IRF IR2010S High and low side driver Datasheet

Data Sheet No. PD60195-D
IR2010(S) & (PbF)
HIGH AND LOW SIDE DRIVER
Features
• Floating channel designed for bootstrap operation
•
•
•
•
•
•
•
•
Fully operational to 200V
Tolerant to negative transient voltage, dV/dt immune
Gate drive supply range from 10 to 20V
Undervoltage lockout for both channels
3.3V logic compatible
Separate logic supply range from 3.3V to 20V
Logic and power ground ±5V offset
CMOS Schmitt-triggered inputs with pull-down
Shut down input turns off both channels
Matched propagation delay for both channels
Outputs in phase with inputs
Also available LEAD-FREE
Product Summary
VOFFSET
200V max.
IO+/-
3.0A / 3.0A typ.
VOUT
10 - 20V
ton/off
95 & 65 ns typ.
Delay Matching
15 ns max.
Applications
• Audio Class D amplifiers
• High power DC-DC SMPS converters
• Other high frequency applications
Packages
Description
The IR2010 is a high power, high voltage, high speed power MOSFET and IGBT
drivers with independent high and low side referenced output channels, ideal for Audio
Class D and DC-DC converter applications. Logic inputs are compatible with standard
CMOS or LSTTL output, down to 3.0V logic. The output drivers feature a high pulse
current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel
can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 200 volts. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction.
Typical Connection
14-Lead PDIP
16-Lead SOIC
(Refer to Lead Assignments for correct configuration). This/These diagram(s) show electrical connections only.
Please refer to our Application Notes and DesignTips for proper circuit board layout.
www.irf.com
1
IR2010(S) & (PbF)
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured
under board mounted and still air conditions.
Symbol
Definition
VB
High side floating supply voltage
VS
Min.
Max.
-0.3
225
Units
High side floating supply offset voltage
VB - 25
VB + 0.3
VHO
High side floating output voltage
VS - 0.3
VB + 0.3
VCC
Low side fixed supply voltage
-0.3
25
VLO
Low side output voltage
-0.3
VCC + 0.3
VDD
Logic supply voltage
-0.3
VSS + 25
VSS
Logic supply offset voltage
VCC - 25
VCC + 0.3
VIN
Logic input voltage (HIN, LIN & SD)
VSS - 0.3
VDD + 0.3
Allowable offset supply voltage transient (figure 2)
—
50
Package power dissipation @ TA ≤ +25°C
dVs/dt
PD
RTHJA
Thermal resistance, junction to ambient
(14 lead DIP)
—
1.6
(16 lead SOIC)
—
1.25
(14 lead DIP)
—
75
(16 lead SOIC)
—
100
TJ
Junction temperature
—
150
TS
Storage temperature
-55
150
TL
Lead temperature (soldering, 10 seconds)
—
300
V
V/ns
W
°C/W
°C
Recommended Operating Conditions
The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the
recommended conditions. The VS and VSS offset ratings are tested with all supplies biased at 15V differential. Typical
ratings at other bias conditions are shown in figures 24 and 25.
Symbol
Min.
Max.
VB
High side floating supply absolute voltage
Definition
VS + 10
VS + 20
VS
High side floating supply offset voltage
Units
Note 1
200
VHO
High side floating output voltage
VS
VB
VCC
Low side fixed supply voltage
10
20
VLO
Low side output voltage
0
VCC
VDD
Logic supply voltage
VSS + 3
VSS + 20
VSS
Logic supply offset voltage
-5 (Note 2)
5
VIN
Logic input voltage (HIN, LIN & SD)
VSS
VDD
TA
Ambient temperature
-40
125
V
°C
Note 1: Logic operational for VS of -4 to +200V. Logic state held for VS of -4V to -VBS.
Note 2: When VDD < 5V, the minimum VSS offset is limited to -VDD.
(Please refer to the Design Tip DT97-3 for more details).
2
www.irf.com
IR2010(S) & (PbF)
Dynamic Electrical Characteristics
VBIAS (VCC, VBS, VDD) = 15V, CL = 1000 pF, TA = 25°C and VSS = COM unless otherwise specified. The dynamic
electrical characteristics are measured using the test circuit shown in Figure 3.
