IRF IRGP4066PBF Insulated gate bipolar transistor Datasheet

PD - 97577
IRGP4066PbF
IRGP4066-EPbF
INSULATED GATE BIPOLAR TRANSISTOR
Features
•
•
•
•
•
•
•
•
•
C
Low VCE (ON) Trench IGBT Technology
Low Switching Losses
Maximum Junction Temperature 175 °C
5 μS short circuit SOA
Square RBSOA
100% of The Parts Tested for ILM
Positive VCE (ON) Temperature Coefficient
Tight Parameter Distribution
Lead Free Package
VCES = 600V
IC(Nominal) = 75A
G
tSC ≥ 5μs, TJ(max) = 175°C
E
VCE(on) typ. = 1.7V
n-channel
C
C
Benefits
• High Efficiency in a Wide Range of Applications
• Suitable for a Wide Range of Switching Frequencies due to
Low VCE (ON) and Low Switching Losses
• Rugged Transient Performance for Increased Reliability
• Excellent Current Sharing in Parallel Operation
E
C
G
E
C
G
TO-247AC
IRGP4066PbF
G
Gate
TO-247AD
IRGP4066-EPbF
C
Collector
E
Emitter
Absolute Maximum Ratings
Max.
Units
VCES
Collector-to-Emitter Voltage
Parameter
600
V
IC @ TC = 25°C
Continuous Collector Current
140
IC @ TC = 100°C
INOMINAL
Continuous Collector Current
90
ICM
Nominal Current
Pulse Collector Current, VGE = 15V
225
ILM
Clamped Inductive Load Current, VGE = 20V
VGE
Continuous Gate-to-Emitter Voltage
±20
Transient Gate-to-Emitter Voltage
±30
PD @ TC = 25°C
Maximum Power Dissipation
454
PD @ TC = 100°C
Maximum Power Dissipation
227
TJ
Operating Junction and
TSTG
Storage Temperature Range
75
c
A
300
V
W
-55 to +175
°C
Soldering Temperature, for 10 sec.
300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw
10 lbf·in (1.1 N·m)
Thermal Resistance
Parameter
Min.
Typ.
Max.
Units
–––
–––
0.33
°C/W
Thermal Resistance, Case-to-Sink (flat, greased surface)
–––
0.24
–––
Thermal Resistance, Junction-to-Ambient (typical socket mount)
–––
–––
40
RθJC
Thermal Resistance Junction-to-Case
RθCS
RθJA
1
f
www.irf.com
10/8/2010
IRGP4066PbF/IRGP4066-EPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)CES
Collector-to-Emitter Breakdown Voltage
ΔV(BR)CES/ΔTJ
Temperature Coeff. of Breakdown Voltage
Min.
Typ.
Max.
Units
600
—
—
V
—
260
—
—
1.7
2.1
—
VCE(on)
Collector-to-Emitter Saturation Voltage
—
2.0
—
2.1
—
VGE(th)
Gate Threshold Voltage
4.0
—
6.5
ΔVGE(th)/ΔTJ
Threshold Voltage temp. coefficient
—
-16
—
gfe
ICES
Forward Transconductance
—
50
—
Collector-to-Emitter Leakage Current
—
1.0
100
—
1040
—
—
—
±200
IGES
Gate-to-Emitter Leakage Current
Conditions
VGE = 0V, IC = 100μA
e
mV/°C VGE = 0V, IC = 2.0mA (25°C-175°C)
IC = 75A, VGE = 15V, TJ = 25°C
V
V
IC = 75A, VGE = 15V, TJ
V
d
d
= 175°C d
IC = 75A, VGE = 15V, TJ = 150°C
VCE = VGE, IC = 2.1mA
mV/°C VCE = VGE, IC = 2.1mA (25°C - 175°C)
VCE = 50V, IC = 75A, PW = 60μs
S
μA
VGE = 0V, VCE = 600V
VGE = 0V, VCE = 600V, TJ = 175°C
nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Max.
