Vishay IRF530 Power mosfet Datasheet

IRF530, SiHF530
Vishay Siliconix
Power MOSFET
FEATURES
PRODUCT SUMMARY
VDS (V)
•
•
•
•
•
•
•
100
RDS(on) ()
VGS = 10 V
0.16
Qg (Max.) (nC)
26
Qgs (nC)
5.5
Qgd (nC)
11
Configuration
Single
Dynamic dV/dt Rating
Repetitive Avalanche Rated
175 °C Operating Temperature
Fast Switching
Ease of Paralleling
Simple Drive Requirements
Compliant to RoHS Directive 2002/95/EC
Available
RoHS*
COMPLIANT
D
DESCRIPTION
TO-220AB
Third generation Power MOSFETs from Vishay provide the
designer with the best combination of fast switching,
ruggedized device design, low on-resistance and
cost-effectiveness.
The TO-220AB package is universally preferred for all
commercial-industrial applications at power dissipation
levels to approximately 50 W. The low thermal resistance
and low package cost of the TO-220AB contribute to its
wide acceptance throughout the industry.
G
G
D
S
S
N-Channel MOSFET
ORDERING INFORMATION
Package
TO-220AB
IRF530PbF
SiHF530-E3
IRF530
SiHF530
Lead (Pb)-free
SnPb
ABSOLUTE MAXIMUM RATINGS (TC = 25 °C, unless otherwise noted)
PARAMETER
SYMBOL
LIMIT
Drain-Source Voltage
VDS
100
Gate-Source Voltage
VGS
± 20
Continuous Drain Current
VGS at 10 V
TC = 25 °C
TC = 100 °C
Pulsed Drain Currenta
ID
IDM
Linear Derating Factor
Single Pulse Avalanche Energyb
EAS
UNIT
V
14
10
A
56
0.59
W/°C
69
mJ
Currenta
IAR
14
A
Repetitive Avalanche Energya
EAR
8.8
mJ
Repetitive Avalanche
Maximum Power Dissipation
TC = 25 °C
Peak Diode Recovery dV/dtc
Operating Junction and Storage Temperature Range
Soldering Recommendations (Peak Temperature)
Mounting Torque
for 10 s
6-32 or M3 screw
PD
88
W
dV/dt
5.5
V/ns
TJ, Tstg
- 55 to + 175
300d
°C
10
lbf · in
1.1
N·m
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. VDD = 25 V, starting TJ = 25 °C, L = 528 μH, Rg = 25 , IAS = 14 A (see fig. 12).
c. ISD  14 A, dI/dt  140 A/μs, VDD  VDS, TJ  175 °C.
d. 1.6 mm from case.
* Pb containing terminations are not RoHS compliant, exemptions may apply
Document Number: 91019
S11-0510-Rev. B, 21-Mar-11
www.vishay.com
1
This datasheet is subject to change without notice.
THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
IRF530, SiHF530
Vishay Siliconix
THERMAL RESISTANCE RATINGS
PARAMETER
SYMBOL
TYP.
MAX.
Maximum Junction-to-Ambient
RthJA
-
62
Case-to-Sink, Flat, Greased Surface
RthCS
0.50
-
Maximum Junction-to-Case (Drain)
RthJC
-
1.7
UNIT
°C/W
SPECIFICATIONS (TJ = 25 °C, unless otherwise noted)
PARAMETER
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
Static
Drain-Source Breakdown Voltage
VDS Temperature Coefficient
VDS
VGS = 0 V, ID = 250 μA
100
-
-
V
VDS/TJ
Reference to 25 °C, ID = 1 mA
-
0.12
-
V/°C
VGS(th)
VDS = VGS, ID = 250 μA
2.0
-
4.0
V
Gate-Source Leakage
IGSS
VGS = ± 20 V
-
-
± 100
nA
Zero Gate Voltage Drain Current
IDSS
VDS = 100 V, VGS = 0 V
-
-
25
VDS = 80 V, VGS = 0 V, TJ = 150 °C
-
-
250
Gate-Source Threshold Voltage
μA
-
-
0.16

gfs
VDS = 50 V, ID = 8.4 Ab
5.1
-
-
S
Input Capacitance
Ciss
VGS = 0 V,
-
670
-
Output Capacitance
Coss
VDS = 25 V,
-
250
-
Reverse Transfer Capacitance
Crss
f = 1.0 MHz, see fig. 5
-
60
-
Total Gate Charge
Qg
-
-
26
Gate-Source Charge
Qgs
-
-
5.5
Drain-Source On-State Resistance
Forward Transconductance
RDS(on)
ID = 8.4 Ab
VGS = 10 V
Dynamic
VGS = 10 V
ID = 14 A, VDS = 80 V,
see fig. 6 and 13b
pF
nC
Gate-Drain Charge
Qgd
-
-
11
Turn-On Delay Time
td(on)
-
10
-
-
34
-
-
23
-
-
24
-
-
4.5
-
-
7.5
-
-
-
14
-
-
56
-
-
2.5
V
-
150
280
ns
-
0.85
1.7
μC
Rise Time
Turn-Off Delay Time
tr
td(off)
Fall Time
tf
Internal Drain Inductance
LD
Internal Source Inductance
LS
VDD = 50 V, ID = 14 A
Rg = 12 , RD = 3.6, see fig. 10b
Between lead,
6 mm (0.25") from
package and center of
die contact
D
ns
nH
G
S
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current
IS
Pulsed Diode Forward Currenta
ISM
Body Diode Voltage
VSD
Body Diode Reverse Recovery Time
trr
Body Diode Reverse Recovery Charge
Qrr
Forward Turn-On Time
ton
MOSFET symbol
showing the
integral reverse
p - n junction diode
D
A
G
S
TJ = 25 °C, IS = 14 A, VGS = 0 Vb
TJ = 25 °C, IF = 14 A, dI/dt = 100 A/μsb
Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Pulse width  300 μs; duty cycle  2 %.