Symbol
Definition
Figure Min. Typ. Max. Units Test Conditions
ton
Turn-on propagation delay
7
50
95
135
VS = 0V
toff
Turn-off propagation delay
8
30
65
105
VS = 200V
tsd
Shutdown propagation delay
9
35
70
105
tr
Turn-on rise time
10
—
10
20
tf
Turn-off fall time
11
—
15
25
Delay matching, HS & LS turn-on/off
6
—
—
15
MT
ns
VS = 200V
Static Electrical Characteristics
VBIAS (VCC, VBS, VDD) = 15V, TA = 25°C and VSS = COM unless otherwise specified. The VIN, VTH and IIN parameters
are referenced to VSS and are applicable to all three logic input leads: HIN, LIN and SD. The VO and IO parameters are
referenced to COM and are applicable to the respective output leads: HO or LO.
Symbol
Definition
Figure Min. Typ. Max. Units Test Conditions
VIH
Logic “1” input voltage
12
9.5
—
—
VIL
Logic “0” input voltage
13
—
—
6.0
VIH
Logic “1” input voltage
12
2
—
—
VIL
Logic “0” input voltage
13
—
—
1
VOH
High level output voltage, VBIAS - VO
14
—
—
1.0
IO = 0A
VOL
Low level output voltage, VO
15
—
—
0.1
IO = 0A
VDD = 15V
V
VDD = 3.3V
ILK
Offset supply leakage current
16
—
—
50
VB=VS = 200V
IQBS
Quiescent VBS supply current
17
—
70
210
VIN = 0V or VDD
IQCC
Quiescent VCC supply current
18
—
100
230
VIN = 0V or VDD
µA
IQDD
Quiescent VDD supply current
19
—
1
5
IIN+
Logic “1” input bias current
20
—
20
40
VIN = VDD
IIN-
21
22
—
7.5
—
8.6
1.0
9.7
VIN = 0V
23
7.0
8.2
9.4
24
7.5
8.6
9.7
25
7.0
8.2
9.4
IO+
Logic “0” input bias current
VBS supply undervoltage positive going
threshold
VBS supply undervoltage negative going
threshold
VCC supply undervoltage positive going
threshold
VCC supply undervoltage negative going
threshold
Output high short circuit pulsed current
26
2.5
3.0
—
IO-
Output low short circuit pulsed current
27
2.5
3.0
—
VBSUV+
VBSUVVCCUV+
VCCUV-
www.irf.com
VIN = 0V or VDD
V
A
VO = 0V, VIN = VDD
PW ≤ 10 µs
VO = 15V, VIN = 0V
PW ≤ 10 µs
3
IR2010(S) & (PbF)
Functional Block Diagram
Lead Definitions
Symbol Description
VDD
HIN
SD
LIN
VSS
VB
HO
VS
VCC
LO
COM
Logic supply
Logic input for high side gate driver output (HO), in phase
Logic input for shutdown
Logic input for low side gate driver output (LO), in phase
Logic ground
High side floating supply
High side gate drive output
High side floating supply return
Low side supply
Low side gate drive output
Low side return
Lead Assignments
14 Lead PDIP
16 Lead SOIC (Wide Body)
IR2010
IR2010S
Part Number
4
www.irf.com
IR2010(S) & (PbF)
HV =10 to 200V
HIN
LIN
SD
<50 V/ns
HO
LO
Figure 1. Input/Output Timing Diagram
Figure 2. Floating Supply Voltage Transient Test Circuit
(0 to 200V)
Figure 3. Switching Time Test Circuit
Figure 4. Switching Time Waveform Definition
!"