Qg
Total Gate Charge (turn-on)
Parameter
—
150
225
Qge
Gate-to-Emitter Charge (turn-on)
—
40
60
Qgc
Gate-to-Collector Charge (turn-on)
—
60
90
Eon
Turn-On Switching Loss
—
2465
3360
Eoff
Turn-Off Switching Loss
—
2155
3040
Etotal
Total Switching Loss
—
4620
6400
Units
Conditions
IC = 75A
nC
VGE = 15V
VCC = 400V
IC = 75A, VCC = 400V, VGE = 15V
μJ
RG = 10Ω, L = 200μH, TJ = 25°C
Energy losses include tail & diode reverse recovery
td(on)
Turn-On delay time
—
50
70
tr
Rise time
—
70
90
IC = 75A, VCC = 400V, VGE = 15V
td(off)
Turn-Off delay time
—
200
225
tf
Fall time
—
60
80
Eon
Turn-On Switching Loss
—
3870
—
Eoff
Turn-Off Switching Loss
—
2815
—
Etotal
Total Switching Loss
—
6685
—
Energy losses include tail & diode reverse recovery
td(on)
Turn-On delay time
—
50
—
IC = 75A, VCC = 400V, VGE = 15V
tr
Rise time
—
70
—
td(off)
Turn-Off delay time
—
240
—
tf
Fall time
—
70
—
ns
RG = 10Ω, L = 200μH, TJ = 25°C
IC = 75A, VCC = 400V, VGE=15V
μJ
ns
RG=10Ω, L=200μH,TJ = 175°C
RG = 10Ω, L = 200μH
TJ = 175°C
Cies
Input Capacitance
—
4440
—
Coes
Output Capacitance
—
245
—
VCC = 30V
Cres
Reverse Transfer Capacitance
—
130
—
f = 1.0Mhz
TJ = 175°C, IC = 300A
RBSOA
Reverse Bias Safe Operating Area
FULL SQUARE
pF
VGE = 0V
VCC = 480V, Vp = 600V
Rg = 10Ω, VGE = +20V to 0V
SCSOA
Short Circuit Safe Operating Area
5
—
—
μs
VCC = 400V, Vp ”600V
Rg = 10Ω, VGE = +15V to 0V
Notes:
 VCC = 80% (VCES), VGE = 20V, L = 10μH, RG = 10Ω.
‚ Pulse width limited by max. junction temperature.
ƒ Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
„ Rθ is measured at TJ of approximately 90°C.
2
www.irf.com
IRGP4066PbF/IRGP4066-EPbF
140
400
120
300
80
Ptot (W)
IC (A)
100
60
200
40
100
20
0
0
25
50
75
100
125
150
175
25
50
75
100
125
150
175
T C (°C)
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
1000
1000
100μsec 10μsec
100
100
10
IC (A)
IC (A)
1msec
DC
10
1
Tc = 25°C
Tj = 175°C
Single Pulse
0.1
1
1
10
100
1000
10
100
VCE (V)
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C, TJ ≤ 175°C; VGE =15V
Fig. 4 - Reverse Bias SOA
TJ = 175°C; VGE =20V
300
300
250
150
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
200
VGE = 12V
VGE = 10V
ICE (A)
ICE (A)
250
VGE = 18V
VGE = 15V
200
VGE = 8.0V
150
100
100
50
50
0
0
0
2
4
6
VCE (V)
8
10
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = ≤60μs
www.irf.com
1000
0
2
4
6
8
10
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = ≤60μs
3
IRGP4066PbF/IRGP4066-EPbF
300
20
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
ICE (A)
200
18
16
14
VCE (V)
250
150
100
12
ICE = 38A
ICE = 75A
10
ICE = 150A
8
6
4
50
2
0
0
0
2
4
6
8
10
5
10
Fig. 8 - Typical VCE vs. VGE
TJ = -40°C
20
20
18
18
16
16
14
14
VCE (V)
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 175°C; tp = ≤60μs
ICE = 38A
ICE = 75A
10
ICE = 150A
8
12
ICE = 38A
ICE = 75A
ICE = 150A
10
8
6
6
4
4
2
2
0
0
5
10
15
20
5
10
VGE (V)
20
Fig. 10 - Typical VCE vs. VGE
TJ = 175°C
12000
300
250
10000
T J = 25°C
T J = 175°C
200
8000
Energy (μJ)
IC, Collector-to-Emitter Current (A)
15
VGE (V)
Fig. 9 - Typical VCE vs. VGE
TJ = 25°C
150
EON
6000
100
4000
50
2000
0
EOFF
0
4
6
8
10
12
14
16
VGE, Gate-to-Emitter Voltage (V)
Fig. 11 - Typ. Transfer Characteristics
VCE = 50V; tp = 60μs
4
20
VGE (V)
VCE (V)
12
15
18
0
25
50
75
100
125
150
IC (A)
Fig. 12 - Typ. Energy Loss vs. IC
