PD - 97446 IRFH5015PbF HEXFET® Power MOSFET VDS RDS(on) max (@VGS = 10V) 150 V 31 mΩ Qg (typical) RG (typical) 33 nC 1.7 Ω ID 56 A (@Tc(Bottom) = 25°C) PQFN 5X6 mm Applications • • • • Primary Side Synchronous Rectification Inverters for DC Motors DC-DC Brick Applications Boost Converters Features and Benefits Benefits Features Low RDSon (< 31 mΩ) Low Thermal Resistance to PCB (<0.5°C/W) 100% Rg tested Low Profile (<0.9 mm) Industry-Standard Pinout Compatible with Existing Surface Mount Techniques RoHS Compliant Containing no Lead, no Bromide and no Halogen MSL1, Industrial Qualification Orderable part number IRFH5015TRPBF IRFH5015TR2PBF Package Type PQFN 5mm x 6mm PQFN 5mm x 6mm Lower Conduction Losses Increased Power Density Increased Reliability results in Increased Power Density ⇒ Multi-Vendor Compatibility Easier Manufacturing Environmentally Friendlier Increased Reliability Standard Pack Form Quantity Tape and Reel 4000 400 Tape and Reel Note Absolute Maximum Ratings VDS VGS ID @ TA = 25°C ID @ TA = 70°C ID @ TC(Bottom) = 25°C ID @ TC(Bottom) = 100°C IDM PD @TA = 25°C PD @ TC(Bottom) = 25°C Parameter Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Power Dissipation TJ TSTG Linear Derating Factor Operating Junction and Storage Temperature Range Notes through www.irf.com g g c g Max. 150 ± 20 10 8.2 56 36 220 3.6 250 Units 0.029 -55 to + 150 W/°C V A W °C are on page 8 1 01/22/2010 IRFH5015PbF Static @ TJ = 25°C (unless otherwise specified) BVDSS ∆ΒVDSS/∆TJ RDS(on) VGS(th) ∆VGS(th) IDSS IGSS gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss RG td(on) tr td(off) tf Ciss Coss Crss Output Charge Min. 150 ––– ––– 3.0 ––– ––– ––– ––– ––– 38 ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.12 25.5 ––– -12 ––– ––– ––– ––– ––– 33 9.1 3.7 12 8.2 15.7 14 Conditions Max. Units ––– V VGS = 0V, ID = 250uA ––– V/°C Reference to 25°C, ID = 1.0mA 31 mΩ VGS = 10V, ID = 34A 5.0 V VDS = VGS, ID = 150µA ––– mV/°C VDS = 150V, VGS = 0V 20 µA VDS = 150V, VGS = 0V, TJ = 125°C 250 VGS = 20V 100 nA -100 VGS = -20V ––– S VDS = 50V, ID = 34A 50 VDS = 75V ––– ––– VGS = 10V nC ––– ID = 34A ––– ––– ––– nC VDS = 16V, VGS = 0V Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance ––– ––– ––– ––– ––– ––– ––– ––– 1.7 9.4 9.7 14 3.4 2300 205 47 ––– ––– ––– ––– ––– ––– ––– ––– Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) e Ω ns pF VDD = 75V, VGS = 10V ID = 34A RG=1.3Ω VGS = 0V VDS = 50V ƒ = 1.0MHz Avalanche Characteristics EAS IAR Parameter Single Pulse Avalanche Energy Avalanche Current Diode Characteristics IS ISM VSD trr Qrr ton c Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time Max. 230 34 Typ. ––– ––– d Min. Typ. Max. Units ––– ––– 56 ––– ––– 220 A c Units mJ A Conditions MOSFET symbol showing the G integral reverse p-n junction diode. TJ = 25°C, IS = 34A, VGS = 0V TJ = 25°C, IF = 34A, VDD = 75V di/dt = 500A/µs ––– ––– 1.3 V ––– 52 78 ns ––– 550 825 nC Time is dominated by parasitic Inductance e D S e Thermal Resistance RθJC (Bottom) RθJC (Top) RθJA RθJA (<10s) 2 f f Junction-to-Case Junction-to-Case Junction-to-Ambient Junction-to-Ambient Parameter g g Typ. ––– ––– ––– ––– Max. 0.5 15 35 22 Units °C/W www.irf.com IRFH5015PbF 1000 1000 VGS 15V 10V 9.0V 8.0V 7.0V 6.0V 5.5V 5.0V ID, Drain-to-Source Current (A) 100 BOTTOM 10 TOP ID, Drain-to-Source Current (A) TOP 100 1 ≤60µs PULSE WIDTH 0.1 Tj = 25°C BOTTOM 10 5.0V 1 ≤60µs PULSE WIDTH Tj = 150°C 5.0V 0.1 0.01 0.1 1 10 100 0.1 1000 1 10 100 1000 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) 1000 2.5 RDS(on) , Drain-to-Source On Resistance (Normalized) Fig 2. Typical Output Characteristics ID, Drain-to-Source Current (A) Fig 1. Typical Output Characteristics 100 T J = 150°C T J = 25°C 10 1 VDS = 50V ≤60µs PULSE WIDTH 0.1 ID = 34A VGS = 10V 2.0 1.5 1.0 0.5 0.0 2 4 6 8 10 12 14 16 -60 -40 -20 0 Fig 4. Normalized On-Resistance vs. Temperature Fig 3. Typical Transfer Characteristics 100000 14.