Figure 5. Shutdown Waveform Definitions
www.irf.com
Figure 6. Delay Matching Waveform Definitions
5
IR2010(S) & (PbF)
250
m ax
200
Turn-on Time (nS)
Turn-on Time (nS)
250
150
typ
100
200
m ax
150
100
typ
50
50
0
0
-50
-25
0
25
50
75
100
10
125
12
Temperature (C)
20
250
Turn-off Time (nS)
250
200
m ax
150
100
typ
50
0
0
2
4
6
8
10
12
14
16
18
200
max
150
100
typ
50
0
-50
20
-25
0
25
50
75
100
125
Temperature (C)
VDD Supply Voltage (V)
Figure 7C. Turn-on Time vs VDD Voltage
Figure 8A. Turn-off Time vs. Temperature
250
300
250
Turn-off Time (nS)
200
Turn-off Time (nS)
18
VCC/VBS Supply Voltage (V)
300
150
m ax
100
50
200
150
max
100
50
typ
typ
0
0
10
12
14
16
18
VCC/VBS Supply Voltage (V)
Figure 8B. Turn-off Time vs. VCC/VBS Voltage
6
16
Figure 7B. Turn-on Time vs. VCC/VBS Voltage
Figure 7A. Turn-on Time vs. Temperature
Turn-on Time (nS)
14
20
0
2
4
6
8
10
12
14
16
18
20
Vdd Supply Voltage (V)
Figure 8C. Turn-off Time vs. VDD Voltage
www.irf.com
IR2010(S) & (PbF)
2 50
200
Shutdown Time (nS)
Shutdown Time (nS)
250
max
150
100
typ
2 00
1 50
m ax
1 00
50
50
typ
0
0
-50
-25
0
25
50
75
100
10
125
12
14
18
20
VCC/VBS Supply Voltage (V)
Temperature (C)
Figure 9B. Shutdown Time vs. VCC/VBSVoltage
Figure 9A. Shutdown Time vs. Temperature
40
300
Turn-on Rise Time (nS)
250
Shutdown Time (nS)
16
200
150
100
50
0
30
max
20
10
typ
0
0
2
4
6
8
10
12
14
16
18
20
-50
-25
0
VDD Supply Voltage (V)
25
50
75
100
125
Temperature (C)
Figure 10A. Turn-on Rise Time vs. Temperature
Figure 9C. Shutdown Time vs VDD Voltage
40
30
S)
Turn-off Fall Time (nS)
Turn-on Rise Time (nS)
40
max
20
10
typ
max
30
20
typ
10
0
10
12
14
16
18
VBIAS Supply Voltage (V)
Figure 10B. Turn-on Rise Time
vs. VBIAS (VCC=VBS=VDD) Voltage
www.irf.com
20
0
-50
-25
0
25
50
75
100
125
Temperature (C)
Figure 11A. Turn-off Fall Time vs. Temperature
7
IR2010(S) & (PbF)
15
Logic '1' Input Threshold (V)
Turn-off Fall Time (nS)
40
30
max
20
typ
10
12
0
9
min
6
3
0
10
12
14
16
18
20
-50
-25
0
Figure 11B. Turn-Off Fall Time
vs. VBIAS (VCC=VBS=VDD) Voltage
Logic '0' Input Threshold (V)
Logic '1' Input Threshold (V )
75
100
125
15
12
9
6
3
min
12
9
max
6
3
0
0
0
2
4
6
8
10
12
14
16
18
-50
20
-25
0
Figure 12B. Logic “1” Input Threshold vs. VDD Voltage
50
75
100
125
Figure 13A. Logic “0” Input Threshold vs. Temperature
5
12
4
High Level Output (V)
15
9
6
max
3
25
Temperature (C)
VDD Logic Supply Voltage (V)
Logic '0' Input Threshold (V)
50
Figure 12A. Logic “1” Input Threshold vs. Temperature
15
3
2
max
1
0
0
0
2
4
6
8
10
12
14
16
18
20
VDD Logic Supply Voltage (V)
Figure 13B. Logic “0” Input Threshold vs. VDD Voltage
8
25
Temperature (C)
VBIAS Supply Voltage (V)
-50
-25
0
25
50
75
100
125
Temperature (C)
Figure 14A. High Level Output vs. Temperature
www.irf.com
5
1.0
4
0.8
Low Level Output (V)
High Level Output (V)
IR2010(S) & (PbF)
