. RTC_ALARM A11 - RTC controlled output. RTCX1 A8 - Input to the RTC 32 kHz ultra-low power oscillator circuit. RTCX2 B8 - Output from the RTC 32 kHz ultra-low power oscillator circuit. ADC pins RTC Crystal oscillator pins XTAL1[6] LPC1850_30_20_10 Objective data sheet D1 - I Input to the oscillator circuit and internal clock generator circuits. All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 27 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Pin description …continued Symbol XTAL2[6] LBGA256 Table 3. Reset state E1 - Type Description [1] O Output from the oscillator amplifier. Power and ground pins USB0_VDDA3V3_ DRIVER F3 <tbd> Separate analog 3.3 V power supply for driver. USB0_VDDA3V3 G3 <tbd> USB 3.3 V separate power supply voltage USB0_VSSA_TERM H3 <tbd> Dedicated analog ground for clean reference for termination resistors. USB0_VSSA_REF G1 <tbd> Dedicated clean analog ground for generation of reference currents and voltages. VDDA B4 - Analog power supply. VBAT B10 - RTC power supply: 3.3 V on this pin supplies power to the RTC. VDDREG F10; F9; L8; L7; Main regulator power supply VPP E8 OTP programming voltage VDDIO F7; J7; N7; L10; E12; N13; L9; H10; G10; D7; J6; F8; K7 I/O power supply VSSA B2 VSS H7; K8; G9; J11; J10 LPC1850_30_20_10 Objective data sheet - Ground Ground All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 28 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Pin description …continued Symbol VSSIO LBGA256 Table 3. Reset state Type Description [1] G6; J8; J9; K9; K10; P7; M13; P13; D13; G8; H8; G7; C4; H9 Ground Pins not connected - B9 - n.c. [1] I = input, O = output, IA = inactive; PU = pull-up enabled; F = floating [2] Digital I/O pin. Not 5 V tolerant. [3] Digital I/O pin. 5 V tolerant. [4] Digital high-speed I/O pin. [5] 5 V tolerant analog I/O pin. [6] 3.3 V tolerant analog I/O pin. [7] 5 V tolerant USB I/O pin. [8] I2C-bus 5 V tolerant open-drain pin. [9] Reset input pin; <tbd>. [10] Alarm output pin; <tbd>. LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 29 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 7. Functional description 7.1 Architectural overview The ARM Cortex-M3 includes three AHB-Lite buses: the system bus, the I-code bus, and the D-code bus. The I-code and D-code core buses allow for concurrent code and data accesses from different slave ports. The LPC1850/30/20/10 use a multi-layer AHB matrix to connect the ARM Cortex-M3 buses and other bus masters to peripherals in a flexible manner that optimizes performance by allowing peripherals that are on different slaves ports of the matrix to be accessed simultaneously by different bus masters. 7.2 ARM Cortex-M3 processor The ARM Cortex-M3 is a general purpose, 32-bit microprocessor, which offers high performance and very low power consumption. The ARM Cortex-M3 offers many new features, including a Thumb-2 instruction set, low interrupt latency, hardware divide, interruptable/continuable multiple load and store instructions, automatic state save and restore for interrupts, tightly integrated interrupt controller with wake-up interrupt controller, and multiple core buses capable of simultaneous accesses. Pipeline techniques are employed so that all parts of the processing and memory systems can operate continuously. Typically, while one instruction is being executed, its successor is being decoded, and a third instruction is being fetched from memory. The ARM Cortex-M3 processor is described in detail in the Cortex-M3 Technical Reference Manual. LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 30 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 7.3 AHB multilayer matrix TEST/DEBUG INTERFACE ARM CORTEX-M3 System bus I-code bus ETHERNET(1) GPDMA D-code bus 0 USB0(1) USB1(1) LCD(1) SD/ MMC(1) masters 1 slaves 32 kB ROM 64/96 kB LOCAL SRAM 40 kB LOCAL SRAM 32 kB AHB SRAM 16 kB AHB SRAM(1) 16 kB AHB SRAM EXTERNAL MEMORY CONTROLLER AHB REGISTER INTERFACES, APB, RTC DOMAIN PERIPHERALS AHB MULTILAYER MATRIX = master-slave connection 002aaf880 (1) Not available on all parts (see Table 2). Fig 3. AHB multilayer matrix master and slave connections 7.4 Nested Vectored Interrupt Controller (NVIC) The NVIC is an integral part of the Cortex-M3. The tight coupling to the CPU allows for low interrupt latency and efficient processing of late arriving interrupts. 7.4.1 Features • • • • • • LPC1850_30_20_10 Objective data sheet Controls system exceptions and peripheral interrupts. In the LPC1850/30/20/10, the NVIC supports 32 vectored interrupts. 32 programmable interrupt priority levels, with hardware priority level masking. Relocatable vector table. Non-Maskable Interrupt (NMI). Software interrupt generation. All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 31 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 7.4.2 Interrupt sources Each peripheral device has one interrupt line connected to the NVIC but may have several interrupt flags. Individual interrupt flags may also represent more than one interrupt source. 7.5 Event router The event router combines various internal signals, interrupts, and the external interrupt pins (WAKEUP[3:0]) to create an interrupt in the NVIC if enabled and to create a wake-up signal to the ARM core and the CCU for waking up from Sleep, Deep-sleep, Power-down, and Deep power-down modes. Individual events can be configured as edge or level sensitive and can be enabled or disabled in the event router. The event router can be battery powered. The following events if enabled in the event router can create a wake-up signal and/or an interrupt: • • • • • External pins WAKEUP0/1/2/3 and RESET Alarm timer, RTC, WWDT, BOD interrupts C_CAN and QEI interrupts Ethernet, USB0, USB1 signals Selected outputs of combined timers (SCT and timer0/1/3) 7.6 System Tick timer (SysTick) The ARM Cortex-M3 includes a system tick timer (SYSTICK) that is intended to generate a dedicated SYSTICK exception at a 10 ms interval. 7.7 On-chip static RAM The LPC1850/30/20/10 support up to 200 kB SRAM with separate bus master access for higher throughput and individual power control for low power operation. 7.8 Boot ROM The internal ROM memory is used to store the boot code of the LPC1850/30/20/10. After a reset, the ARM processor will start its code execution from this memory. The boot ROM memory includes the following features: • ROM memory size is 32 kB. • Supports booting from UART interfaces and external static memory such as NOR flash, SPI flash, quad SPI flash. • Includes APIs for power control and OTP programming. • Includes SPIFI and USB drivers. AES capable parts also support: • CMAC authentication on the boot image. LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 32 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller • Secure booting from an encrypted image. In development mode booting from a plain text image is possible. Development mode is terminated by programming the AES key. • API for AES programming. Several boot modes are available depending on the values of the OTP bits BOOT_SRC. If the OTP memory is not programmed or the BOOT_SRC bits are all zero, the boot mode is determined by the states of the boot pins P2_8, P1_2, and P1_1. Table 4. Boot mode BOOT_SRC BOOT_SRC bit 2 bit 1 BOOT_SRC Description bit 0 Boot mode defined by pin state at reset 0 0 0 Boot source is defined by the reset state of P1_1, P1_2, and P2_8 pins. See Table 5. UART 0 0 1 Boot from device connected to USART0 using pins P2_0 and P2_1. SPIFI 0 1 0 Boot from Quad SPI flash connected to the SPIFI interface using pins P3_3 to P3_8. EMC 8-bit 0 1 1 Boot from external static memory (such as NOR flash) using CS0 and an 8-bit data bus. EMC 16-bit 1 0 0 Boot from external static memory (such as NOR flash) using CS0 and a 16-bit data bus. EMC 32-bit 1 0 1 Boot from external static memory (such as NOR flash) using CS0 and a 32-bit data bus. Reserved 1 1 0 Do not use this option. Reserved 1 1 1 Do not use this option. Table 5. Objective data sheet Boot mode when OPT BOOT_SRC bits are zero Boot mode P2_8 P1_2 P1_1 Description UART LOW LOW LOW Boot from device connected to USART0 using pins P2_0 and P2_1. SPIFI LOW LOW HIGH Boot from Quad SPI flash connected to the SPIFI interface on P3_3 to P3_8[1]. EMC 8-bit LOW HIGH LOW Boot from external static memory (such as NOR flash) using CS0 and an 8-bit data bus. EMC 16-bit LOW HIGH HIGH Boot from external static memory (such as NOR flash) using CS0 and a 16-bit data bus. EMC 32-bit HIGH LOW LOW Boot from external static memory (such as NOR flash) using CS0 and a 32-bit data bus. Reserved HIGH LOW HIGH Do not use this option. Reserved HIGH HIGH LOW Do not use this option. SPI HIGH HIGH HIGH Boot from SPI flash connected to the SSP0 interface on P3_3, P3_6, P3_7 and P3_8[1]. [1] LPC1850_30_20_10 Boot mode when OTP BOOT_SRC bits are programmed The boot loader programs the appropriate pin function at reset to boot using either SSP0 or SPIFI. All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 33 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 7.9 Memory mapping LPC1850/30/20/10 4 GB 0xFFFF FFFF reserved 0xE010 0000 ARM private bus reserved SPIFI data 256 MB dynamic external memory DYCS3 256 MB dynamic external memory DYCS2 reserved peripheral bit band alias region reserved 0xE000 0000 0x8800 0000 0x8000 0000 0x7000 0000 0x6000 0000 0x4400 0000 0x4200 0000 0x4010 2000 reserved reserved reserved AES high-speed GPIO APB peripherals #3 reserved APB peripherals #2 reserved 0x2000 0000 0x1F00 0000 0x1E00 0000 0x1D00 0000 0x1C00 0000 16 MB static external memory CS3 APB peripherals #1 16 MB static external memory CS2 reserved 16 MB static external memory CS1 APB peripherals #0 16 MB static external memory CS0 reserved 0x4010 1000 0x4010 0000 0x400F 2000 0x400F 1000 0x400F 0000 0x400E 0000 0x400D 0000 0x400C 0000 0x400B 0000 0x400A 0000 0x4009 0000 0x4008 0000 0x4006 0000 clocking/reset peripherals RTC domain peripherals 0x4005 0000 0x4004 0000 reserved 0x4001 2000 reserved AHB peripherals 1 GB 256 MB dynamic external memory DYCS1 128 MB dynamic external memory DYCS0 0x1040 8000 0x1040 0000 0x1008 A000 0x1008 0000 0x1001 8000 0x1001 0000 0x4000 0000 0x3000 0000 0x2800 0000 reserved 32 kB ROM 0x2400 0000 reserved 32 MB AHB SRAM bit banding 0x2200 0000 32 kB + 8 kB local SRAM (LPC1850/30/20/10) reserved reserved 16 kB AHB SRAM (LPC1850/30/20) 32 kB local SRAM (LPC1850/30) 16 kB AHB SRAM (LPC1850/30/20/10) 64 kB local SRAM (LPC1850/30/20/10) 16 kB AHB SRAM (LPC1850/30/20/10) 0x2001 0000 16 kB AHB SRAM (LPC1850/30/20) 0x1000 0000 local SRAM/ external static memory banks 0 GB 256 MB shadow area 0x2000 C000 0x2000 8000 0x2000 4000 0x2000 0000 0x1000 0000 0x0000 0000 002aaf228 Fig 4. LPC1850/30/20/10 Memory mapping (overview) LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 34 of 84 xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx NXP Semiconductors LPC1850_30_20_10 Objective data sheet LPC1850/30/20/10 0x400F 