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd VGS, Gate-to-Source Voltage (V) ID= 34A C oss = C ds + C gd 10000 Ciss 1000 Coss Crss 100 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) VGS 15V 10V 9.0V 8.0V 7.0V 6.0V 5.5V 5.0V 10 12.0 VDS= 120V VDS= 75V VDS= 30V 10.0 8.0 6.0 4.0 2.0 0.0 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs.Drain-to-Source Voltage www.irf.com 0 5 10 15 20 25 30 35 40 45 QG, Total Gate Charge (nC) Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage 3 IRFH5015PbF 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 100 T J = 150°C 10 T J = 25°C 1 OPERATION IN THIS AREA LIMITED BY R DS(on) 100µsec 100 1msec 10msec 10 Tc = 25°C Tj = 150°C Single Pulse VGS = 0V 1 0.1 0.2 0.4 0.6 0.8 1.0 1 1.2 10 1000 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage 6.0 VGS(th) , Gate threshold Voltage (V) 60 50 ID, Drain Current (A) 100 40 30 20 10 0 5.5 5.0 4.5 4.0 ID = 150µA ID = 250µA 3.5 ID = 1.0mA ID = 1.0A 3.0 2.5 2.0 25 50 75 100 125 150 -75 -50 -25 T C , Case Temperature (°C) 0 25 50 75 100 125 150 T J , Temperature ( °C ) Fig 9. Maximum Drain Current vs. Case (Bottom) Temperature Fig 10. Threshold Voltage vs. Temperature Thermal Response ( Z thJC ) °C/W 1 D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01 0.01 0.001 SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 1E-005 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Bottom) 4 www.irf.com 100 1000 ID = 34A 90 80 70 60 T J = 125°C 50 40 T J = 25°C 30 20 10 EAS , Single Pulse Avalanche Energy (mJ) RDS(on), Drain-to -Source On Resistance (m Ω) IRFH5015PbF ID 3.7A 7.9A BOTTOM 34A 900 TOP 800 700 600 500 400 300 200 100 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) VGS, Gate -to -Source Voltage (V) Fig 13. Maximum Avalanche Energy vs. Drain Current Fig 12. On-Resistance vs. Gate Voltage V(BR)DSS tp 15V DRIVER L VDS D.U.T RG + V - DD IAS 20V A Fig 14a. Unclamped Inductive Test Circuit VDS VGS RG RD Fig 14b. Unclamped Inductive Waveforms VDS 90% D.U.T. + -VDD V10V GS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 Fig 15a. Switching Time Test Circuit www.irf.com I AS 0.01Ω tp 10% VGS td(on) tr td(off) tf Fig 15b. Switching Time Waveforms 5 IRFH5015PbF D.U.T Driver Gate Drive + - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. + V DD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs Id Vds Vgs L DUT 0 1K S VCC Vgs(th) Qgs1 Qgs2 Fig 17. Gate Charge Test Circuit 6 Qgd Qgodr Fig 18. Gate Charge Waveform www.irf.com IRFH5015PbF PQFN 5x6 Outline "B" Package Details For footprint and stencil design recommendations, please refer to application note AN-1154 at http://www.irf.com/technical-info/appnotes/an-1154.pdf PQFN 5x6 Outline "B" Part Marking INTERNATIONAL RECTIFIER LOGO DATE CODE ASSEMBLY SITE CODE (Per SCOP 200-002) PIN 1 IDENTIFIER XXXX XYWWX XXXXX PART NUMBER (“4 or 5 digits”) MARKING CODE (Per Marking Spec) LOT CODE (Eng Mode - Min last 4 digits of EATI#) (Prod Mode - 4 digits of SPN code) Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ www.irf.com 7 IRFH5015PbF PQFN 5x6 Outline "B" Tape and Reel Qualification information† Indus trial Qualification level (per JE DE C JE S D47F Moisture Sensitivity Level PQFN 5mm x 6mm †† ††† guidelines ) MS L1 ††† (per JE DE C J-S T D-020D RoHS compliant ) Yes Qualification standards can be found at International Rectifier’s web site http://www.irf.com/product-info/reliability Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/ Applicable version of JEDEC standard at the time of product release. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.41mH, RG = 25Ω, IAS = 34A. Pulse width ≤ 400µs; duty cycle ≤ 2%. Rθ is measured at TJ of approximately 90°C. When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material. Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.01/2010 8 www.irf.com