PD - 91400C IRHY9130CM JANSR2N7382 100V, P-CHANNEL RADIATION HARDENED POWER MOSFET THRU-HOLE (TO-257AA) REF: MIL-PRF-19500/615 ® RAD Hard HEXFET TECHNOLOGY ™ Product Summary Part Number Radiation Level IRHY9130CM 100K Rads (Si) IRHY93130CM 300K Rads (Si) RDS(on) 0.30Ω 0.30Ω ID -11A -11A QPL Part Number JANSR2N7382 JANSF2N7382 International Rectifier’s RADHard HEXFET® technology provides high performance power MOSFETs for space applications. This technology has over a decade of proven performance and reliability in satellite applications. These devices have been characterized for both Total Dose and Single Event Effects (SEE). The combination of low Rdson and low gate charge reduces the power losses in switching applications such as DC to DC converters and motor control. These devices retain all of the well established advantages of MOSFETs such as voltage control, fast switching, ease of paralleling and temperature stability of electrical parameters. TO-257AA Features: n n n n n n n n Single Event Effect (SEE) Hardened Low RDS(on) Low Total Gate Charge Proton Tolerant Simple Drive Requirements Ease of Paralleling Hermetically Sealed Light Weight Absolute Maximum Ratings Pre-Irradiation Parameter ID @ VGS = -12V, TC = 25°C ID @ VGS = -12V, TC = 100°C IDM PD @ TC = 25°C VGS EAS IAR EAR dv/dt TJ T STG Continuous Drain Current Continuous Drain Current Pulsed Drain Current ➀ Max. Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy ➁ Avalanche Current ➀ Repetitive Avalanche Energy ➀ Peak Diode Recovery dv/dt ➂ Operating Junction Storage Temperature Range Lead Temperature Weight Units -11 -7.0 -44 75 0.6 ±20 150 -11 7.5 -16 -55 to 150 A W W/°C V mJ A mJ V/ns o 300 (0.063 in (1.6mm)from case for 10s) 4.3 (Typical) C g For footnotes refer to the last page www.irf.com 1 06/13/02 IRHY9130CM, JANSR2N7382 Pre-Irradiation Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified) Min Typ Max Units Test Conditions — — V VGS =0 V, ID = -1.0mA -0.11 — V/°C Reference to 25°C, ID = -1.0mA — — — — — — 0.30 0.35 -4.0 — -25 -250 IGSS IGSS Qg Q gs Q gd td(on) tr td(off) tf LS + LD Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Total Gate Charge Gate-to-Source Charge Gate-to-Drain (‘Miller’) Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Inductance — — — — — — — — — — — — — — — — — — — 6.8 -100 100 45 10 25 30 50 70 70 — Ciss C oss C rss Input Capacitance Output Capacitance Reverse Transfer Capacitance — — — 1200 310 80 — — — VGS = -12V, ID = - 7.0A VGS = -12V, ID = - 11A VDS = VGS, ID = -1.0mA VDS > -15V, IDS = - 7.0A VDS= - 80V,VGS=0V VDS = - 80V VGS = 0V, TJ = 125°C VGS = -20V VGS = 20V VGS = -12V, ID = - 11A VDS = - 50V Ω V S( ) Ω Parameter BVDSS Drain-to-Source Breakdown Voltage -100 ∆BV DSS/∆T J Temperature Coefficient of Breakdown — Voltage RDS(on) Static Drain-to-Source — On-State Resistance — VGS(th) Gate Threshold Voltage -2.0 gfs Forward Transconductance 2.5 IDSS Zero Gate Voltage Drain Current — — µA nA nC VDD = - 50V, ID = - 11A, RG = 7.5Ω ns nH Measured from drain lead (6mm/0.25in. from package) to source lead (6mm/0.25in. from package) pF VGS = 0V, VDS = - 25V f = 1.0MHz Source-Drain Diode Ratings and Characteristics Parameter Min Typ Max Units IS ISM VSD t rr Q RR Continuous Source Current (Body Diode) Pulse Source Current (Body Diode) ➀ Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge ton Forward Turn-On Time — — — — — — — — — — -11 -44 -3.0 250 1.0 Test Conditions A V nS µC Tj = 25°C, IS = - 11A, VGS = 0V ➃ Tj = 25°C, IF = - 11A, di/dt ≤ -100A/µs VDD ≤ - 25V ➃ Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD. Thermal Resistance Parameter RthJC RthJA Junction-to-Case Junction-to-Ambient Min Typ Max Units — — — — 1.67 80 °C/W Test Conditions Typical socket mount Note: Corresponding Spice and Saber models are available on the G&S Website. For footnotes refer to the last page 2 www.irf.com Radiation Characteristics Pre-Irradiation IRHY9130CM, JANSR2N7382 International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison. Table 1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation ➄➅ Parameter BVDSS VGS(th) IGSS IGSS IDSS RDS(on) RDS(on) VSD 100K Rads(Si)1 Drain-to-Source Breakdown Voltage Gate Threshold Voltage Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Zero Gate Voltage Drain Current Static Drain-to-Source ➃ On-State Resistance (TO-3) Static Drain-to-Source ➃ On-State Resistance (TO-257AA) Diode Forward Voltage ➃ Units Test Conditions V µA Ω