0000 0x400E 5000 reserved 0x400E 4000 ADC1 0x400E 3000 ADC0 0x400E 2000 C_CAN 0x400E 1000 DAC 0x400E 0000 APB3 peripherals 0x6000 0000 I2C1 reserved 0x400D 0000 0x400C 7000 peripheral bit band alias region reserved reserved Rev. 1 — 3 January 2011 0x400C 5000 SSP1 0x400C 4000 timer3 0x400C 3000 timer2 0x400C 2000 USART3 0x400C 1000 USART2 0x400C 0000 RI timer reserved APB2 peripherals 0x400A 1000 0x400A 0000 reserved AES high-speed GPIO APB peripherals #3 reserved APB peripherals #2 0x400B 0000 0x400A 2000 reserved reserved I2S0 I2C0 reserved APB1 peripherals APB peripherals #1 reserved motor control PWM APB peripherals #0 0x4009 0000 0x4008 6000 system control 0x4008 5000 timer1 0x4008 4000 timer0 0x4008 3000 SSP0 0x4008 2000 UART1 w/ modem 0x4008 1000 USART0 0x4008 0000 WWDT reserved clocking/reset peripherals RTC domain peripherals 0x4200 0000 RGU 0x4005 3000 CCU2 0x4005 2000 CCU1 0x4005 1000 CGU 0x4005 0000 0x4010 2000 0x4010 1000 reserved 0x4004 7000 0x4010 0000 RTC 0x4004 6000 0x400F 2000 OTP controller 0x4004 5000 event router 0x4004 4000 CREG 0x4004 3000 power mode control 0x4004 2000 backup registers 0x4004 1000 alarm timer 0x4004 0000 0x400A 0000 ethernet 0x4001 2000 0x4001 0000 0x4009 0000 reserved 0x4000 9000 0x4008 0000 LCD 0x4000 8000 USB1 0x4000 7000 USB0 0x4000 6000 EMC 0x4000 5000 SD/MMC 0x4000 4000 SPIFI 0x4000 3000 DMA 0x4000 2000 reserved 0x4000 1000 SCT 0x4000 0000 0x400F 1000 0x400F 0000 RTC domain peripherals 0x400E 0000 0x400D 0000 0x400C 0000 0x400B 0000 0x4006 0000 0x4005 0000 0x4004 0000 reserved APB0 peripherals 0x4006 0000 0x4005 4000 0x4001 2000 AHB peripherals 0x4000 0000 SRAM memories external memory banks AHB peripherals 0x0000 0000 35 of 84 © NXP B.V. 2011. All rights reserved. 002aaf229 Fig 5. LPC1850/30/20/10 Memory mapping (peripherals) LPC1850/30/20/10 0x4008 7000 reserved 0x4400 0000 clocking and reset control peripherals reserved 32-bit ARM Cortex-M3 microcontroller All information provided in this document is subject to legal disclaimers. 0x400C 6000 QEI 0x400A 3000 0xFFFF FFFF external memories and ARM private bus LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 7.10 Security features 7.10.1 AES decryption engine The hardware AES engine can decrypt data using the AES algorithm. 7.10.1.1 Features • • • • Decryption of external flash data connected to the quad SPI Flash Interface (SPIFI). Secure storage of decryption keys. Support for CMAC hash calculation to authenticate encrypted data. Data is processed in little endian mode. This means that the first byte read from flash is integrated into the AES codeword as least significant byte. The 16th byte read from flash is the most significant byte of the first AES codeword. • AES engine performance of 1 byte/clock cycle. • DMA transfers supported through the GPDMA. 7.10.2 One-Time Programmable (OTP) memory The OTP provides two 128-bit non-volatile memories to store AES decryption keys or other custom data. 7.11 General Purpose I/O (GPIO) The LPC1850/30/20/10 provides 5 GPIO ports with up to 16 GPIO pins each. Device pins that are not connected to a specific peripheral function are controlled by the GPIO registers. Pins may be dynamically configured as inputs or outputs. Separate registers allow setting or clearing any number of outputs simultaneously. The value of the output register may be read back as well as the current state of the port pins. All GPIO pins default to inputs with pull-up resistors enabled on reset. 7.11.1 Features • Accelerated GPIO functions: – GPIO registers are located on the AHB so that the fastest possible I/O timing can be achieved. – Mask registers allow treating sets of port bits as a group, leaving other bits unchanged. – All GPIO registers are byte and half-word addressable. – Entire port value can be written in one instruction. • Bit-level set and clear registers allow a single instruction set or clear of any number of bits in one port. • Direction control of individual bits. • All I/O default to inputs after reset. LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 36 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 7.12 AHB peripherals 7.12.1 State Configurable Timer (SCT) subsystem The SCT allows a wide variety of timing, counting, output modulation, and input capture operations. The inputs and outputs of the SCT are shared with the capture and match inputs/outputs of the 32-bit general purpose counter/timers. The SCT can be configured as two 16-bit counters or a unified 32-bit counter. In the two-counter case, in addition to the counter value the following operational elements are independent for each half: • State variable • Limit, halt, stop, and start conditions • Values of Match/Capture registers, plus reload or capture control values In the two-counter case, the following operational elements are global to the SCT, but the last three can use match conditions from either counter: • • • • • 7.12.1.1 Clock selection Inputs Events Outputs Interrupts Features • • • • • • • • Two 16-bit counters or one 32-bit counter. Counter(s) clocked by bus clock or selected input. Up counter(s) or up-down counter(s). State variable allows sequencing across multiple counter cycles. Event combines input or output condition and/or counter match in a specified state. Events control outputs and interrupts. Selected event(s) can limit, halt, start, or stop a counter. Supports: – up to 8 inputs (one input connected internally) – up to 16 outputs – 16 match/capture registers – 16 events – 32 states 7.12.2 General Purpose DMA (GPDMA) The DMA controller allows peripheral-to memory, memory-to-peripheral, peripheral-to-peripheral, and memory-to-memory transactions. Each DMA stream provides unidirectional serial DMA transfers for a single source and destination. For LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 37 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller example, a bidirectional port requires one stream for transmit and one for receives. The source and destination areas can each be either a memory region or a peripheral for master 1, but only memory for master 0. 7.12.2.1 Features • Eight DMA channels. Each channel can support an unidirectional transfer. • 16 DMA request lines. • Single DMA and burst DMA request signals. Each peripheral connected to the DMA Controller can assert either a burst DMA request or a single DMA request. The DMA burst size is set by programming the DMA Controller. • Memory-to-memory, memory-to-peripheral, peripheral-to-memory, and peripheral-to-peripheral transfers are supported. • Scatter or gather DMA is supported through the use of linked lists. This means that the source and destination areas do not have to occupy contiguous areas of memory. • Hardware DMA channel priority. • AHB slave DMA programming interface. The DMA Controller is programmed by writing to the DMA control registers over the AHB slave interface. • Two AHB bus masters for transferring data. These interfaces transfer data when a DMA request goes active. Master 1 can access memories and peripherals, master 0 can access memories only. • 32-bit AHB master bus width. • Incrementing or non-incrementing addressing for source and destination. • Programmable DMA burst size. The DMA burst size can be programmed to more efficiently transfer data. • Internal four-word FIFO per channel. • Supports 8, 16, and 32-bit wide transactions. • Big-endian and little-endian support. The DMA Controller defaults to little-endian mode on reset. • An interrupt to the processor can be generated on a DMA completion or when a DMA error has occurred. • Raw interrupt status. The DMA error and DMA count raw interrupt status can be read prior to masking. 7.12.3 SPI Flash Interface (SPIFI) The SPI Flash Interface (allows low-cost serial flash memories to be connected to the ARM Cortex-M3 processor with little performance penalty compared to parallel flash devices with higher pin count. After a few commands configure the interface at startup, the entire flash content is accessible as normal memory using byte, halfword, and word accesses by the processor and/or DMA channels. Erasure and programming are handled by simple sequences of commands. Many serial flash devices use a half-duplex command-driven SPI protocol for device setup and initialization and then move to a half-duplex, command-driven 4-bit protocol for normal operation. Different serial flash vendors and devices accept or require different LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 38 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller commands and command formats. SPIFI provides sufficient flexibility to be compatible with common flash devices and includes extensions to help insure compatibility with future devices. 7.12.3.1 Features • • • • • Interfaces to serial flash memory in the main memory map. Supports classic and 4-bit bidirectional serial protocols. Half-duplex protocol compatible with various vendors and devices. Data rates of up to 40 MB per second total. Supports DMA access. 7.12.4 SD/MMC card interface The SD/MMC card interface supports the following modes to control: • • • • Secure Digital memory (SD version 3.0) Secure Digital I/O (SDIO version 2.0) Consumer Electronics Advanced Transport Architecture (CE-ATA version 1.1) Multimedia Cards (MMC version 4.4) 7.12.5 External Memory Controller (EMC) The LPC1850/30/20/10 EMC is a Memory Controller peripheral offering support for asynchronous static memory devices such as RAM, ROM, and NOR flash. In addition, it can be used as an interface with off-chip memory-mapped devices and peripherals. 7.12.5.1 Features • Dynamic memory interface support including single data rate SDRAM. • Asynchronous static memory device support including RAM, ROM, and NOR flash, with or without asynchronous page mode. • Low transaction latency. • Read and write buffers to reduce latency and to improve performance. • 8/16/32 data and 24 address lines wide static memory support. On parts LPC1820/10 only 8/16 data lines are available. • 16 bit and 32 bit wide chip select SDRAM memory support. • Static memory features include: – Asynchronous page mode read – Programmable Wait States – Bus turnaround delay – Output enable and write enable delays – Extended wait • Four chip selects for synchronous memory and four chip selects for static memory devices. • Power-saving modes dynamically control CKE and CLKOUT to SDRAMs. • Dynamic memory self-refresh mode controlled by software. LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 39 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller • Controller supports 2048 (A0 to A10), 4096 (A0 to A11), and 8192 (A0 to A12) row address synchronous memory parts. That is typical 512 MB, 256 MB, and 128 MB parts, with 4, 8, 16, or 32 data bits per device. • Separate reset domains allow the for auto-refresh through a chip reset if desired. Note: Synchronous static memory devices (synchronous burst mode) are not supported. 