www.vishay.com
2
Document Number: 91019
S11-0510-Rev. B, 21-Mar-11
This datasheet is subject to change without notice.
THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
IRF530, SiHF530
Vishay Siliconix
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)
VGS
15 V
10 V
8.0 V
7.0 V
6.0 V
5.5 V
5.0 V
Bottom 4.5 V
101
25 °C
4.5 V
ID, Drain Current (A)
ID, Drain Current (A)
Top
175 °C
101
100
100
20 µs Pulse Width
TC = 25 °C
10-1
100
4
101
VDS, Drain-to-Source Voltage (V)
91019_01
20 µs Pulse Width
VDS = 50 V
4.5 V
100
20 µs Pulse Width
TC = 175 °C
10-1
91019_02
100
101
VDS, Drain-to-Source Voltage (V)
Fig. 2 - Typical Output Characteristics, TC = 175 °C
Document Number: 91019
S11-0510-Rev. B, 21-Mar-11
RDS(on), Drain-to-Source On Resistance
(Normalized)
ID, Drain Current (A)
101
7
8
9
10
Fig. 3 - Typical Transfer Characteristics
Fig. 1 - Typical Output Characteristics, TC = 25 °C
VGS
15 V
10 V
8.0 V
7.0 V
6.0 V
5.5 V
5.0 V
Bottom 4.5 V
6
VGS, Gate-to-Source Voltage (V)
91019_03
Top
5
91019_04
3.5
3.0
ID = 14 A
VGS = 10 V
2.5
2.0
1.5
1.0
0.5
0.0
- 60- 40 - 20 0
20 40 60 80 100 120 140 160 180
TJ, Junction Temperature (°C)
Fig. 4 - Normalized On-Resistance vs. Temperature
www.vishay.com
3
This datasheet is subject to change without notice.
THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
IRF530, SiHF530
1400
VGS = 0 V, f = 1 MHz
Ciss = Cgs + Cgd, Cds Shorted
Crss = Cgd
Coss = Cds + Cgd
Capacitance (pF)
1200
1000
Ciss
800
600
Coss
400
Crss
200
ISD, Reverse Drain Current (A)
Vishay Siliconix
175 °C
101
25 °C
100
VGS = 0 V
0
100
101
0.4
VDS, Drain-to-Source Voltage (V)
91019_05
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
5
VDS = 80 V
16
Operation in this area limited
by RDS(on)
2
VDS = 50 V
VDS = 20 V
8
4
102
5
10 µs
2
100 µs
10
1 ms
5
10 ms
2
1
5
For test circuit
see figure 13
0
0
91019_06
5
10
15
20
QG, Total Gate Charge (nC)
TC = 25 °C
TJ = 175 °C
Single Pulse
2
0.1
0.1
25
Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage
www.vishay.com
4
2.0
1.6
103
ID = 14 A
12
1.2
Fig. 7 - Typical Source-Drain Diode Forward Voltage
ID, Drain Current (A)
VGS, Gate-to-Source Voltage (V)
20
0.8
VSD, Source-to-Drain Voltage (V)
91019_07
91019_08
2
5
1
2
5
10
2
5
102
2
5
103
VDS, Drain-to-Source Voltage (V)
Fig. 8 - Maximum Safe Operating Area
Document Number: 91019
S11-0510-Rev. B, 21-Mar-11
This datasheet is subject to change without notice.
THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
IRF530, SiHF530
Vishay Siliconix
RD
VDS
VGS
14
ID, Drain Current (A)
D.U.T.