3
2
max
0.6
0.4
0.2
1
m ax
0.0
0
10
12
14
16
18
-50
20
-25
0
VBIAS Supply Voltage (V)
75
10 0
12 5
Figure 15A. Low Level Output vs. Temperature
1.0
300
Offset Supply Current (uA)
Low Level Output (V)
50
Temperature (C)
Figure 14B. High Level Output vs. VBIAS Voltage
0.8
0.6
0.4
0.2
200
m ax
100
max
0
0.0
10
12
14
16
18
-50
20
-25
0
25
50
75
100
125
Temperature (C)
VBIAS Supply Voltage (V)
Figure 16A. Offset Supply Current vs. Temperature
Figure 15B. Low Level Output vs. VBIAS Voltage
100
500
80
400
VBS Supply Current (uA)
Offset Supply Current (uA)
25
60
m ax
40
20
max
300
200
100
typ
0
0
20
40
60
80
100
120
140
160
180
200
Offset Supply Voltage (V)
Figure 16B. Offset Supply Current vs. Offset Voltage
www.irf.com
0
-50
-25
0
25
50
75
100
125
Temperature (C)
Figure 17A. Vbs Supply Current vs. Temperature
9
500
500
400
400
VCC Supply Current (uA)
VBS Supply Current (uA)
IR2010(S) & (PbF)
300
max
200
100
300
max
200
100
typ
typ
0
0
10
12
14
16
18
-50
20
-25
0
25
Figure 17B. Vbs Supply Current vs. VBS Voltage
100
125
20
VDD Supply Current (uA)
VCC Supply Current (uA)
75
Figure 18A. Vcc Supply Current vs. Temperature
500
400
300
max
200
100
typ
10
15
10
max
5
typ
0
0
12
14
16
18
-50
20
-25
0
25
50
75
100
125
Temperature (C)
VCC Voltage (V)
Figure 18B. Vcc Supply Current vs. VCC Voltage
Figure 19A. Vdd Supply Current vs. Temperature
10
100
Logic '1' Input Current (uA)
VDD Supply Current (uA)
50
Temperature (C)
VBS Floating Supply Voltage (V)
8
6
max
4
2
80
60
max
40
20
typ
typ
0
2
4
6
8
10
12
0
14
16
18
VDD Voltage (V)
Figure 19B. Vdd Supply Current vs. VDD Voltage
10
20
-50
-25
0
25
50
75
100
125
Temperature (C)
Figure 20A. Logic “1” Input Current vs. Temperature
www.irf.com
IR2010(S) & (PbF)
5.0
Logic '0' Input Current (uA)
Logic “1” Input Current (uA)
100
80
60
40
max
20
4.0
3.0
2.0
max
1.0
typ
0.0
0
2
4
6
8
10
12
14
16
18
-50
20
-25
0
V DD Voltage (V)
5 .0
11.0
4 .0
10.0
3 .0
2 .0
m ax
75
100
125
Max.
9.0
Typ.
8.0
Min.
7.0
1 .0
6.0
0 .0
2
4
6
8
10
12
14
16
18
20
-50
-25
0
VDD Voltage (V)
25
50
75
100
125
Temperature (°C)
Figure 21B. Logic “0” Input Current vs. VDD Voltage
Figure 22. VBS Undervoltage (+) vs. Temperature
11.0
11.0
VCC Undervoltage Lockout + (V)
10.0
VBS Undervoltage Lockout - (V)
50
Figure 21A. Logic “0” Input Current vs. Temperature
VBS Undervoltage Lockout + (V)
Logic “0” Input Current (uA)
Figure 20B. Logic “1” Input Current vs. VDD Voltage
Max.
9.0
Typ.
8.0
7.0
25
Temperature (C)
10.0
Max.
9.0
Typ.
8.0
Min.
7.0
Min.
6.0
6.0
-50
-25
0
25
50
75
100
Temperature (°C)
Figure 23. VBS Undervoltage (-) vs. Temperature
www.irf.com
125
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 24. VCC Undervoltage (+) vs. Temperature
11
IR2010(S) & (PbF)
5.0
Output Source Current (uA)
Vcc Undervoltage Lockout - (V)
11.0
10.0
Max.
9.0
Typ.
8.0
7.0
Min.