7.12.6 High-speed USB Host/Device/OTG interface (USB0) Remark: USB0 is not available on the LPC1810 (see Table 2). The USB OTG module allows the part to connect directly to a USB host such as a PC (in device mode) or to a USB device in host mode. 7.12.6.1 Features • • • • • • • Complies with Universal Serial Bus specification 2.0. Complies with USB On-The-Go supplement. Complies with Enhanced Host Controller Interface Specification. Supports auto USB 2.0 mode discovery. Supports all high-speed USB-compliant peripherals. Supports all full-speed USB-compliant peripherals. Supports software Host Negotiation Protocol (HNP) and Session Request Protocol (SRP) for OTG peripherals. • Contains UTMI+ compliant transceiver (PHY). • Supports interrupts. • This module has its own, integrated DMA engine. 7.12.7 High-speed USB Host/Device interface with ULPI (USB1) Remark: USB1 is not available on the LPC1820/10 (see Table 2). The USB1 interface can operate as a full-speed USB host/device interface or can connect to an external ULPI PHY for High-speed operation. 7.12.7.1 Features • • • • Complies with Universal Serial Bus specification 2.0. Complies with Enhanced Host Controller Interface Specification. Supports auto USB 2.0 mode discovery. Supports all high-speed USB-compliant peripherals if connected to external ULPI PHY. • Supports all full-speed USB-compliant peripherals. • Supports interrupts. • This module has its own, integrated DMA engine. LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 40 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 7.12.8 LCD controller The LCD controller provides all of the necessary control signals to interface directly to a variety of color and monochrome LCD panels. Both STN (single and dual panel) and TFT panels can be operated. The display resolution is selectable and can be up to 1024 × 768 pixels. Several color modes are provided, up to a 24-bit true-color non-palettized mode. An on-chip 512-byte color palette allows reducing bus utilization (i.e. memory size of the displayed data) while still supporting a large number of colors. The LCD interface includes its own DMA controller to allow it to operate independently of the CPU and other system functions. A built-in FIFO acts as a buffer for display data, providing flexibility for system timing. Hardware cursor support can further reduce the amount of CPU time needed to operate the display. 7.12.8.1 Features • • • • AHB master interface to access frame buffer. Setup and control via a separate AHB slave interface. Dual 16-deep programmable 64-bit wide FIFOs for buffering incoming display data. Supports single and dual-panel monochrome Super Twisted Nematic (STN) displays with 4-bit or 8-bit interfaces. • Supports single and dual-panel color STN displays. • Supports Thin Film Transistor (TFT) color displays. • Programmable display resolution including, but not limited to: 320 × 200, 320 × 240, 640 × 200, 640 × 240, 640 × 480, 800 × 600, and 1024 × 768. • • • • • • • • • • • • Hardware cursor support for single-panel displays. 15 gray-level monochrome, 3375 color STN, and 32 K color palettized TFT support. 1, 2, or 4 bits-per-pixel (bpp) palettized displays for monochrome STN. 1, 2, 4, or 8 bpp palettized color displays for color STN and TFT. 16 bpp true-color non-palettized for color STN and TFT. 24 bpp true-color non-palettized for color TFT. Programmable timing for different display panels. 256 entry, 16-bit palette RAM, arranged as a 128 × 32-bit RAM. Frame, line, and pixel clock signals. AC bias signal for STN, data enable signal for TFT panels. Supports little and big-endian, and Windows CE data formats. LCD panel clock may be generated from the peripheral clock, or from a clock input pin. 7.12.9 Ethernet Remark: Ethernet is not available on the LPC1820/10 (see Table 2). 7.12.9.1 Features • 10/100 Mbit/s • TCP/IP hardware checksum LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 41 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller • • • • IP checksum DMA support Power management remote wake-up frame and magic packet detection Supports both full-duplex and half-duplex operation – Supports CSMA/CD Protocol for half-duplex operation. – Supports IEEE 802.3x flow control for full-duplex operation. – Optional forwarding of received pause control frames to the user application in full-duplex operation. – Back-pressure support for half-duplex operation. – Automatic transmission of zero-quanta pause frame on deassertion of flow control input in full-duplex operation. 7.13 Digital serial peripherals 7.13.1 UART1 The LPC1850/30/20/10 contain one UART with standard transmit and receive data lines, UART1 also provides a full modem control handshake interface and support for RS-485/9-bit mode allowing both software address detection and automatic address detection using 9-bit mode. UART1 includes a fractional baud rate generator. Standard baud rates such as 115200 Bd can be achieved with any crystal frequency above 2 MHz. 7.13.1.1 Features • • • • • Maximum UART data bit rate of <tbd> MBit/s. 16 B Receive and Transmit FIFOs. Register locations conform to 16C550 industry standard. Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B. Built-in fractional baud rate generator covering wide range of baud rates without a need for external crystals of particular values. • Auto baud capabilities and FIFO control mechanism that enables software flow control implementation. • Equipped with standard modem interface signals. This module also provides full support for hardware flow control (auto-CTS/RTS). • Support for RS-485/9-bit/EIA-485 mode (UART1). • DMA support. 7.13.2 USART0/2/3 The LPC1850/30/20/10 contain three USARTs. In addition to standard transmit and receive data lines, the USARTs support a synchronous mode. The USARTs include a fractional baud rate generator. Standard baud rates such as 115200 Bd can be achieved with any crystal frequency above 2 MHz. LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 42 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 7.13.2.1 Features • • • • • Maximum UART data bit rate of <tbd> MBit/s. 16 B Receive and Transmit FIFOs. Register locations conform to 16C550 industry standard. Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B. Built-in fractional baud rate generator covering wide range of baud rates without a need for external crystals of particular values. • Auto baud capabilities and FIFO control mechanism that enables software flow control implementation. • • • • • Support for RS-485/9-bit/EIA-485 mode. USART3 includes an IrDA mode to support infrared communication. All USARTs have DMA support. Support for synchronous mode. Smart card mode conforming to ISO7816 specification 7.13.3 SSP0/1 serial I/O controllers The LPC1850/30/20/10 contain two SSP controllers. The SSP controller is capable of operation on a SPI, 4-wire SSI, or Microwire bus. It can interact with multiple masters and slaves on the bus. Only a single master and a single slave can communicate on the bus during a given data transfer. The SSP supports full duplex transfers, with frames of 4 bits to 16 bits of data flowing from the master to the slave and from the slave to the master. In practice, often only one of these data flows carries meaningful data. 7.13.3.1 Features • Maximum SSP speed of <tbd> Mbit/s (master) or <tbd> Mbit/s (slave) • Compatible with Motorola SPI, 4-wire Texas Instruments SSI, and National Semiconductor Microwire buses • • • • • Synchronous serial communication Master or slave operation 8-frame FIFOs for both transmit and receive 4-bit to 16-bit frame DMA transfers supported by GPDMA 7.13.4 I2C0/1-bus interfaces The LPC1850/30/20/10 each contain two I2C-bus controllers. The I2C-bus is bidirectional for inter-IC control using only two wires: a Serial Clock line (SCL) and a Serial Data line (SDA). Each device is recognized by a unique address and can operate as either a receiver-only device (e.g., an LCD driver) or a transmitter with the capability to both receive and send information (such as memory). Transmitters and/or receivers can operate in either master or slave mode, depending on whether the chip has to initiate a data transfer or is only addressed. The I2C is a multi-master bus and can be controlled by more than one bus master connected to it. LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 43 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 7.13.4.1 Features • I2C0 is a standard I2C compliant bus interface with open-drain pins. I2C0 also supports Fast mode plus with bit rates up to 1 Mbit/s. • • • • • • I2C1 uses standard I/O pins with bit rates of up to 400 kbit/s (Fast I2C-bus). Easy to configure as master, slave, or master/slave. Programmable clocks allow versatile rate control. Bidirectional data transfer between masters and slaves. Multi-master bus (no central master). Arbitration between simultaneously transmitting masters without corruption of serial data on the bus. • Serial clock synchronization allows devices with different bit rates to communicate via one serial bus. • Serial clock synchronization can be used as a handshake mechanism to suspend and resume serial transfer. • The I2C-bus can be used for test and diagnostic purposes. • All I2C-bus controllers support multiple address recognition and a bus monitor mode. 7.13.5 I2S interface The I2S-bus provides a standard communication interface for digital audio applications. The I2S-bus specification defines a 3-wire serial bus using one data line, one clock line, and one word select signal. The basic I2S-bus connection has one master, which is always the master, and one slave. The I2S-bus interface provides a separate transmit and receive channel, each of which can operate as either a master or a slave. 7.13.5.1 Features • The interface has separate input/output channels each of which can operate in master or slave mode. • Capable of handling 8-bit, 16-bit, and 32-bit word sizes. • Mono and stereo audio data supported. • The sampling frequency can range from 16 kHz to 96 kHz (16, 22.05, 32, 44.1, 48, 96) kHz. • Support for an audio master clock. • Configurable word select period in master mode (separately for I2S-bus input and output). • Two 8-word FIFO data buffers are provided, one for transmit and one for receive. • Generates interrupt requests when buffer levels cross a programmable boundary. • Two DMA requests, controlled by programmable buffer levels. These are connected to the GPDMA block. • Controls include reset, stop and mute options separately for I2S-bus input and I2S-bus output. LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 44 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 7.13.6 C_CAN Controller Area Network (CAN) is the definition of a high performance communication protocol for serial data communication. The C_CAN controller is designed to provide a full implementation of the CAN protocol according to the CAN Specification Version 2.0B. The C_CAN controller allows to build powerful local networks with low-cost multiplex wiring by supporting distributed real-time control with a very high level of security. 