PD - 94623B IRGP35B60PD SMPS IGBT WARP2 SERIES IGBT WITH ULTRAFAST SOFT RECOVERY DIODE VCES = 600V VCE(on) typ. = 1.85V @ VGE = 15V IC = 22A C Applications • • • • Telecom and Server SMPS PFC and ZVS SMPS Circuits Uninterruptable Power Supplies Consumer Electronics Power Supplies Features • • • • • • • Equivalent MOSFET Parameters RCE(on) typ. = 84mΩ ID (FET equivalent) = 35A G E NPT Technology, Positive Temperature Coefficient Lower VCE(SAT) Lower Parasitic Capacitances Minimal Tail Current HEXFRED Ultra Fast Soft-Recovery Co-Pack Diode Tighter Distribution of Parameters Higher Reliability n-channel E Benefits G • Parallel Operation for Higher Current Applications • Lower Conduction Losses and Switching Losses • Higher Switching Frequency up to 150kHz C TO-247AC Absolute Maximum Ratings Max. Units VCES Collector-to-Emitter Voltage Parameter 600 V IC @ TC = 25°C Continuous Collector Current 60 IC @ TC = 100°C Continuous Collector Current 34 ICM 120 ILM Pulse Collector Current (Ref. Fig. C.T.4) Clamped Inductive Load Current 120 IF @ TC = 25°C Diode Continous Forward Current 40 IF @ TC = 100°C Diode Continous Forward Current Maximum Repetitive Forward Current IFRM d A 15 e 60 VGE Gate-to-Emitter Voltage ±20 V PD @ TC = 25°C Maximum Power Dissipation 308 W PD @ TC = 100°C Maximum Power Dissipation TJ Operating Junction and TSTG Storage Temperature Range 123 -55 to +150 Soldering Temperature for 10 sec. °C 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal Resistance Min. Typ. Max. Units RθJC (IGBT) Thermal Resistance Junction-to-Case-(each IGBT) Parameter ––– ––– 0.41 °C/W RθJC (Diode) Thermal Resistance Junction-to-Case-(each Diode) ––– ––– 1.7 RθCS Thermal Resistance, Case-to-Sink (flat, greased surface) ––– 0.24 ––– RθJA Thermal Resistance, Junction-to-Ambient (typical socket mount) ––– ––– 40 Weight ––– 6.0 (0.21) ––– 1 g (oz) www.irf.com 8/18/04 IRGP35B60PD Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. V(BR)CES Collector-to-Emitter Breakdown Voltage Parameter 600 — — ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 0.78 — RG Internal Gate Resistance — 1.7 — — 1.85 2.15 — 2.25 2.55 — 2.37 2.80 VCE(on) Collector-to-Emitter Saturation Voltage Max. Units V Conditions V/°C VGE = 0V, IC = 1mA (25°C-125°C) Ω 1MHz, Open Collector IC = 22A, VGE = 15V V IC = 22A, VGE = 15V, TJ = 125°C IC = 35A, VGE = 15V, TJ = 125°C — 3.00 3.45 Gate Threshold Voltage 3.0 4.0 5.0 ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — -10 — gfe Forward Transconductance — 36 — S ICES Collector-to-Emitter Leakage Current — 3.0 375 µA VGE = 0V, VCE = 600V — 0.35 — mA VGE = 0V, VCE = 600V, TJ = 125°C — 1.30 1.70 V — 1.20 1.60 — — ±100 IGES Diode Forward Voltage Drop Gate-to-Emitter Leakage Current 4, 5,6,8,9 IC = 35A, VGE = 15V VGE(th) VFM Ref.Fig VGE = 0V, IC = 500µA V IC = 250µA 7,8,9 mV/°C VCE = VGE, IC = 1.0mA VCE = 50V, IC = 