VGS = 0V, ID = -1.0mA VGS = VDS, ID = -1.0mA VGS = -20V VGS = 20 V VDS=-80V, VGS =0V VGS = -12V, ID =-7.0A 0.30 Ω VGS = -12V, ID =-7.0A -3.0 V VGS = 0V, IS = -11A 300K Rads (Si)2 Min Max Min Max -100 - 2.0 — — — — — - 4.0 -100 100 -25 0.30 -100 -2.0 — — — — — -5.0 -100 100 -25 0.30 — 0.30 — — -3.0 — nA 1. Part number IRHY9130CM (JANSR2N7382) 2. Part number IRHY93130CM (JANSF2N7382) International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2. Table 2. Single Event Effect Safe Operating Area Ion Cu Br I LET Energy MeV/(mg/cm2)) (MeV) 28 285 36.8 305 59.8 343 Range (µm) 32.6 39 43 VDS (V) @VGS=0V -100 -100 -60 @VGS=5V @VGS=10V -100 -100 — -100 -70 — @VGS=15V @VGS=20V -70 -50 — -60 -40 — -120 -100 VDS -80 Cu Br I -60 -40 -20 0 0 5 10 15 20 VGS Fig a. Single Event Effect, Safe Operating Area For footnotes refer to the last page www.irf.com 3 IRHY9130CM, JANSR2N7382 100 Pre-Irradiation 100 VGS -15V -12V -10V -9.0V -8.0V -7.0V -6.0V BOTTOM -5.0V -I D , Drain-to-Source Current (A) -I D , Drain-to-Source Current (A) 10 -5.0V 20µs PULSE WIDTH T = 25 C ° J 1 1 10 10 -5.0V TJ = 150 ° C 10 V DS = -50V 20µs PULSE WIDTH 10 11 -VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics 4 12 R DS(on) , Drain-to-Source On Resistance (Normalized) -I D , Drain-to-Source Current (A) TJ = 25 ° C 9 100 Fig 2. Typical Output Characteristics 2.5 7 ° 10 -VDS , Drain-to-Source Voltage (V) 100 6 J 1 100 Fig 1. Typical Output Characteristics 1 20µs PULSE WIDTH T = 150 C 1 -VDS , Drain-to-Source Voltage (V) 5 VGS -15V -12V -10V -9.0V -8.0V -7.0V -6.0V BOTTOM -5.0V TOP TOP ID = -11A 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = -12V 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature( °C) Fig 4. Normalized On-Resistance Vs. Temperature www.irf.com Pre-Irradiation VGS = 0V, f = 1MHz Ciss = Cgs + Cgd , Cds SHORTED Crss = Cgd Coss = Cds + Cgd 1500 Ciss 1000 C oss 500 C rss 20 -VGS , Gate-to-Source Voltage (V) 2000 C, Capacitance (pF) IRHY9130CM, JANSR2N7382 ID = -11A 16 12 8 4 FOR TEST CIRCUIT SEE FIGURE 13 0 0 1 10 0 100 10 20 30 40 50 60 QG , Total Gate Charge (nC) -VDS , Drain-to-Source Voltage (V) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 100 100 OPERATION IN THIS AREA LIMITED BY R DS(on) TJ = 150 ° C -II D , Drain Current (A) -ISD , Reverse Drain Current (A) VDS =-80V VDS =-50V VDS =-20V 10 TJ = 25 ° C 1 V GS = 0 V 0.1 0.0 1.0 2.0 3.0 -VSD ,Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage www.irf.com 4.0 100us 10 1ms 1 TC = 25 ° C TJ = 150 ° C Single Pulse 1 10ms 10 100 1000 -VDS , Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area 5 IRHY9130CM, JANSR2N7382 Pre-Irradiation 12 RD V DS VGS 10 D.U.T. -ID , Drain Current (A) RG + 8 V DD -12V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 6 Fig 10a. Switching Time Test Circuit 4 td(on) 2 tr t d(off) tf VGS 10% 0 25 50 75 100 125 150 TC , Case Temperature ( ° C) 90% VDS Fig 9. Maximum Drain Current Vs. Case Temperature Fig 10b. Switching Time Waveforms Thermal Response (Z thJC ) 10 1 D = 0.50 0.20 0.10 0.1 0.01 0.00001 PDM 0.05 0.02 0.01 t1 SINGLE PULSE (THERMAL RESPONSE) 0.0001 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case 6 www.irf.com Pre-Irradiation IRHY9130CM, JANSR2N7382 L VDS D .U .T RG IA S -20V -12V tp VD D A D R IV E R 0.0 1Ω 15V Fig 12a. Unclamped Inductive Test Circuit IAS EAS , Single Pulse Avalanche Energy (mJ) 400 ID -4.9A -7.0A BOTTOM -11A TOP 300 200 100 0 25 50 75 100 125 150 Starting TJ , Junction Temperature ( °C) Fig 12c. Maximum Avalanche Energy Vs. Drain Current tp V (BR)DSS Fig 12b. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. 50KΩ QG -12V 12V .2µF .3µF -12V QGS QGD D.U.T. +VDS VGS VG -3mA Charge Fig 13a. Basic Gate Charge Waveform www.irf.com IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 7 IRHY9130CM, JANSR2N7382 Pre-Irradiation Foot Notes: ➀ Repetitive Rating; Pulse width limited by maximum junction temperature. ➁ VDD = -25V, starting TJ = 25°C, L= 2.4mH Peak IL = -11A, VGS = -12V ➂ ISD ≤ -11A, di/dt ≤ -440A/µs, VDD ≤ -100V, TJ ≤ 150°C ➃ Pulse width ≤ 300 µs; Duty Cycle ≤ 2% ➄ Total Dose Irradiation with V GS Bias. -12 volt VGS applied and VDS = 0 during irradiation per MIL-STD-750, method 1019, condition A. ➅ Total Dose Irradiation with V DS Bias. -80 volt VDS applied and VGS = 0 during irradiation per MlL-STD-750, method 1019, condition A. Case Outline and Dimensions — TO-257AA IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 06/02 8 www.irf.com