7.13.6.1 Features • • • • • • • Conforms to protocol version 2.0 parts A and B. Supports bit rate of up to 1 Mbit/s. Supports 32 Message Objects. Each Message Object has its own identifier mask. Provides programmable FIFO mode (concatenation of Message Objects). Provides maskable interrupts. Supports Disabled Automatic Retransmission (DAR) mode for time-triggered CAN applications. • Provides programmable loop-back mode for self-test operation. 7.14 Counter/timers and motor control 7.14.1 General purpose 32-bit timers/external event counters The LPC1850/30/20/10 include four 32-bit timer/counters. The timer/counter is designed to count cycles of the system derived clock or an externally-supplied clock. It can optionally generate interrupts, generate timed DMA requests, or perform other actions at specified timer values, based on four match registers. Each timer/counter also includes two capture inputs to trap the timer value when an input signal transitions, optionally generating an interrupt. 7.14.1.1 Features • A 32-bit timer/counter with a programmable 32-bit prescaler. • Counter or timer operation. • Two 32-bit capture channels per timer, that can take a snapshot of the timer value when an input signal transitions. A capture event may also generate an interrupt. • Four 32-bit match registers that allow: – Continuous operation with optional interrupt generation on match. – Stop timer on match with optional interrupt generation. – Reset timer on match with optional interrupt generation. • Up to four external outputs corresponding to match registers, with the following capabilities: – Set LOW on match. – Set HIGH on match. – Toggle on match. – Do nothing on match. LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 45 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller • Up to two match registers can be used to generate timed DMA requests. 7.14.2 Motor control PWM The motor control PWM is a specialized PWM supporting 3-phase motors and other combinations. Feedback inputs are provided to automatically sense rotor position and use that information to ramp speed up or down. An abort input is also provided that causes the PWM to immediately release all motor drive outputs. At the same time, the motor control PWM is highly configurable for other generalized timing, counting, capture, and compare applications. 7.14.3 Quadrature Encoder Interface (QEI) A quadrature encoder, also known as a 2-channel incremental encoder, converts angular displacement into two pulse signals. By monitoring both the number of pulses and the relative phase of the two signals, the user can track the position, direction of rotation, and velocity. In addition, a third channel, or index signal, can be used to reset the position counter. The quadrature encoder interface decodes the digital pulses from a quadrature encoder wheel to integrate position over time and determine direction of rotation. In addition, the QEI can capture the velocity of the encoder wheel. 7.14.3.1 Features • • • • • • • • • • Tracks encoder position. Increments/decrements depending on direction. Programmable for 2× or 4× position counting. Velocity capture using built-in timer. Velocity compare function with “less than” interrupt. Uses 32-bit registers for position and velocity. Three position compare registers with interrupts. Index counter for revolution counting. Index compare register with interrupts. Can combine index and position interrupts to produce an interrupt for whole and partial revolution displacement. • Digital filter with programmable delays for encoder input signals. • Can accept decoded signal inputs (clk and direction). 7.14.4 Repetitive Interrupt (RI) timer The repetitive interrupt timer provides a free-running 32-bit counter which is compared to a selectable value, generating an interrupt when a match occurs. Any bits of the timer/compare can be masked such that they do not contribute to the match detection. The repetitive interrupt timer can be used to create an interrupt that repeats at predetermined intervals. 7.14.4.1 Features • 32-bit counter. Counter can be free-running or be reset by a generated interrupt. • 32-bit compare value. LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 46 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller • 32-bit compare mask. An interrupt is generated when the counter value equals the compare value, after masking. This allows for combinations not possible with a simple compare. 7.14.5 Windowed WatchDog Timer (WWDT) The purpose of the watchdog is to reset the controller if software fails to periodically service it within a programmable time window. 7.14.5.1 Features • Internally resets chip if not periodically reloaded during the programmable time-out period. • Optional windowed operation requires reload to occur between a minimum and maximum time period, both programmable. • Optional warning interrupt can be generated at a programmable time prior to watchdog time-out. • Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be disabled. • • • • Incorrect feed sequence causes reset or interrupt if enabled. Flag to indicate watchdog reset. Programmable 24-bit timer with internal prescaler. Selectable time period from (Tcy(WDCLK) × 256 × 4) to (Tcy(WDCLK) × 224 × 4) in multiples of Tcy(WDCLK) × 4. • The Watchdog Clock (WDCLK) uses the IRC as the clock source. 7.15 Analog peripherals 7.15.1 Analog-to-Digital Converter (ADC0/1) 7.15.1.1 Features • • • • • • • 10-bit successive approximation analog to digital converter. Input multiplexing among 8 pins. Power-down mode. Measurement range 0 to 3 V. Sampling frequency up to 400 kSamples/s. Burst conversion mode for single or multiple inputs. Optional conversion on transition on ADCTRIG0 or ADCTRIG1 pins, combined timer outputs 8 or 15, or the PWM output MCOA2. • Individual result registers for each A/D channel to reduce interrupt overhead. • DMA support. 7.15.2 Digital-to-Analog Converter (DAC) 7.15.2.1 Features • 10-bit resolution LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 47 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller • • • • • Integral Non-Linearity Differential Non-Linearity Monotonic by design (resistor string architecture) Controllable conversion speed Low power consumption 7.16 Peripherals in the RTC power domain 7.16.1 RTC The Real Time Clock (RTC) is a set of counters for measuring time when system power is on, and optionally when it is off. It uses very little power when its registers are not being accessed by the CPU, especially reduced power modes. The RTC is clocked by a separate 32 kHz oscillator that produces a 1 Hz internal time reference and is powered by its own power supply pin, VBAT. 7.16.1.1 Features • Measures the passage of time to maintain a calendar and clock. Provides seconds, minutes, hours, day of month, month, year, day of week, and day of year. • Ultra-low power design to support battery powered systems. Less than <tbd> required for battery operation. Uses power from the CPU power supply when it is present. • • • • • Dedicated battery power supply pin. RTC power supply is isolated from the rest of the chip. Calibration counter allows adjustment to better than ±1 sec/day with 1 sec resolution. Periodic interrupts can be generated from increments of any field of the time registers. Alarm interrupt can be generated for a specific date/time. 7.16.2 Alarm timer The alarm timer is a 16-bit timer and counts down at 1 kHz from a preset value generating alarms in intervals of up to 1 min. The counter triggers a status bit when it reaches 0x00 and asserts an interrupt if enabled. The alarm timer is part of the RTC power domain and can be battery powered. 7.17 System control 7.17.1 Configuration registers (CREG) The following settings are controlled in the configuration register block: • • • • • • • LPC1850_30_20_10 Objective data sheet BOD trip settings Oscillator output DMA-to-peripheral muxing Ethernet mode Memory mapping Timer/USART inputs Enabling the USB controllers All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 48 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller In addition, the CREG block contains the part identification and part configuration information. 7.17.2 System Control Unit (SCU) The system control unit determines the function and electrical mode of the digital pins. By default function 0 is selected for all pins with pull-up enabled. Analog I/Os for the ADCs and the DAC as well as most USB pins are on separate pads and are not controlled through the SCU. 7.17.3 Clock Generation Unit (CGU) The Clock Generator Unit (CGU) generates several base clocks. The base clocks may be unrelated in frequency and phase and can have different clock sources within the CGU. One CGU base clock is routed to the CLKOUT pins. Derived from each base clock may be multiple branch clocks. The branch clocks offer very flexible control for power-management purposes. All branch clocks are outputs of one of two Clock Control Units (CCUs) and can be controlled independently. Branch clocks derived from the same base clock are synchronous in frequency and phase. 7.17.4 Internal RC oscillator (IRC) The IRC is used as the clock source for the WWDT and/or as the clock that drives the PLLs and subsequently the CPU. The nominal IRC frequency is 12 MHz. The IRC is trimmed to 1 % accuracy over the entire voltage and temperature range. Upon power-up or any chip reset, the LPC1850/30/20/10 use the IRC as the clock source. Software may later switch to one of the other available clock sources. 7.17.5 PLL0 (for USB0) PLL0 is a dedicated PLL for the USB0 High-speed controller. PLL0 accepts an input clock frequency from an external oscillator in the range of 14 kHz to 25 MHz. The input frequency is multiplied up to a high frequency with a Current Controlled Oscillator (CCO). The CCO operates in the range of 4.3 MHz to 550 MHz. 7.17.6 System PLL1 The PLL1 accepts an input clock frequency from an external oscillator in the range of 10 MHz to 25 MHz. The input frequency is multiplied up to a high frequency with a Current Controlled Oscillator (CCO). The multiplier can be an integer value from 1 to 32. The CCO operates in the range of 156 MHz to 320 MHz, so there is an additional divider in the loop to keep the CCO within its frequency range while the PLL is providing the desired output frequency. The output divider may be set to divide by 2, 4, 8, or 16 to produce the output clock. Since the minimum output divider value is 2, it is insured that the PLL output has a 50 % duty cycle. The PLL is turned off and bypassed following a chip reset and may be enabled by software. The program must configure and activate the PLL, wait for the PLL to lock, and then connect to the PLL as a clock source. The PLL settling time is 100 μs. 7.17.7 Reset Generation Unit (RGU) The RGU allows generation of independent reset signals for individual blocks and peripherals. LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 49 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 7.17.8 Power control The LPC1850/30/20/10 support four reduced power modes: Sleep, Deep-sleep, Power-down, and Deep power-down. The LPC1850/30/20/10 can wake up from Deep-sleep, Power-down, and Deep power-down modes via the WAKEUP[3:0] pins and interrupts generated by battery powered blocks in the RTC power domain. 