22A, PW = 80µs IF = 15A, VGE = 0V 10 IF = 15A, VGE = 0V, TJ = 125°C nA VGE = ±20V, VCE = 0V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. Qg Qgc Total Gate Charge (turn-on) Parameter — 160 Max. Units 240 Gate-to-Collector Charge (turn-on) — 55 83 Conditions nC 17 VCC = 400V CT1 VGE = 15V Qge Gate-to-Emitter Charge (turn-on) — 21 32 Eon Turn-On Switching Loss — 220 270 Eoff Turn-Off Switching Loss — 215 265 Etotal Total Switching Loss — 435 535 TJ = 25°C td(on) Turn-On delay time — 26 34 IC = 22A, VCC = 390V tr Rise time — 6.0 8.0 td(off) Turn-Off delay time — 110 122 tf Fall time — 8.0 10 Eon Turn-On Switching Loss — 410 465 Eoff Turn-Off Switching Loss — 330 405 Etotal Total Switching Loss — 740 870 TJ = 125°C td(on) Turn-On delay time — 26 34 IC = 22A, VCC = 390V tr Rise time — 8.0 11 td(off) Turn-Off delay time — 130 150 tf Fall time — 12 16 Cies Input Capacitance — 3715 — VGE = 0V Coes Output Capacitance — 265 — VCC = 30V Cres Coes eff. Reverse Transfer Capacitance Effective Output Capacitance (Time Related) Coes eff. (ER) Effective Output Capacitance (Energy Related) RBSOA Reverse Bias Safe Operating Area g g — 47 — — 135 — — 179 — Ref.Fig IC = 22A IC = 22A, VCC = 390V µJ ns CT3 VGE = +15V, RG = 3.3Ω, L = 200µH f CT3 VGE = +15V, RG = 3.3Ω, L = 200µH TJ = 25°C f IC = 22A, VCC = 390V µJ ns CT3 VGE = +15V, RG = 3.3Ω, L = 200µH f WF1,WF2 CT3 VGE = +15V, RG = 3.3Ω, L = 200µH f TJ = 125°C pF 12,14 WF1,WF2 16 f = 1Mhz VGE = 0V, VCE = 0V to 480V FULL SQUARE 11,13 15 TJ = 150°C, IC = 120A 3 VCC = 480V, Vp =600V CT2 Rg = 22Ω, VGE = +15V to 0V trr Diode Reverse Recovery Time Qrr Diode Reverse Recovery Charge Irr Peak Reverse Recovery Current — 42 60 — 74 120 — 80 180 — 220 600 — 4.0 6.0 — 6.5 10 ns nC A TJ = 25°C IF = 15A, VR = 200V, TJ = 125°C di/dt = 200A/µs 19 TJ = 25°C IF = 15A, VR = 200V, 21 TJ = 125°C TJ = 25°C di/dt = 200A/µs IF = 15A, VR = 200V, 19,20,21,22 TJ = 125°C di/dt = 200A/µs CT5 Notes: RCE(on) typ. = equivalent on-resistance = VCE(on) typ./ IC, where VCE(on) typ.= 1.85V and IC =22A. ID (FET Equivalent) is the equivalent MOSFET ID rating @ 25°C for applications up to 150kHz. These are provided for comparison purposes (only) with equivalent MOSFET solutions. VCC = 80% (VCES), VGE = 20V, L = 100 µH, RG = 3.3Ω. Pulse width limited by max. junction temperature. Energy losses include "tail" and diode reverse recovery, Data generated with use of Diode 30ETH06. Coes eff. is a fixed capacitance that gives the same charging time as Coes while VCE is rising from 0 to 80% VCES. Coes eff.