TJ = 175°C; L = 200μH; VCE = 400V, RG = 10Ω; VGE = 15V
www.irf.com
IRGP4066PbF/IRGP4066-EPbF
11000
1000
9000
Energy (μJ)
Swiching Time (ns)
tdOFF
tF
100
7000
EON
5000
tdON
EOFF
3000
tR
1000
10
0
50
100
0
150
25
IC (A)
75
100
Rg (Ω)
Fig. 13 - Typ. Switching Time vs. IC
TJ = 175°C; L = 200μH; VCE = 400V, RG = 10Ω; VGE = 15V
Fig. 14 - Typ. Energy Loss vs. RG
TJ = 175°C; L = 200μH; VCE = 400V, ICE = 75A; VGE = 15V
800
20
10000
Tsc
15
Swiching Time (ns)
50
600
1000
Time (μs)
tF
tR
100
tdON
Isc
10
400
5
200
0
0
10
0
20
40
60
80
100
8
120
Current (A)
tdOFF
10
12
14
16
18
VGE (V)
RG (Ω)
Fig. 15 - Typ. Switching Time vs. RG
TJ = 175°C; L = 200μH; VCE = 400V, ICE = 75A; VGE = 15V
Fig. 16 - VGE vs. Short Circuit Time
VCC = 400V; TC = 25°C
10000
Capacitance (pF)
Cies
1000
Coes
100
Cres
10
0
100
200
300
400
500
VCE (V)
Fig. 17 - Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
www.irf.com
5
IRGP4066PbF/IRGP4066-EPbF
VGE, Gate-to-Emitter Voltage (V)
16
VCES = 400V
VCES = 300V
14
12
10
8
6
4
2
0
0
20
40
60
80
100 120 140 160
Q G, Total Gate Charge (nC)
Fig. 18 - Typical Gate Charge vs. VGE
ICE = 75A; L = 485μH
Thermal Response ( Z thJC )
1
D = 0.50
0.1
0.20
0.10
0.05
0.01
0.001
0.02
0.01
τJ
SINGLE PULSE
( THERMAL RESPONSE )
R1
R1
τJ
τ1
R2
R2
R3
R3
R4
R4
Ri (°C/W)
τC
τ
τ2
τ1
τ2
τ3
τ3
Ci= τi/Ri
Ci i/Ri
τ4
τ4
τi (sec)
0.00738
0.000009
0.09441
0.000179
0.13424
0.002834
0.09294
0.0182
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
6
www.irf.com
IRGP4066PbF/IRGP4066-EPbF
L
L
DUT
0
VCC
80 V +
-
1K
DUT
VCC
Rg
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
diode clamp /
DUT
L
4X
DC
-5V
VCC
DUT /
DRIVER
DUT
VCC
Rg
SCSOA
Fig.C.T.3 - S.C. SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
C force
R=
VCC
ICM
100K
D1
DUT
Rg
22K
C sense
VCC
G force
DUT
0.0075μF
E sense
E force
Fig.C.T.5 - Resistive Load Circuit
www.irf.com
Fig.C.T.6 - BVCES Filter Circuit
7
IRGP4066PbF/IRGP4066-EPbF
600
120
600
120
tr
tf
500
400
80
400
300
60
300
200
40
TEST CURRENT
VCE (V)
ICE (A)
80
90% ICE
200
5% V CE
100
10% ICE
5% ICE
0
0
0
-1.0E-07
1.0E-07
40
0
Eon
Loss
-100
7.4E-06
-20
3.0E-07
60
20
Eoff Loss
-100
-3.0E-07
5% V CE
100
20
100
7.7E-06
8.0E-06
-20
8.3E-06
time(µs)
time (µs)
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 175°C using Fig. CT.4
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 175°C using Fig. CT.4
700
700
600
600
VCE
500
500
Vce (V)
400
400
300
300
ICE
200
200
100
100
0
ICE (A)
VCE (V)
90% ICE
ICE (A)
100
500
0
-100
-100
-3
0
3
6
9
12
Time (uS)
Fig. WF3 - Typ. S.C. Waveform
@ TJ = 25°C using Fig. CT.3
8
www.irf.com
IRGP4066PbF/IRGP4066-EPbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
(;$03/( 7+,6,6$1,5)3(
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(+
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
,5)3(
+
'$7(&2'(
<($5 :((.
/,1(+
TO-247AC package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
9
IRGP4066PbF/IRGP4066-EPbF
TO-247AD Package Outline
Dimensions are shown in millimeters (inches)
TO-247AD Part Marking Information
(;$03/( 7+,6,6$1,5*3%.'(
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(+
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
3$57180%(5
,17(51$7,21$/
5(&7,),(5
/2*2
+
$66(0%/<
/27&2'(
'$7(&2'(
<($5 :((.
/,1(+
TO-247AD package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 10/2010
10
www.irf.com
Similar pages