7.18 Emulation and debugging Debug and trace functions are integrated into the ARM Cortex-M3. Serial wire debug and trace functions are supported in addition to a standard JTAG debug and parallel trace functions. The ARM Cortex-M3 is configured to support up to eight breakpoints and four watch points. LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 50 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 8. Limiting values Table 6. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134).[1] Symbol Parameter Conditions Min Max Unit 3.6 V VDD(REG)(3V3) regulator supply voltage (3.3 V) on pin VDD_REG 2.2[2] VDD(IO) I/O supply voltage on pin VDDIO 2.2 3.6 V VDDA(3V3) analog supply voltage (3.3 V) on pin VDDA 2.0 3.6 V VBAT battery supply voltage for the RTC 2.2 3.6 V Vprog(pf) polyfuse programming on pin VPP 2.7 3.6 V voltage analog input voltage VIA on ADC pins 0 VDDA(3V3) V 2.0 3.6 V VI input voltage only valid when the VDD(IO) supply voltage is present [3] IDD supply current per supply pin [4] - <tbd> mA [4] - <tbd> mA - <tbd> mA ISS ground current per ground pin Ilatch I/O latch-up current −(0.5VDD(IO)) < VI < (1.5VDD(IO)); Tj < 125 °C [5] Tstg storage temperature Ptot(pack) total power dissipation (per package) based on package heat transfer, not device power consumption VESD electrostatic discharge voltage human body model; all pins [1] [6] <tbd> <tbd> °C - <tbd> W <tbd> <tbd> V The following applies to the limiting values: a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum. b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless otherwise noted. [2] 2.0 V if VBAT ≥ 2.2 V. [3] Including voltage on outputs in 3-state mode; at 2.0 V the speed will be reduced. [4] The peak current is limited to 25 times the corresponding maximum current. [5] Dependent on package type. [6] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kΩ series resistor. LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 51 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 9. Thermal characteristics The average chip junction temperature, Tj (°C), can be calculated using the following equation: T j = T amb + ( P D × R th ( j – a ) ) (1) • Tamb = ambient temperature (°C), • Rth(j-a) = the package junction-to-ambient thermal resistance (°C/W) • PD = sum of internal and I/O power dissipation The internal power dissipation is the product of IDD and VDD. The I/O power dissipation of the I/O pins is often small and many times can be negligible. However it can be significant in some applications. Table 7. Thermal characteristics VDD = 2.2 V to 3.6 V; Tamb = −40 °C to +85 °C unless otherwise specified; Symbol Parameter Tj(max) maximum junction temperature LPC1850_30_20_10 Objective data sheet Conditions Min Typ Max Unit - - <tbd> °C All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 52 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 10. Static characteristics Table 8. Static characteristics Tamb = −40 °C to +85 °C, unless otherwise specified. Symbol Parameter Conditions Min Typ[1] Max Unit Supply pins VDD(IO) I/O supply voltage 2.2 - 3.6 V VDD(REG)(3V3) regulator supply voltage (3.3 V) 2.2 - 3.6 V VDDA(3V3) analog supply voltage (3.3 V) 2.0 - 3.6 V VBAT battery supply voltage [2] 2.2 - 3.6 V IDD(REG)(3V3) regulator supply current active mode; code (3.3 V) while(1){} CCLK = 12 MHz; PLL disabled [3] - <tbd> - mA CCLK = 100 MHz; PLL enabled [3] - <tbd> - mA CCLK = 150 MHz; PLL enabled [3] - <tbd> - mA executed from <tbd>; all peripherals disabled [3] - <tbd> - mA deep sleep mode [3][4] - <tbd> - μA power-down mode [3][4] - <tbd> - μA [3] - <tbd> - nA VDD(REG)(3V3) present [5] - <tbd> - nA VDD(REG)(3V3) not present [6] <tbd> - nA sleep mode deep power-down mode; RTC not running IBAT IDD(IO) IDD(ADC) battery supply current I/O supply current ADC supply current LPC1850_30_20_10 Objective data sheet deep power-down mode; RTC running deep sleep mode [7] - <tbd> - nA power-down mode [7] - <tbd> - nA deep power-down mode [7] - <tbd> - nA deep sleep mode [8] - <tbd> - nA power-down mode [8] - <tbd> - nA deep power-down mode [8] - <tbd> - nA All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 53 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Table 8. Static characteristics …continued Tamb = −40 °C to +85 °C, unless otherwise specified. Symbol Parameter Conditions Min Typ[1] Max Unit Digital pins IIL LOW-level input current VI = 0 V; on-chip pull-up resistor disabled - - <tbd> μA IIH HIGH-level input current VI = VDD(IO); on-chip pull-down resistor disabled - - <tbd> μA IOZ OFF-state output current VO = 0 V; VO = VDD(IO); on-chip pull-up/down resistors disabled - - <tbd> μA VI input voltage pin configured to provide a digital function <tbd> - <tbd> V <tbd> - VDD(IO) V [9][10] [11] VO output voltage VIH HIGH-level input voltage <tbd> - - V output active VIL LOW-level input voltage - - <tbd> V Vhys hysteresis voltage <tbd> - - V VOH HIGH-level output voltage IOH = −4 mA VDD(IO) − 0.4 - - V VOL LOW-level output voltage IOL = 4 mA - - <tbd> V IOH HIGH-level output current VOH = VDD(IO) − 0.4 V <tbd> - - mA IOL LOW-level output current VOL = 0.4 V <tbd> - - mA IOHS HIGH-level short-circuit VOH = 0 V output current [12] - - <tbd> mA IOLS LOW-level short-circuit output current VOL = VDD(IO) [12] - - <tbd> mA Ipd pull-down current VI = 3.6 V <tbd> <tbd> <tbd> μA Ipu pull-up current VI = 0 V <tbd> <tbd> <tbd> μA VDD(IO) < VI < 3.6 V <tbd> <tbd> <tbd> μA <tbd> - - V Open-drain I2C0-bus pins VIH HIGH-level input voltage VIL LOW-level input voltage - - <tbd> V Vhys hysteresis voltage - <tbd> - V VOL LOW-level output voltage IOLS = <tbd> mA - - <tbd> V ILI input leakage current VI = VDD(IO) VI = 5 V LPC1850_30_20_10 Objective data sheet [13] - <tbd> <tbd> μA - <tbd> <tbd> μA All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 54 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Table 8. Static characteristics …continued Tamb = −40 °C to +85 °C, unless otherwise specified. Symbol Parameter Conditions Min Typ[1] Max Unit Oscillator pins Vi(XTAL1) input voltage on pin XTAL1 −0.5 - 1.2 V Vo(XTAL2) output voltage on pin XTAL2 −0.5 - 1.2 V high-speed mode <tbd> <tbd> <tbd> mV full-speed/low-speed mode <tbd> - <tbd> mV chirp mode <tbd> - <tbd> mV <tbd> <tbd> <tbd> mV USB pins common-mode input voltage VIC Vi(dif) differential input voltage [1] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages. [2] The RTC typically fails when VVBAT drops below 1.6 V. [3] VDD(REG)(3V3) = 3.3 V; Tamb = 25 °C for all power consumption measurements. [4] Conditions <tbd>. [5] On pin VBAT; IDD(REG)(3V3) = <tbd> nA; VDD(REG)(3V3) = 3.3 V; VBAT < VDD(REG)(3V3); Tamb = 25 °C. [6] On pin VBAT; VBAT = 3.3 V; Tamb = 25 °C. [7] All internal pull-ups disabled. All pins configured as output and driven LOW. VDD(3V3) = 3.3 V; Tamb = 25 °C. [8] VDDA(3V3) = 3.3 V; Tamb = 25 °C. [9] Including voltage on outputs in 3-state mode. [10] VDD(3V3) supply voltages must be present. [11] 3-state outputs go into 3-state mode in Deep power-down mode. [12] Allowed as long as the current limit does not exceed the maximum current allowed by the device. [13] To VSS. LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 55 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 10.1 Electrical pin characteristics 001aab173 X X (X) 001aab173 X X (X) X X X X <tbd> X <tbd> X X X X X X X X X X X X X X X X X (X) Conditions: VDD(REG)(3V3) = VDD(IO) = 3.3 V; standard port pins. Fig 6. Typical HIGH-level output voltage VOH versus HIGH-level output source current IOH Conditions: VDD(REG)(3V3) = VDD(IO) = 3.3 V; standard port pins. Fig 7. 001aab173 X X (X) Typical LOW-level output current IOL versus LOW-level output voltage VOL 001aab173 X X (X) X X X X <tbd> X <tbd> X X X X X X X X X X X X X X (X) Typical pull-up current Ipu versus input voltage VI LPC1850_30_20_10 Objective data sheet X X X X X (X) Conditions: VDD(REG)(3V3) = VDD(IO) = 3.3 V; standard port pins. Fig 8. X X (X) Conditions: VDD(REG)(3V3) = VDD(IO) = 3.3 V; standard port pins. Fig 9. Typical pull-down current Ipd versus input voltage VI All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 56 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 10.2 Power consumption 001aab173 X X (X) 001aab173 X X (X) X X X X <tbd> X <tbd> X X X X X X X X X X X X X X X X X (X) Conditions: Tamb = 25 °C; VDD(REEG)(3V3) = 3.3 V; <tbd> Fig 10. Typical supply current versus regulator supply voltage VDD(REEG)(3V3) in active mode Conditions: Tamb = 25 °C; VDD(REEG)(3V3) = 3.3 V; <tbd>. Fig 11. Typical supply current versus temperature in active mode 001aab173 X X X (X) X (X) 001aab173 X X (X) X X X X <tbd> X <tbd> X X X X X X X X X X X X X X X X X (X) Conditions: Tamb = 25 °C; <tbd>. Conditions: Tamb = 25 °C; V; <tbd>. Fig 12. Typical supply current versus temperature in Sleep mode LPC1850_30_20_10 Objective data sheet X X (X) Fig 13. Typical supply current versus temperature in Deep-sleep mode All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 57 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 001aab173 X X (X) 001aab173 X X (X) X X X X <tbd> X <tbd> X X X X X X X X X X X X X X X X X (X) Conditions: Tamb = 25 °C; <tbd>. Conditions: Tamb = 25 °C; V; <tbd>. Fig 14. Typical supply current versus temperature in Power-down mode LPC1850_30_20_10 Objective data sheet X X (X) Fig 15. Typical supply current versus temperature in Deep power-down mode All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 58 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Table 9. Power consumption for individual peripherals Tamb = 25 °C; VDD(REEG)(3V3) = 3.3 V. Peripheral Conditions Typical IDD[1] IRC ADC DAC I2C0 I2C1 I2S SSP0 SSP1 USART0 UART1 USART2 USART3 USB0 USB1 Ethernet <tbd> [1] LPC1850_30_20_10 Objective data sheet Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages. All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 59 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 11. Dynamic characteristics 11.1 External clock Table 10. Dynamic characteristic: external clock Tamb = −40 °C to +85 °C; VDD(IO) over specified ranges.