(ER) is a fixed capacitance that stores the same energy as Coes while VCE is rising from 0 to 80% VCES. 2 www.irf.com 70 350 60 300 50 250 40 200 Ptot (W) IC (A) IRGP35B60PD 30 150 20 100 10 50 0 0 0 20 40 60 80 0 100 120 140 160 20 40 60 80 100 120 140 160 T C (°C) T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 70 1000 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V 60 50 IC A) ICE (A) 100 40 30 10 20 10 0 1 10 100 0 1000 1 2 VCE (V) Fig. 3 - Reverse Bias SOA TJ = 150°C; VGE =15V 5 70 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V 60 50 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V 60 50 40 ICE (A) ICE (A) 4 Fig. 4 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs 70 30 40 30 20 20 10 10 0 0 0 1 2 3 4 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs www.irf.com 3 VCE (V) 5 0 1 2 3 4 5 VCE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = 125°C; tp = 80µs 3 IRGP35B60PD 800 10 700 600 T J = 25°C 9 T J = 125°C 8 7 VCE (V) ICE (A) 500 400 300 ICE = 11A 6 ICE = 22A 5 ICE = 35A 4 200 TJ = 125°C 3 100 T J = 25°C 2 0 1 0 5 10 15 20 0 5 VGE (V) 10 15 20 VGE (V) Fig. 7 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs Fig. 8 - Typical VCE vs. VGE TJ = 25°C 10 100 InstantaneousF orw ardC urrent -I (A ) 9 F 8 VCE (V) 7 ICE = 11A 6 ICE = 22A 5 ICE = 35A 4 3 10 TJ = 150°C TJ = 125°C TJ = 25°C 2 1 1 0.8 0 5 10 15 20 1.2 1.6 2.0 2.4 Forward Voltage Drop - V FM (V) VGE (V) Fig. 9 - Typical VCE vs. VGE TJ = 125°C Fig. 10 - Typ. Diode Forward Characteristics tp = 80µs 800 1000 700 EON Swiching Time (ns) Energy (µJ) 600 500 400 EOFF 300 td OFF 100 tdON tF 10 200 tR 100 0 1 0 5 10 15 20 25 30 35 40 IC (A) Fig. 11 - Typ. Energy Loss vs. IC TJ = 125°C; L = 200µH; VCE = 390V, RG = 3.3Ω; VGE = 15V. Diode clamp used: 30ETH06 (See C.T.3) 4 0 10 20 30 40 IC (A) Fig. 12 - Typ. Switching Time vs. IC TJ = 125°C; L = 200µH; VCE = 390V, RG = 3.3Ω; VGE = 15V. Diode clamp used: 30ETH06 (See C.T.3) www.irf.com IRGP35B60PD 800 1000 700 tdOFF 600 Swiching Time (ns) Energy (µJ) EON 500 400 EOFF 300 100 tdON tF 10 200 tR 100 0 1 0 10 20 30 40 50 0 10 20 30 40 50 RG ( Ω) RG (Ω) Fig. 13 - Typ. Energy Loss vs. RG TJ = 125°C; L = 200µH; VCE = 390V, ICE = 22A; VGE = 15V Diode clamp used: 30ETH06 (See C.T.3) Fig. 14 - Typ. Switching Time vs. RG TJ = 125°C; L = 200µH; VCE = 390V, ICE = 22A; VGE = 15V Diode clamp used: 30ETH06 (See C.T.3) 30 10000 Cies 25 Capacitance (pF) Eoes (µJ) 20 15 10 1000 Coes 100 Cres 5 0 10 0 100 200 300 400 500 600 700 0 20 VCE (V) 40 60 80 100 VCE (V) Fig. 16- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Fig. 15- Typ. Output Capacitance Stored Energy vs. VCE 16 1.4 14 Normalized V CE(on) (V) 400V 12 VGE (V) 10 8 6 4 1.2 1.0 2 0 0.8 0 50 100 150 200 Q G , Total Gate Charge (nC) Fig. 17 - Typical Gate Charge vs. VGE ICE = 22A www.irf.com -50 0 50 100 150 200 T J (°C) Fig. 18 - Normalized Typ. VCE(on) vs. Junction Temperature IC = 22A, VGE= 15V 5 IRGP35B60PD 100 100 VR = 200V TJ = 125°C TJ = 25°C VR = 200V TJ = 125°C TJ = 25°C 80 I IRRM - (A) t rr - (ns) I F = 30A I F = 30A 60 I F = 15A IF = 15A 10 I F = 5.0A 40 I F = 5.0A 20 100 di f /dt - (A/µs) 1 100 1000 Fig. 19 - Typical Reverse Recovery vs. dif/dt 1000 