CEDF640/CEUF640 N-Channel Enhancement Mode Field Effect Transistor FEATURES 200V, 15A, RDS(ON) = 0.15 Ω @VGS = 10V. Super high dense cell design for extremely low RDS(ON). High power and current handing capability. D Lead free product is acquired. TO-251 & TO-252 package. G D G S CEU SERIES TO-252(D-PAK) ABSOLUTE MAXIMUM RATINGS Parameter G D S CED SERIES TO-251(I-PAK) Tc = 25 C unless otherwise noted Symbol Limit 200 Units V VGS ±20 V ID 15 A IDM 60 A 83 W Drain-Source Voltage VDS Gate-Source Voltage Drain Current-Continuous Drain Current-Pulsed S a Maximum Power Dissipation @ TC = 25 C PD - Derate above 25 C Operating and Store Temperature Range 0.66 W/ C TJ,Tstg -55 to 150 C Thermal Characteristics Symbol Limit Units Thermal Resistance, Junction-to-Case Parameter RθJC 1.8 C/W Thermal Resistance, Junction-to-Ambient RθJA 50 C/W 2009.Dec http://www.cetsemi.com 1 CEDF640/CEUF640 Electrical Characteristics Parameter Tc = 25 C unless otherwise noted Symbol Test Condition Min Drain-Source Breakdown Voltage BVDSS VGS = 0V, ID = 250µA 200 Zero Gate Voltage Drain Current IDSS Gate Body Leakage Current, Forward Gate Body Leakage Current, Reverse Typ Max Units VDS = 160V, VGS = 0V 1 µA IGSSF VGS = 20V, VDS = 0V 100 nA IGSSR VGS = -20V, VDS = 0V -100 nA 4 V 0.15 Ω Off Characteristics V On Characteristics b Gate Threshold Voltage Static Drain-Source On-Resistance Forward Transconductance Dynamic Characteristics VGS(th) VGS = VDS, ID = 250µA 2 RDS(on) VGS = 10V, ID = 10A 0.125 gFS VDS = 10V, ID = 9A 9 S 1955 pF 355 pF 55 pF c Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss VDS = 25V, VGS = 0V, f = 1.0 MHz Switching Characteristics c Turn-On Delay Time td(on) Turn-On Rise Time tr Turn-Off Delay Time td(off) VDD = 100V, ID = 11A, VGS = 10V, RGEN = 9.1Ω 21 42 ns 5 10 ns 66 132 ns Turn-Off Fall Time tf 11 22 ns Total Gate Charge Qg 47 61 nC Gate-Source Charge Qgs Gate-Drain Charge Qgd VDS = 160V, ID = 15A, VGS = 10V 10 nC 16 nC Drain-Source Diode Characteristics and Maximun Ratings Drain-Source Diode Forward Current IS Drain-Source Diode Forward Voltage b VSD VGS = 0V, IS = 15A Notes : a.Repetitive Rating : Pulse width limited by maximum junction temperature. b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%. c.Guaranteed by design, not subject to production testing. d.L = 1mH, IAS = 25A, VDD = 25V, RG = 25Ω, Starting TJ = 25 C 6-2 15 A 1.5 V 6 CEDF640/CEUF640 32 10 VGS=10,9,8,7V ID, Drain Current (A) ID, Drain Current (A) 12 8 6 VGS=6V 4 2 0 0.0 1.0 1.5 2.0 2.5 2 4 6 8 10 12 Figure 2. Transfer Characteristics RDS(ON), Normalized RDS(ON), On-Resistance(Ohms) 1500 1000 Coss 500 Crss 0 5 10 15 20 25 2.2 1.9 ID=10A VGS=10V 1.6 1.3 1.0 0.7 0.4 -100 -50 0 50 100 150 200 VDS, Drain-to-Source Voltage (V) TJ, Junction Temperature( C) Figure 3. Capacitance Figure 4. On-Resistance Variation with Temperature VDS=VGS ID=250µA IS, Source-drain current (A) C, Capacitance (pF) VTH, Normalized Gate-Source Threshold Voltage 8 Figure 1. Output Characteristics Ciss 1.1 1.0 0.9 0.8 0.7 0.6 -50 16 VGS, Gate-to-Source Voltage (V) 2000 1.2 TJ=125 C VDS, Drain-to-Source Voltage (V) 2500 1.3 -55 C 3.0 3000 0 24 0 0.5 25 C -25 0 25 50 75 100 125 10 1 10 0 10 -1 VGS=0V 0.4 150 0.6 0.8 1.0 1.2 TJ, Junction Temperature( C) VSD, Body Diode Forward Voltage (V) Figure 5. Gate Threshold Variation with Temperature Figure 6. Body Diode Forward Voltage Variation with Source Current 3 10 10 VDS=160V ID=15A 8 6 4 2 0 0 2 RDS(ON)Limit ID, Drain Current (A) VGS, Gate to Source Voltage (V) CEDF640/CEUF640 16 32 48 64 10ms 100ms 10 1 10 0 10ms DC 1ms 6 TC=25 C TJ=150 C Single Pulse 10 0 10 1 10 2 Qg, Total Gate Charge (nC) VDS, Drain-Source Voltage (V) Figure 7. Gate Charge Figure 8. Maximum Safe Operating Area VDD t on V IN RL D VGS RGEN toff tr td(on) td(off) tf 90% 90% VOUT VOUT 10% INVERTED 10% G 90% S VIN 50% 50% 10% PULSE WIDTH Figure 10. Switching Waveforms r(t),Normalized Effective Transient Thermal Impedance Figure 9. Switching Test Circuit 10 0 D=0.5 0.2 0.1 10 -1 PDM 0.05 t1 0.02 0.01 10 Single Pulse -2 10 -5 t2 1. RθJC (t)=r (t) * RθJC 2. RθJC=See Datasheet 3. TJM-TC = P* RθJC (t) 4. Duty Cycle, D=t1/t2 10 -4 10 -3 10 -2 10 -1 Square Wave Pulse Duration (sec) Figure 11. Normalized Thermal Transient Impedance Curve 6-4 10 0 10 1