[1] Symbol Parameter Conditions Typ[2] Min Max Unit fosc oscillator frequency 1 - 25 MHz Tcy(clk) clock cycle time 40 - 1000 ns tCHCX clock HIGH time Tcy(clk) × <tbd> - - ns tCLCX clock LOW time Tcy(clk) × <tbd> - - ns tCLCH clock rise time - - <tbd> ns tCHCL clock fall time - - <tbd> ns [1] Parameters are valid over operating temperature range unless otherwise specified. [2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages. tCHCL tCHCX tCLCH tCLCX Tcy(clk) 002aaa907 Fig 16. External clock timing (with an amplitude of at least Vi(RMS) = 200 mV) LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 60 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 11.2 IRC and RTC oscillators Table 11. Dynamic characteristic: IRC and RTC oscillators Tamb = −40 °C to +85 °C; <tbd> ≤ VDD(IO) ≤ <tbd>.[1] Symbol Parameter Conditions Min Typ[2] Max Unit fosc(RC) internal RC oscillator frequency - <tbd> 12.00 <tbd> MHz fi(RTC) RTC input frequency - - 32.768 - kHz [1] Parameters are valid over operating temperature range unless otherwise specified. [2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages. 001aab173 X X (X) X X <tbd> X X X X X X X X X X (X) Conditions: Frequency values are typical values. 12 MHz ± 1 % accuracy is guaranteed for 2.7 V ≤ VDD(IO) ≤ 3.6 V and Tamb = −40 °C to +85 °C. Variations between parts may cause the IRC to fall outside the 12 MHz ± 1 % accuracy specification for voltages below 2.7 V. Fig 17. Internal RC oscillator frequency versus temperature 11.3 I2C-bus Table 12. Dynamic characteristic: I2C-bus pins Tamb = −40 °C to +85 °C.[1] Symbol Parameter Conditions Min Max Unit fSCL SCL clock frequency Standard-mode 0 100 kHz Fast-mode 0 400 kHz Fast-mode Plus 0 1 MHz of both SDA and SCL signals - 300 ns Fast-mode 20 + 0.1 × Cb 300 ns Fast-mode Plus - 120 ns tf fall time [3][4][5][6] Standard-mode LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 61 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Table 12. Dynamic characteristic: I2C-bus pins Tamb = −40 °C to +85 °C.[1] Symbol Parameter Conditions Min Max Unit tLOW LOW period of the SCL clock Standard-mode 4.7 - μs Fast-mode 1.3 - μs tHIGH tHD;DAT tSU;DAT [1] HIGH period of the SCL clock [2][3][7] data hold time [8][9] data set-up time Fast-mode Plus 0.5 - μs Standard-mode 4.0 - μs Fast-mode 0.6 - μs Fast-mode Plus 0.26 - μs Standard-mode 0 - μs Fast-mode 0 - μs Fast-mode Plus 0 - μs Standard-mode 250 - ns Fast-mode 100 - ns Fast-mode Plus 50 - ns Parameters are valid over operating temperature range unless otherwise specified. [2] tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission and the acknowledge. [3] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the VIH(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL. [4] Cb = total capacitance of one bus line in pF. If mixed with Hs-mode devices, faster fall times are allowed. [5] The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage tf is specified at 250 ns. This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified tf. [6] In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors are used, designers should allow for this when considering bus timing. [7] The maximum tHD;DAT could be 3.45 μs and 0.9 μs for Standard-mode and Fast-mode but must be less than the maximum of tVD;DAT or tVD;ACK by a transition time. This maximum must only be met if the device does not stretch the LOW period (tLOW) of the SCL signal. If the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock. [8] tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in transmission and the acknowledge. [9] A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system but the requirement tSU;DAT = 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time. LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 62 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller tf SDA tSU;DAT 70 % 30 % 70 % 30 % tHD;DAT tf 70 % 30 % SCL tVD;DAT tHIGH 70 % 30 % 70 % 30 % 70 % 30 % tLOW S 1 / fSCL 002aaf425 Fig 18. I2C-bus pins clock timing LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 63 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 11.4 SSP interface Table 13. Dynamic characteristics: SSP pins in SPI mode Symbol Parameter Tcy(PCLK) PCLK cycle time Tcy(clk) Conditions Min Max Unit <tbd> - ns [1] <tbd> - ns in SPI mode [2] <tbd> Tcy(clk) ns in SPI mode [2] - <tbd> ns in SPI mode [2] - <tbd> ns data output hold time in SPI mode [2] - <tbd> ns data set-up time in SPI mode [3][4] <tbd> - ns <tbd> × Tcy(PCLK) + <tbd> - ns clock cycle time SSP master data set-up time tDS data hold time tDH data output valid time tv(Q) th(Q) SSP slave tDS tDH data hold time in SPI mode [3][4] tv(Q) data output valid time in SPI mode [3][4] - <tbd> × Tcy(PCLK) + <tbd> ns th(Q) data output hold time in SPI mode [3][4] - <tbd> × Tcy(PCLK) + <tbd> ns [1] Tcy(clk) = (SSPCLKDIV × (1 + SCR) × CPSDVSR) / fmain. The clock cycle time derived from the SPI bit rate Tcy(clk) is a function of the main clock frequency fmain, the SSP peripheral clock divider (SSPCLKDIV), the SSP SCR parameter (specified in the SSP0CR0 register), and the SSP CPSDVSR parameter (specified in the SSP clock prescale register). [2] Tamb = −40 °C to 85 °C; VDD(REG)(3V3) = 2.0 V to 3.6 V; VDD(IO) = 2.0 V to 3.6 V. [3] Tcy(clk) = 12 × Tcy(PCLK). [4] Tamb = 25 °C; VDD(REG)(3V3) = 3.3 V; VDD(IO) = 3.3 V. LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 64 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Tcy(clk) tclk(H) tclk(L) SCK (CPOL = 0) SCK (CPOL = 1) tv(Q) th(Q) DATA VALID MOSI DATA VALID tDS DATA VALID MISO tDH DATA VALID th(Q) tv(Q) MOSI DATA VALID DATA VALID tDH tDS MISO CPHA = 1 DATA VALID CPHA = 0 DATA VALID 002aae829 Fig 19. SSP master timing in SPI mode LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 65 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Tcy(clk) tclk(H) tclk(L) tDS tDH SCK (CPOL = 0) SCK (CPOL = 1) MOSI DATA VALID DATA VALID tv(Q) MISO th(Q) DATA VALID tDS MOSI DATA VALID tDH DATA VALID tv(Q) MISO DATA VALID CPHA = 1 DATA VALID th(Q) CPHA = 0 DATA VALID 002aae830 Fig 20. SSP slave timing in SPI mode LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 66 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 11.5 USB interface Table 14. Dynamic characteristics: USB pins (full-speed) CL = 50 pF; Rpu = 1.5 kΩ on D+ to VDD(IO), unless otherwise specified. Symbol Parameter Conditions Min Typ Max Unit tr rise time 10 % to 90 % <tbd> - <tbd> ns tf fall time 10 % to 90 % <tbd> - <tbd> ns tFRFM differential rise and fall time matching tr / tf <tbd> - <tbd> % VCRS output signal crossover voltage <tbd> - <tbd> V tFEOPT source SE0 interval of EOP see Figure 21 <tbd> - <tbd> ns tFDEOP source jitter for differential transition to SE0 transition see Figure 21 <tbd> - <tbd> ns tJR1 receiver jitter to next transition <tbd> - <tbd> ns tJR2 receiver jitter for paired transitions 10 % to 90 % <tbd> - <tbd> ns tEOPR1 EOP width at receiver must reject as EOP; see Figure 21 [1] <tbd> - - ns tEOPR2 EOP width at receiver must accept as EOP; see Figure 21 [1] <tbd> - - ns [1] Characterized but not implemented as production test. Guaranteed by design. TPERIOD crossover point extended crossover point differential data lines source EOP width: tFEOPT differential data to SE0/EOP skew n × TPERIOD + tFDEOP receiver EOP width: tEOPR1, tEOPR2 002aab561 Fig 21. Differential data-to-EOP transition skew and EOP width LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 67 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 11.6 Dynamic external memory interface Table 15. Dynamic characteristics: Dynamic external memory interface CL = 30 pF; Tamb = −40 °C to 85 °C; VDD(REG)(3V3) and VDD(IO) over specified ranges <tbd>; AHB clock = 1 MHz. Symbol Parameter Conditions Min Typ Max Unit Common td(SV) chip select valid delay time - <tbd> <tbd> ns th(S) chip select hold time <tbd> <tbd> - ns td(RASV) row address strobe valid delay time - <tbd> <tbd> ns th(RAS) row address strobe hold time <tbd> <tbd> - ns td(CASV) column address strobe valid delay time - <tbd> <tbd> ns th(CAS) column address strobe hold time <tbd> <tbd> - ns td(WV) write valid delay time - <tbd> <tbd> ns th(W) write hold time <tbd> <tbd> - ns td(GV) output enable valid delay time - <tbd> <tbd> ns th(G) output enable hold time <tbd> <tbd> - ns td(AV) address valid delay time - <tbd> <tbd> ns th(A) address hold time <tbd> <tbd> - ns Read cycle parameters tsu(D) data input set-up time <tbd> <tbd> - ns th(D) data input hold time <tbd> <tbd> - ns Write cycle parameters td(QV) data output valid delay time - <tbd> <tbd> ns th(Q) data output hold time <tbd> <tbd> - ns LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 68 of 84 xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx NXP Semiconductors LPC1850_30_20_10 Objective data sheet 11.7 Static external memory interface Table 16. Dynamic characteristics: Static external memory interface CL = 30 pF; Tamb = −40 °C to 85 °C; VDD(REG)(3V3) and VDD(IO) over specified ranges <tbd>; AHB clock = 1 MHz Symbol Parameter Common to read and write tCSLAV Conditions Min Typ Max Unit <tbd> <tbd> <tbd> ns cycles[1] CS LOW to address valid time Read cycle parameters[1][2] Rev. 1 — 3 January 2011 OE LOW to address valid time <tbd> <tbd> <tbd> ns tCSLOEL CS LOW to OE LOW time <tbd> + Tcy(CCLK) × WAITOEN 0 + Tcy(CCLK) × WAITOEN <tbd> + Tcy(CCLK) × WAITOEN ns tam memory access time th(D) data input hold time <tbd> <tbd> <tbd> ns tCSHOEH CS HIGH to OE HIGH time <tbd> <tbd> <tbd> ns tOEHANV OE HIGH to address invalid time <tbd> <tbd> <tbd> ns tOELOEH OE LOW to OE HIGH time <tbd> + (WAITRD − WAITOEN + 1) × Tcy(CCLK) 0 + (WAITRD − WAITOEN + 1) × Tcy(CCLK) <tbd> + (WAITRD − WAITOEN + 1) × Tcy(CCLK) tBLSLAV BLS LOW to address valid time <tbd> <tbd> <tbd> ns tCSHBLSH CS HIGH to BLS HIGH time <tbd> <tbd> <tbd> ns <tbd> + Tcy(CCLK) × (1 + WAITWEN) <tbd> + Tcy(CCLK) × (1 + WAITWEN) <tbd> + Tcy(CCLK) × (1 + WAITWEN) ns [3][4] [5] (WAITRD − WAITOEN + 1) × (WAITRD − WAITOEN + 1) × (WAITRD − WAITOEN + 1) × ns Tcy(CCLK) − <tbd> Tcy(CCLK) − <tbd> Tcy(CCLK) − <tbd> tCSLWEL CS LOW to WE LOW time tCSLBLSL CS LOW to BLS LOW time −0.88 0.49 0.98 ns tWELDV WE LOW to data valid time 0.68 2.54 5.86 ns tCSLDV CS LOW to data valid time 69 of 84 © NXP B.V. 2011. All rights reserved. tWELWEH WE LOW to WE HIGH time tBLSLBLSH BLS LOW to BLS HIGH time tWEHANV WE HIGH to address invalid time 0 2.64 4.79 ns [3] <tbd> + Tcy(CCLK) × (WAITWR − WAITWEN + 1) 0 + Tcy(CCLK) × (WAITWR − WAITWEN + 1) <tbd> + Tcy(CCLK) × (WAITWR − WAITWEN + 1) ns [3] <tbd> + Tcy(CCLK) × (WAITWR − WAITWEN + 3) 0 + Tcy(CCLK) × (WAITWR − WAITWEN + 3) <tbd> + Tcy(CCLK) × (WAITWR − WAITWEN + 3) ns [3] <tbd> + Tcy(CCLK) <tbd> + Tcy(CCLK) <tbd> + Tcy(CCLK) ns LPC1850/30/20/10 Write cycle parameters[1][6] 32-bit ARM Cortex-M3 microcontroller All information provided in this document is subject to legal disclaimers. tOELAV xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx Symbol Parameter Conditions Min Typ Max Unit <tbd> <tbd> <tbd> ns tWEHDNV WE HIGH to data invalid time [3] tBLSHANV BLS HIGH to address invalid time [3] <tbd> <tbd> <tbd> ns tBLSHDNV BLS HIGH to data invalid time [3] <tbd> <tbd> <tbd> ns [1] VOH = 2.5 V, VOL = 0.2 V. [2] VIH = 2.5 V, VIL = 0.5 V. Rev. 1 — 3 January 2011 Tcy(CCLK) = 1/CCLK. [4] Latest of address valid, CS LOW, OE LOW to data valid. [5] Earliest of CS HIGH, OE HIGH, address change to data invalid. [6] Byte lane state bit (PB) = 1. LPC1850/30/20/10 70 of 84 © NXP B.V. 2011. All rights reserved. 