di f /dt - (A/µs) Fig. 20 - Typical Recovery Current vs. dif/dt 800 1000 VR = 200V TJ = 125°C TJ = 25°C VR = 200V TJ = 125°C TJ = 25°C di(rec)M/dt - (A/µs) 600 Q RR - (nC) IF = 30A 400 I F = 15A IF = 5.0A I F = 5.0A I F = 15A I F = 30A 200 0 100 di f /dt - (A/µs) 1000 Fig. 21 - Typical Stored Charge vs. dif/dt 6 100 100 1000 di f /dt - (A/µs) Fig. 22 - Typical di(rec)M/dt vs. dif/dt, www.irf.com IRGP35B60PD Thermal Response ( Z thJC ) 1 D = 0.50 0.20 0.1 0.10 0.05 0.01 τJ 0.01 0.02 R1 R1 τJ τ1 R2 R2 τ2 τ1 τ2 R3 R3 τ3 τC τ 0.077 0.194 τ3 Ci= τi/Ri Ci= i/Ri 0.001 SINGLE PULSE ( THERMAL RESPONSE ) Ri (°C/W) τi (sec) 0.139 0.000257 0.001418 0.020178 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.1 0.05 τJ 0.01 0.02 R1 R1 τJ τ1 τ1 R2 R2 τ2 τ2 Ci= τi/Ri Ci= i/Ri 0.01 R3 R3 τ3 τC τ τ3 Ri (°C/W) τi (sec) 0.363 0.000112 0.864 0.473 0.001184 0.032264 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 7 IRGP35B60PD L L VCC DUT 80 V DUT 0 480V Rg 1K Fig.C.T.2 - RBSOA Circuit Fig.C.T.1 - Gate Charge Circuit (turn-off) L PFC diode R= DUT / DRIVER VCC DUT Rg VCC ICM VCC Rg Fig.C.T.4 - Resistive Load Circuit Fig.C.T.3 - Switching Loss Circuit REVERSE RECOVERY CIRCUIT VR = 200V 0.01 Ω L = 70µH D.U.T. dif/dt ADJUST D G IRFP250 S Fig. C.T.5 - Reverse Recovery Parameter Test Circuit 8 www.irf.com IRGP35B60PD 45 450 400 40 400 tf 300 90% ICE 350 30 300 200 20 5% VCE 150 15 100 5% ICE 50 0 40 TEST CURRENT 30 25 90% test current 200 100 5 50 0 0 0.00 0.20 0.40 -5 0.80 0.60 15 10 5% VCE 5 0 Eon Loss Eoff Loss -50 -0.20 20 10% test current 150 10 35 tr 250 25 VCE (V) VCE (V) 250 35 ICE (A) 350 45 ICE (A) 450 -50 9.00 9.20 Time(µs) 9.40 -5 9.60 Time (µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 25°C using Fig. CT.3 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 25°C using Fig. CT.3 3 trr IF tb ta 0 Q rr 2 I RRM 4 0.5 I RRM di(rec)M/dt 5 0.75 I RRM 1 di f /dt 1. dif/dt - Rate of change of current through zero crossing 2. I RRM - Peak reverse recovery current 3. trr - Reverse recovery time measured from zero crossing point of negative going IF to point where a line passing through 0.75 IRRM and 0.50 IRRM extrapolated to zero current 4. Qrr - Area under curve defined by trr and IRRM trr X IRRM Qrr = 2 5. di(rec)M/dt - Peak rate of change of current during tb portion of trr Fig. WF3 - Reverse Recovery Waveform and Definitions www.irf.com 9 IRGP35B60PD TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information EXAMPLE: T HIS IS AN IRFPE30 WITH AS SEMBLY LOT CODE 5657 ASSEMBLED ON WW 35, 2000 IN T HE ASSEMBLY LINE "H" Note: "P" in assembly line position indicates "Lead-Free" PART NUMBER INTERNATIONAL RECTIFIER LOGO IRFPE30 56 ASSEMBLY LOT CODE 035H 57 DATE CODE YEAR 0 = 2000 WEEK 35 LINE H Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 08/04 10 www.irf.com Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/