RG
12
10
+
- VDD
10 V
Pulse width ≤ 1 µs
Duty factor ≤ 0.1 %
8
6
Fig. 10a - Switching Time Test Circuit
4
2
VDS
90 %
0
25
50
75
100
125
150
175
TC, Case Temperature (°C)
91019_09
10 %
VGS
td(on)
Fig. 9 - Maximum Drain Current vs. Case Temperature
td(off) tf
tr
Fig. 10b - Switching Time Waveforms
Thermal Response (ZthJC)
10
1
0 - 0.5
0.2
PDM
0.1
0.1
0.05
t1
0.02
0.01
t2
Single Pulse
(Thermal Response)
Notes:
1. Duty Factor, D = t1/t2
2. Peak Tj = PDM x ZthJC + TC
10-2
10-5
91019_11
10-4
10-3
10-2
0.1
1
10
t1, Rectangular Pulse Duration (s)
Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
Document Number: 91019
S11-0510-Rev. B, 21-Mar-11
www.vishay.com
5
This datasheet is subject to change without notice.
THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
IRF530, SiHF530
Vishay Siliconix
L
Vary tp to obtain
required IAS
VDS
VDS
tp
VDD
D.U.T
RG
+
-
IAS
V DD
VDS
10 V
0.01 Ω
tp
IAS
Fig. 12a - Unclamped Inductive Test Circuit
Fig. 12b - Unclamped Inductive Waveforms
EAS, Single Pulse Energy (mJ)
200
ID
5.7 A
9.9 A
Bottom 14 A
Top
160
120
80
40
0
VDD = 25 V
25
91019_12c
50
75
100
125
175
150
Starting TJ, Junction Temperature (°C)
Fig. 12c - Maximum Avalanche Energy vs. Drain Current
Current regulator
Same type as D.U.T.
50 kΩ
QG
10 V
12 V
0.2 µF
0.3 µF
QGS
QGD
+
D.U.T.
VG
-
VDS
VGS
3 mA
Charge
IG
ID
Current sampling resistors
Fig. 13a - Basic Gate Charge Waveform
www.vishay.com
6
Fig. 13b - Gate Charge Test Circuit
Document Number: 91019
S11-0510-Rev. B, 21-Mar-11
This datasheet is subject to change without notice.
THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
IRF530, SiHF530
Vishay Siliconix
Peak Diode Recovery dV/dt Test Circuit
+
D.U.T.
Circuit layout considerations
• Low stray inductance
• Ground plane
• Low leakage inductance
current transformer
+
-
-
Rg
•
•
•
•
+
dV/dt controlled by Rg
Driver same type as D.U.T.
ISD controlled by duty factor “D”
D.U.T. - device under test
+
-
VDD
Driver gate drive
P.W.
Period
D=
P.W.
Period
VGS = 10 Va
D.U.T. lSD waveform
Reverse
recovery
current
Body diode forward
current
dI/dt
D.U.T. VDS waveform
Diode recovery
dV/dt
Re-applied
voltage
Inductor current
VDD
Body diode forward drop
Ripple ≤ 5 %
ISD
Note
a. VGS = 5 V for logic level devices
Fig. 14 - For N-Channel
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see www.vishay.com/ppg?91019.
Document Number: 91019
S11-0510-Rev. B, 21-Mar-11
www.vishay.com
7
This datasheet is subject to change without notice.
THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Package Information
www.vishay.com
Vishay Siliconix
TO-220-1
A
E
DIM.
Q
H(1)
D
3
2
L(1)
1
M*
L
b(1)
INCHES
MIN.
MAX.
MIN.
MAX.
A
4.24
4.65
0.167
0.183
b
0.69
1.02
0.027
0.040
b(1)
1.14
1.78
0.045
0.070
F
ØP
MILLIMETERS
c
0.36
0.61
0.014
0.024
D
14.33
15.85
0.564
0.624
E
9.96
10.52
0.392
0.414
e
2.41
2.67
0.095
0.105
e(1)
4.88
5.28
0.192
0.208
F
1.14
1.40
0.045
0.055
H(1)
6.10
6.71
0.240
0.264
0.115
J(1)
2.41
2.92
0.095
L
13.36
14.40
0.526
0.567
L(1)
3.33
4.04
0.131
0.159
ØP
3.53
3.94
0.139
0.155
Q
2.54
3.00
0.100
0.118
ECN: X15-0364-Rev. C, 14-Dec-15
DWG: 6031
Note
• M* = 0.052 inches to 0.064 inches (dimension including
protrusion), heatsink hole for HVM
C
b
e
J(1)
e(1)
Package Picture
ASE
Revison: 14-Dec-15
Xi’an
Document Number: 66542
1
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Legal Disclaimer Notice
www.vishay.com
Vishay
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of
typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding
statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a
particular product with the properties described in the product specification is suitable for use in a particular application.
Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over
time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk.
Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for
such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document
or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
© 2017 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED
Revision: 08-Feb-17
1
Document Number: 91000
Similar pages