32-bit ARM Cortex-M3 microcontroller All information provided in this document is subject to legal disclaimers. [3] NXP Semiconductors LPC1850_30_20_10 Objective data sheet Table 16. Dynamic characteristics: Static external memory interface …continued CL = 30 pF; Tamb = −40 °C to 85 °C; VDD(REG)(3V3) and VDD(IO) over specified ranges <tbd>; AHB clock = 1 MHz LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller tCSLAV tCSHOEH CS addr tam th(D) data tCSLOEL tOELAV tOEHANV tOELOEH OE tCSHBLSH tBLSLAV BLS 002aad955 Fig 22. Static external memory controller read access CS tCSLAV tCSLWEL tWELWEH tBLSLBLSH BLS/WE tWEHANV tCSLBLSL tWELDV tBLSHANV addr tCSLDV tWEHDNV tBLSHDNV data OE 002aad956 Fig 23. Static external memory controller write access LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 71 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 12. ADC/DAC electrical characteristics Table 17. ADC characteristics VDDA(3V3) over specified ranges; Tamb = −40 °C to +85 °C; ADC frequency 4.5 MHz; unless otherwise specified. Symbol Parameter VIA Cia ED differential linearity error Min Typ Max analog input voltage 0 - VDDA(3V3) V analog input capacitance - - <tbd> pF [1][2][3] - - <tbd> LSB integral non-linearity [1][4] - - <tbd> LSB EO offset error [1][5] - − <tbd> LSB EG gain error [1][6] - - <tbd> % ET absolute error [1][7] - - <tbd> LSB Rvsi voltage source interface resistance - - <tbd> kΩ Ri input resistance - - <tbd> MΩ fclk(ADC) ADC clock frequency - - <tbd> MHz fc(ADC) ADC conversion frequency - - <tbd> kSamples/s EL(adj) [1] Conditions [8][9] Unit Conditions: VSSA = 0 V, VDDA(3V3) = 3.3 V. [2] The ADC is monotonic, there are no missing codes. [3] The differential linearity error (ED) is the difference between the actual step width and the ideal step width. See Figure 24. [4] The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and the ideal transfer curve after appropriate adjustment of gain and offset errors. See Figure 24. [5] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the ideal curve. See Figure 24. [6] The gain error (EG) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset error, and the straight line which fits the ideal transfer curve. See Figure 24. [7] The absolute error (ET) is the maximum difference between the center of the steps of the actual transfer curve of the non-calibrated ADC and the ideal transfer curve. See Figure 24. [8] Tamb = 25 °C; maximum sampling frequency fs = 4.5 MHz and analog input capacitance Cia = 1 pF. [9] Input resistance Ri depends on the sampling frequency fs: Ri = 1 / (fs × Cia). LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 72 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller offset error EO gain error EG 1023 1022 1021 1020 1019 1018 (2) 7 code out (1) 6 5 (5) 4 (4) 3 (3) 2 1 LSB (ideal) 1 0 1 2 3 4 5 6 7 1018 1019 1020 1021 1022 1023 1024 VIA (LSBideal) offset error EO 1 LSB = VDDA(3V3) − VSSA 1024 002aaf959 (1) Example of an actual transfer curve. (2) The ideal transfer curve. (3) Differential linearity error (ED). (4) Integral non-linearity (EL(adj)). (5) Center of a step of the actual transfer curve. Fig 24. 10-bit ADC characteristics LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 73 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Table 18. DAC electrical characteristics VDDA(3V3) over specified ranges; Tamb = −40 °C to +85 °C; unless otherwise specified Symbol Parameter ED Min Typ Max Unit differential linearity error - <tbd> - LSB EL(adj) integral non-linearity - <tbd> - LSB EO offset error - <tbd> - % EG gain error - <tbd> - % CL load capacitance - <tbd> - pF RL load resistance <tbd> - - kΩ LPC1850_30_20_10 Objective data sheet Conditions All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 74 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 13. Application information 13.1 LCD panel signal usage Table 19. LCD panel connections for STN single panel mode External pin 4-bit mono STN single panel 8-bit mono STN single panel Color STN single panel LPC18xx pin used LCD function LPC18xx pin used LCD function LPC18xx pin used LCD function LCDVD[23:8] - - - - - - LCDVD7 - - P8_4 UD[7] P8_4 UD[7] LCDVD6 - - P8_5 UD[6] P8_5 UD[6] LCDVD5 - - P8_6 UD[5] P8_6 UD[5] LCDVD4 - - P8_7 UD[4] P8_7 UD[4] LCDVD3 P4_2 UD[3] P4_2 UD[3] P4_2 UD[3] LCDVD2 P4_3 UD[2] P4_3 UD[2] P4_3 UD[2] LCDVD1 P4_4 UD[1] P4_4 UD[1] P4_4 UD[1] LCDVD0 P4_1 UD[0] P4_1 UD[0] P4_1 UD[0] LCDLP P7_6 LCDLP P7_6 LCDLP P7_6 LCDLP LCDENAB/ LCDM P4_6 LCDENAB/ LCDM P4_6 LCDENAB/ LCDM P4_6 LCDENAB/ LCDM LCDFP P4_5 LCDFP P4_5 LCDFP P4_5 LCDFP LCDDCLK P4_7 LCDDCLK P4_7 LCDDCLK P4_7 LCDDCLK LCDLE P7_0 LCDLE P7_0 LCDLE P7_0 LCDLE LCDPWR P7_7 CDPWR P7_7 LCDPWR P7_7 LCDPWR GP_CLKIN PF_4 LCDCLKIN PF_4 LCDCLKIN PF_4 LCDCLKIN Table 20. LCD panel connections for STN dual panel mode External pin 4-bit mono STN dual panel 8-bit mono STN dual panel Color STN dual panel LPC18xx pin used LCD function LPC18xx pin used LCD function LPC18xx pin used LCD function LCDVD[23:16] - - - - - - LCDVD15 - - PB_4 LD[7] PB_4 LD[7] LCDVD14 - - PB_5 LD[6] PB_5 LD[6] LCDVD13 - - PB_6 LD[5] PB_6 LD[5] LCDVD12 - - P8_3 LD[4] P8_3 LD[4] LCDVD11 P4_9 LD[3] P4_9 LD[3] P4_9 LD[3] LCDVD10 P4_10 LD[2] P4_10 LD[2] P4_10 LD[2] LCDVD9 P4_8 LD[1] P4_8 LD[1] P4_8 LD[1] LCDVD8 P7_5 LD[0] P7_5 LD[0] P7_5 LD[0] LCDVD7 - - UD[7] P8_4 UD[7] LCDVD6 - - P8_5 UD[6] P8_5 UD[6] LCDVD5 - - P8_6 UD[5] P8_6 UD[5] LCDVD4 - - P8_7 UD[4] P8_7 UD[4] LCDVD3 P4_2 UD[3] P4_2 UD[3] P4_2 UD[3] LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 75 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Table 20. LCD panel connections for STN dual panel mode External pin 4-bit mono STN dual panel 8-bit mono STN dual panel Color STN dual panel LPC18xx pin used LCD function LPC18xx pin used LCD function LPC18xx pin used LCD function LCDVD2 P4_3 UD[2] P4_3 UD[2] P4_3 UD[2] LCDVD1 P4_4 UD[1] P4_4 UD[1] P4_4 UD[1] LCDVD0 P4_1 UD[0] P4_1 UD[0] P4_1 UD[0] LCDLP P7_6 LCDLP P7_6 LCDLP P7_6 LCDLP LCDENAB/ LCDM P4_6 LCDENAB/ LCDM P4_6 LCDENAB/ LCDM P4_6 LCDENAB/ LCDM LCDFP P4_5 LCDFP P4_5 LCDFP P4_5 LCDFP LCDDCLK P4_7 LCDDCLK P4_7 LCDDCLK P4_7 LCDDCLK LCDLE P7_0 LCDLE P7_0 LCDLE P7_0 LCDLE LCDPWR P7_7 LCDPWR P7_7 LCDPWR P7_7 LCDPWR GP_CLKIN PF_4 LCDCLKIN PF_4 LCDCLKIN PF_4 LCDCLKIN Table 21. External pin LCD panel connections for TFT panels TFT 12 bit (4:4:4 mode) TFT 16 bit (5:6:5 mode) TFT 16 bit (1:5:5:5 mode) TFT 24 bit LPC18xx pin used LCD function LPC18xx pin used LCD function LPC18xx pin LCD used function LCDVD23 PB_0 BLUE3 PB_0 BLUE4 PB_0 BLUE4 BLUE7 LCDVD22 PB_1 BLUE2 PB_1 BLUE3 PB_1 BLUE3 BLUE6 LCDVD21 PB_2 BLUE1 PB_2 BLUE2 PB_2 BLUE2 BLUE5 LCDVD20 PB_3 BLUE0 PB_3 BLUE1 PB_3 BLUE1 BLUE4 LCDVD19 - - P7_1 BLUE0 P7_1 BLUE0 BLUE3 LPC18xx pin used LCD function LCDVD18 - - - - P7_2 intensity LCDVD17 - - - - - - P7_3 BLUE2 BLUE1 LCDVD16 - - - - - - P7_4 BLUE0 LCDVD15 PB_4 GREEN3 PB_4 GREEN5 PB_4 GREEN4 PB_4 GREEN7 LCDVD14 PB_5 GREEN2 PB_5 GREEN4 PB_5 GREEN3 PB_5 GREEN6 LCDVD13 PB_6 GREEN1 PB_6 GREEN3 PB_6 GREEN2 PB_6 GREEN5 LCDVD12 P8_3 GREEN0 P8_3 GREEN2 P8_3 GREEN1 P8_3 GREEN4 LCDVD11 - - P4_9 GREEN1 P4_9 GREEN0 P4_9 GREEN3 LCDVD10 - - P4_10 GREEN0 P4_10 intensity P4_10 GREEN2 LCDVD9 - - - - - - P4_8 GREEN1 LCDVD8 - - - - - - P7_5 GREEN0 LCDVD7 P8_4 RED3 P8_4 RED4 P8_4 RED4 P8_4 RED7 LCDVD6 P8_5 RED2 P8_5 RED3 P8_5 RED3 P8_5 RED6 LCDVD5 P8_6 RED1 P8_6 RED2 P8_6 RED2 P8_6 RED5 LCDVD4 P8_7 RED0 P8_7 RED1 P8_7 RED1 P8_7 RED4 LCDVD3 - - P4_2 RED0 P4_2 RED0 P4_2 RED3 LCDVD2 - - - - P4_3 intensity P4_3 RED2 LCDVD1 - - - - - - P4_4 RED1 LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 76 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Table 21. External pin LCD panel connections for TFT panels TFT 12 bit (4:4:4 mode) TFT 16 bit (5:6:5 mode) TFT 16 bit (1:5:5:5 mode) TFT 24 bit LPC18xx pin used LCD function LPC18xx pin LCD used function LCDVD0 - - - - - - P4_1 RED0 LCDLP P7_6 LCDLP P7_6 LCDLP P7_6 LCDLP P7_6 LCDLP LCDENAB/ LCDM P4_6 LCDENAB/ P4_6 LCDM LPC18xx pin used LCD function LPC18xx pin used LCD function LCDENAB/ P4_6 LCDM LCDENAB/ P4_6 LCDM LCDFP P4_5 LCDFP P4_5 LCDFP P4_5 LCDFP P4_5 LCDFP LCDDCLK P4_7 LCDDCLK P4_7 LCDDCLK P4_7 LCDDCLK P4_7 LCDDCLK LCDLE P7_0 LCDLE P7_0 LCDLE P7_0 LCDLE P7_0 LCDLE LCDPWR P7_7 LCDPWR P7_7 LCDPWR P7_7 LCDPWR P7_7 LCDPWR LCDCLKIN PF_4 LCDCLKIN PF_4 GP_CLKIN PF_4 LCDCLKIN PF_4 LCDENAB/ LCDM LCDCLKIN 13.2 XTAL1 input The input voltage to the on-chip oscillators is limited to 1.2 V. If the oscillator is driven by a clock in slave mode, it is recommended that the input be coupled through a capacitor with Ci = 100 pF. To limit the input voltage to the specified range, choose an additional capacitor to ground Cg which attenuates the input voltage by a factor Ci/(Ci + Cg). In slave mode, a minimum of 200 mV (RMS) is needed. For more details see <tbd>. LPC1xxx XTAL1 Ci 100 pF Cg 002aae835 Fig 25. Slave mode operation of the on-chip oscillator 13.3 XTAL and RTCX Printed Circuit Board (PCB) layout guidelines The crystal should be connected on the PCB as close as possible to the oscillator input and output pins of the chip. Take care that the load capacitors Cx1, Cx2, and Cx3 in case of third overtone crystal usage have a common ground plane. The external components must also be connected to the ground plain. Loops must be made as small as possible in order to keep the noise coupled in via the PCB as small as possible. Also parasitics should stay as small as possible. Values of Cx1 and Cx2 should be chosen smaller accordingly to the increase in parasitics of the PCB layout. LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 77 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 14. Package outline LBGA256: plastic low profile ball grid array package; 256 balls; body 17 x 17 x 1 mm A B D SOT740-2 ball A1 index area A2 A E A1 detail X C e1 e y y1 C ∅v M C A B b 1/2 e ∅w M C T R e P N M L K J e2 H G 1/2 e F E D C B A ball A1 index area 1 3 2 5 4 7 6 9 8 11 10 13 12 15 14 16 X 5 0 10 mm scale DIMENSIONS (mm are the original dimensions) UNIT A max A1 A2 b D E e e1 e2 v w y y1 mm 1.55 0.45 0.35 1.1 0.9 0.55 0.45 17.2 16.8 17.2 16.8 1 15 15 0.25 0.1 0.12 0.35 REFERENCES OUTLINE VERSION IEC JEDEC JEITA SOT740-2 --- MO-192 --- EUROPEAN PROJECTION ISSUE DATE 05-06-16 05-08-04 Fig 26. Package outline LBGA256 package sot740_2 LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 78 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 15. Abbreviations Table 22. LPC1850_30_20_10 Objective data sheet Abbreviations Acronym Description ADC Analog-to-Digital Converter AES Advanced Encryption Standard AHB Advanced High-performance Bus APB Advanced Peripheral Bus API Application Programming Interface BOD BrownOut Detection CAN Controller Area Network CMAC Cipher-based Message Authentication Code CSMA/CD Carrier Sense Multiple Access with Collision Detection DAC Digital-to-Analog Converter DMA Direct Memory Access ETB Embedded Trace Buffer ETM Embedded Trace Macrocell GPIO General Purpose Input/Output IRC Internal RC IrDA Infrared Data Association JTAG Joint Test Action Group LCD Liquid Crystal Display LSB Least Significant Bit MAC Media Access Control MCU MicroController Unit MIIM Media Independent Interface Management n.c. not connected OTG On-The-Go PHY PHYsical layer PLL Phase-Locked Loop PWM Pulse Width Modulator RMII Reduced Media Independent Interface SDRAM Synchronous Dynamic Random Access Memory SPI Serial Peripheral Interface SSI Serial Synchronous Interface SSP Synchronous Serial Port TCP/IP Transmission Control Protocol/Internet Protocol UART Universal Asynchronous Receiver/Transmitter ULPI UTMI+ Low Pin Interface USART Universal Synchronous Asynchronous Receiver/Transmitter USB Universal Serial Bus UTMI USB 2.0 Transceiver Macrocell Interface All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 79 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 16. Revision history Table 23. Revision history Document ID Release date Data sheet status Change notice Supersedes LPC1850_30_20_10 v.1 20110103 - LPC1850_30_20_10 Objective data sheet Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 - © NXP B.V. 2011. All rights reserved. 