4.0
typ
3.0
min
2.0
1.0
0.0
6.0
-50
-25
0
25
50
75
100
-50
125
-25
0
Figure 25. VCC Undervoltage (-) vs. Temperature
50
75
10 0
12 5
Figure 26A. Output Source Current vs. Temperature
5.0
Output Sink Current (uA)
5.0
Output Source Current (uA)
25
Temperature (C)
Temperature (°C)
4.0
3.0
typ
2.0
min
1.0
4.0
typ
3.0
min
2.0
1.0
0.0
0.0
10
12
14
16
18
20
-50
-25
Vbias Supply Voltage (V)
0
25
50
75
100
125
Temperature (C)
Figure 26B. Output Source Current vs. VBIAS Voltage
Figure 27A. Output Sink Current vs. Temperature
200V
1 5 0 .0 0
Junction Temperature (C)
Output Sink Current (uA)
5.0
4.0
3.0
typ
2.0
min
100V
1 2 5 .0 0
1 0 0 .0 0
10V
7 5 .00
5 0 .00
2 5 .00
1.0
0 .0 0
0.0
1.E + 0 3
10
12
14
16
18
20
Vbias Supply Voltage (V)
Figure 27B. Output Sink Current vs. VBIAS Voltage
12
1.E + 0 4
1.E + 0 5
F re q u e n cy (H z)
1.E + 0 6
Figure 28. IR2010 Tj vs Frequency
RGATE = 10 Ohm, Vcc = 15V with IRFPE50
www.irf.com
IR2010(S) & (PbF)
150.00
150.00
125.00
200V
100.00
100V
10V
75.00
50.00
25.00
Ju nctio n T em perature (C )
Ju nctio n Tem perature (C )
125.00
200V
100.00
100V
75.00
10V
50.00
25.00
0.00
0.00
1.E + 03
1.E + 04
1.E + 05
1.E + 03
1.E + 06
1.E + 04
1.E + 05
1.E + 06
Frequ ency (H z)
Frequ ency (H z)
Figure 29. IR2010 Tj vs Frequency
RGATE = 16 Ohm, Vcc = 15V with IRFBC40
Figure 30. IR2010 Tj vs Frequency
RGATE = 22 Ohm, Vcc = 15V with IRFBC30
1 5 0 .0 0
125.00
1 2 5 .0 0
200V
100.00
100V
75.00
10V
50.00
25.00
0.00
1.E + 03
100V
10V
1 0 0 .0 0
7 5 .0 0
5 0 .0 0
2 5 .0 0
0 .0 0
1.E + 04
1.E + 05
Frequ ency (H z)
Figure 31. IR2010 Tj vs Frequency
RGATE = 33 Ohm, Vcc = 15V with IRFBC20
www.irf.com
Ju nction Tem perature (C )
Ju nction Tem perature (C )
200V
150.00
1.E + 06
1.E + 03
1.E + 04
1.E + 05
1.E + 06
Freq uen cy (H z)
Figure 32. IR2010S Tj vs Frequency
RGATE = 10 Ohm, Vcc = 15V with IRFPE50
13
IR2010(S) & (PbF)
1 5 0 .0 0
150.00
200V
200V
125.00
100V
1 0 0 .0 0
10V
7 5 .0 0
5 0 .0 0
2 5 .0 0
Junction Temperature (C)
Junction Temperature (C)
1 2 5 .0 0
100V
100.00
10V
75.00
50.00
25.00
0.00
0 .0 0
1.E + 03
1.E + 04
1.E + 05
1.E + 03
1.E + 06
Frequency (Hz)
1.E + 04
1.E + 05
1.E + 06
Frequency (Hz)
Figure 34. IR2010S Tj vs Frequency
RGATE = 22 Ohm, Vcc = 15V with IRFBC30
Figure 33. IR2010S Tj vs Frequency
RGATE = 16 Ohm, Vcc = 15V with IRFBC40
150.00
Junction Temperature (C)
125.00
200V
100.00
100V
75.00
10V
50.00
25.00
0.00
1.E + 03
1.E + 04
1.E + 05
1.E + 06
Frequency (Hz)
Figure 35. IR2010S Tj vs Frequency
RGATE = 33 Ohm, Vcc = 15V with IRFBC20
14
www.irf.com
IR2010(S) & (PbF)
Case Outlines
14 Lead PDIP
16 Lead SOIC (wide body)
www.irf.com
01-6010
01-3002 03 (MS-001AC)
01 6012
01-3014 03 (MS-013AA)
15
IR2010(S) & (PbF)
LEADFREE PART MARKING INFORMATION
Part number
Date code
IRxxxxxx
YWW?
Pin 1
Identifier
?
P
MARKING CODE
Lead Free Released
Non-Lead Free
Released
IR logo
?XXXX
Lot Code
(Prod mode - 4 digit SPN code)
Assembly site code
Per SCOP 200-002
ORDER INFORMATION
Basic Part (Non-Lead Free)
14-Lead PDIP IR2010 order IR2010
16-Lead SOIC IR2010S order IR2010S
Leadfree Part
14-Lead PDIP IR2010 order IR2010PbF
16-Lead SOIC IR2010S order IR2010SPbF
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
This product has been qualified per industrial level
Data and specifications subject to change without notice. 9/12/2004
16
www.irf.com
Similar pages