80 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 17. Legal information 17.1 Data sheet status Document status[1][2] Product status[3] Definition Objective [short] data sheet Development This document contains data from the objective specification for product development. Preliminary [short] data sheet Qualification This document contains data from the preliminary specification. Product [short] data sheet Production This document contains the product specification. [1] Please consult the most recently issued document before initiating or completing a design. [2] The term ‘short data sheet’ is explained in section “Definitions”. [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. 17.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet. 17.3 Disclaimers Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors. malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk. Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of NXP Semiconductors products by customer. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities. LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 81 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors’ warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors’ specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors’ standard warranty and NXP Semiconductors’ product specifications. 17.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. I2C-bus — logo is a trademark of NXP B.V. 18. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: [email protected] LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 82 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 19. Contents 1 General description . . . . . . . . . . . . . . . . . . . . . . 1 2 Features and benefits . . . . . . . . . . . . . . . . . . . . 1 3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 Ordering information . . . . . . . . . . . . . . . . . . . . . 3 4.1 Ordering options . . . . . . . . . . . . . . . . . . . . . . . . 4 5 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 5 6 Pinning information . . . . . . . . . . . . . . . . . . . . . . 6 6.1 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 6 7 Functional description . . . . . . . . . . . . . . . . . . 30 7.1 Architectural overview . . . . . . . . . . . . . . . . . . 30 7.2 ARM Cortex-M3 processor . . . . . . . . . . . . . . . 30 7.3 AHB multilayer matrix . . . . . . . . . . . . . . . . . . . 31 7.4 Nested Vectored Interrupt Controller (NVIC) . 31 7.4.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.4.2 Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 32 7.5 Event router . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7.6 System Tick timer (SysTick) . . . . . . . . . . . . . . 32 7.7 On-chip static RAM. . . . . . . . . . . . . . . . . . . . . 32 7.8 Boot ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7.9 Memory mapping . . . . . . . . . . . . . . . . . . . . . . 34 7.10 Security features. . . . . . . . . . . . . . . . . . . . . . . 36 7.10.1 AES decryption engine . . . . . . . . . . . . . . . . . . 36 7.10.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 7.10.2 One-Time Programmable (OTP) memory . . . 36 7.11 General Purpose I/O (GPIO) . . . . . . . . . . . . . 36 7.11.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 7.12 AHB peripherals . . . . . . . . . . . . . . . . . . . . . . . 37 7.12.1 State Configurable Timer (SCT) subsystem . . 37 7.12.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 7.12.2 General Purpose DMA (GPDMA) . . . . . . . . . . 37 7.12.2.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 7.12.3 SPI Flash Interface (SPIFI). . . . . . . . . . . . . . . 38 7.12.3.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 7.12.4 SD/MMC card interface . . . . . . . . . . . . . . . . . 39 7.12.5 External Memory Controller (EMC). . . . . . . . . 39 7.12.5.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 7.12.6 High-speed USB Host/Device/OTG interface (USB0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 7.12.6.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 7.12.7 High-speed USB Host/Device interface with ULPI (USB1) . . . . . . . . . . . . . . . . . . . . . . . . . . 40 7.12.7.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 7.12.8 LCD controller. . . . . . . . . . . . . . . . . . . . . . . . . 41 7.12.8.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 7.12.9 Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 7.12.9.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 7.13 7.13.1 7.13.1.1 7.13.2 7.13.2.1 7.13.3 7.13.3.1 7.13.4 7.13.4.1 7.13.5 7.13.5.1 7.13.6 7.13.6.1 7.14 7.14.1 Digital serial peripherals. . . . . . . . . . . . . . . . . UART1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . USART0/2/3 . . . . . . . . . . . . . . . . . . . . . . . . . . Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSP0/1 serial I/O controllers . . . . . . . . . . . . . Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . I2C0/1-bus interfaces . . . . . . . . . . . . . . . . . . . Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . I2S interface . . . . . . . . . . . . . . . . . . . . . . . . . . Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . C_CAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Counter/timers and motor control . . . . . . . . . General purpose 32-bit timers/external event counters . . . . . . . . . . . . . . . . . . . . . . . . 7.14.1.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.14.2 Motor control PWM . . . . . . . . . . . . . . . . . . . . 7.14.3 Quadrature Encoder Interface (QEI) . . . . . . . 7.14.3.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.14.4 Repetitive Interrupt (RI) timer. . . . . . . . . . . . . 7.14.4.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.14.5 Windowed WatchDog Timer (WWDT) . . . . . . 7.14.5.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.15 Analog peripherals . . . . . . . . . . . . . . . . . . . . . 7.15.1 Analog-to-Digital Converter (ADC0/1) . . . . . . 7.15.1.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.15.2 Digital-to-Analog Converter (DAC). . . . . . . . . 7.15.2.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.16 Peripherals in the RTC power domain . . . . . . 7.16.1 RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.16.1.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.16.2 Alarm timer. . . . . . . . . . . . . . . . . . . . . . . . . . . 7.17 System control . . . . . . . . . . . . . . . . . . . . . . . . 7.17.1 Configuration registers (CREG) . . . . . . . . . . . 7.17.2 System Control Unit (SCU) . . . . . . . . . . . . . . 7.17.3 Clock Generation Unit (CGU) . . . . . . . . . . . . 7.17.4 Internal RC oscillator (IRC) . . . . . . . . . . . . . . 7.17.5 PLL0 (for USB0). . . . . . . . . . . . . . . . . . . . . . . 7.17.6 System PLL1 . . . . . . . . . . . . . . . . . . . . . . . . . 7.17.7 Reset Generation Unit (RGU) . . . . . . . . . . . . 7.17.8 Power control . . . . . . . . . . . . . . . . . . . . . . . . . 7.18 Emulation and debugging . . . . . . . . . . . . . . . 8 Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 9 Thermal characteristics . . . . . . . . . . . . . . . . . 10 Static characteristics . . . . . . . . . . . . . . . . . . . 10.1 Electrical pin characteristics. . . . . . . . . . . . . . 42 42 42 42 43 43 43 43 44 44 44 45 45 45 45 45 46 46 46 46 46 47 47 47 47 47 47 47 48 48 48 48 48 48 49 49 49 49 49 49 50 50 51 52 53 56 continued >> LPC1850_30_20_10 Objective data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 3 January 2011 © NXP B.V. 2011. All rights reserved. 83 of 84 LPC1850/30/20/10 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 10.2 11 11.1 11.2 11.3 11.4 11.5 11.6 11.7 12 13 13.1 13.2 13.3 14 15 16 17 17.1 17.2 17.3 17.4 18 19 Power consumption . . . . . . . . . . . . . . . . . . . . Dynamic characteristics . . . . . . . . . . . . . . . . . External clock . . . . . . . . . . . . . . . . . . . . . . . . . IRC and RTC oscillators . . . . . . . . . . . . . . . . . I2C-bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSP interface . . . . . . . . . . . . . . . . . . . . . . . . . USB interface . . . . . . . . . . . . . . . . . . . . . . . . Dynamic external memory interface . . . . . . . . Static external memory interface . . . . . . . . . . ADC/DAC electrical characteristics . . . . . . . . Application information. . . . . . . . . . . . . . . . . . LCD panel signal usage . . . . . . . . . . . . . . . . . XTAL1 input . . . . . . . . . . . . . . . . . . . . . . . . . . XTAL and RTCX Printed Circuit Board (PCB) layout guidelines . . . . . . . . . . . . . . . . . . . . . . . Package outline . . . . . . . . . . . . . . . . . . . . . . . . Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . Revision history . . . . . . . . . . . . . . . . . . . . . . . . Legal information. . . . . . . . . . . . . . . . . . . . . . . Data sheet status . . . . . . . . . . . . . . . . . . . . . . Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . Contact information. . . . . . . . . . . . . . . . . . . . . Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 60 60 61 61 64 67 68 69 72 75 75 77 77 78 79 80 81 81 81 81 82 82 83 Please be aware that important notices concerning this document and the product(s) described herein, have been included in section ‘Legal information’. © NXP B.V. 2011. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: [email protected] Date of release: 3 January 2011 Document identifier: LPC1850_30_20_10