LAPIS ML610Q411 8-bit microcontroller with a built-in lcd driver Datasheet

FEDL610Q411-04
Issue Date: July.13, 2015
ML610Q411/Q412
8-bit Microcontroller with a Built-in LCD driver
GENERAL DESCRIPTION
ML610Q411/Q412 is a high-performance 8-bit CMOS microcontroller into which rich peripheral circuits, such as synchronous
serial port, UART, I2C bus interface (master), buzzer driver, battery level detect circuit, RC oscillation type A/D converter,
12-bit successive approximation type A/D converter, and LCD driver, are incorporated around LAPIS Semiconductor -original
8-bit CPU nX-U8/100.
The CPU nX-U8/100 is capable of efficient instruction execution in 1-intruction 1-clock mode by 3-stage pipe line architecture
parallel procesing. The Flash ROM that is installed as program memory achieves low-voltage low-power consumption operation
(read operation) equivalent to mask ROM and is most suitable for battery-driven applications. The on-chip debug function that
is installed enables program debugging and programming.
M L610Q411/Q412 has a dual clock, runs at 32.768kHz crystal oscillation clock or a built-in 500kHz RC oscillation clock, used
for a system requires the accurate clock or timer.
FEATURES
• CPU
− 8-bit RISC CPU (CPU name: nX-U8/100)
− Instruction system: 16-bit instructions
− Instruction set:
Transfer, arithmetic operations, comparison, logic operations, multiplication/division, bit
manipulations, bit logic operations, jump, conditional jump, call return stack manipulations, arithmetic
shift, and so on
− On-Chip debug function
− Minimum instruction execution time
30.5 µs (@32.768 kHz system clock)
2µs (@500kHz system clock)
• Internal memory
− Internal 16KBbyte Flash ROM (8K×16 bits) (including unusable 1KByte TEST area)
− Internal 1KByte Data RAM (1024×8 bits)
• Interrupt controller
− 2 non-maskable interrupt sources
Internal source: 1 (Watch dog timer)
External source: 1 (NMI)
− 19 maskable interrupt sources
Internal sources: 15 (SSIO, SA-A/D converter, I2C, Timer0, Timer1, Timer2, Timer3, 1kHz timer, UART, RC-A/D
converter, PWM, TBC128Hz, TBC32Hz, TBC16Hz, TBC2Hz)
External sources: 4 (P00, P01, P02, P03)
• Time base counter
− Low-speed time base counter ×1 channel
Frequency compensation (Compensation range: Approx. −488ppm to +488ppm. Compensation accuracy: Approx.
0.48ppm)
− High-speed time base counter ×1 channel
1/36
FEDL610Q411-04
ML610Q411/ML610Q412
• Watchdog timer
− Non-maskable interrupt and reset
− Free running
− Overflow period: 4 types selectable (125ms, 500ms, 2s, and 8s)
• Timers
− 8 bits × 4 channels (Timer0-3: 16-bit x 2 configuration available by using Timer0-1 or Timer2-3)
− Clock frequency measurement mode (in one channel of 16-bit configuration using Timer2-3)
• 1 kHz timer
− 10 Hz/1 Hz interrupt function
• Capture
− Time base capture × 2 channels (4096 Hz to 32 Hz)
• PWM
− Resolution 16 bits × 1 channel
• Synchronous serial port
− Master/slave selectable
− LSB first/MSB first selectable
− 8-bit length/16-bit length selectable
• UART
− TXD/RXD × 1 channel
− Bit length, parity/no parity, odd parity/even parity, 1 stop bit/2 stop bits
− Positive logic/negative logic selectable
− Built-in baud rate generator
• I2C bus interface
− Master function only
− Standard mode (50kbps)
• Buzzer driver
− 4 output modes, 8 frequencies, 16 duty levels
• RC oscillation type A/D converter
− 24-bit counter
− Time division × 2 channels
• Successive approximation type A/D converter
− 12-bit A/D converter
− Input × 2 channels
− Conversion time: 46us/1ch@500kHz
• General-purpose ports
− Non-maskable interrupt input port × 1 channel
− Input-only port × 6 channels (including secondary functions)
− Output-only port × 3 channels (including secondary functions)
− Input/output port
ML610Q411: 22 channels (including secondary functions)
ML610Q412: 14 channels (including secondary functions)
• LCD driver
− The number of segments
ML610Q411: 144 dots max. (36 seg × 4 com)
ML610Q412: 176 dots max. (44 seg × 4 com)
− 1/1 to 1/4 duty
− 1/3 bias (built-in bias generation circuit)
2/36
FEDL610Q411-04
ML610Q411/ML610Q412
−
−
−
−
Frame frequency selecable (approx. 64 Hz, 73 Hz, 85 Hz, and 102 Hz)
Bias voltage multiplying clock selectable (8 types)
Contrast adjustment (32 steps)
LCD drive stop mode, LCD display mode, all LCDs on mode, and all LCDs off mode selectable
• Reset
− Reset through the RESET_N pin
− Power-on reset generation when powered on
− Reset when oscillation stop of the low-speed clock is detected
− Reset by the watchdog timer (WDT) overflow
• Battery Level Detector
− Threshold voltages:
− Accuracy:
One of 16 levels
±2% (Typ.)
• Clock
− Low-speed clock: (This LSI can not guarantee the operation withoug low-speed crystal oscillation clock)
Crystal oscillation (32.768 kHz)
− High-speed clock:
Built-in RC oscillation (500 kHz)
External clock (500kH or less)
− High-speed Clock gear: 1/2(250kHz), 1/4(125kHz), 1/8(62.5kHz: default)
− Selection of high-speed clock mode by software:
Built-in RC oscillation, External clock
• Power management
− HALT mode: Instruction execution by CPU is suspended (peripheral circuits are in operating states).
− STOP mode: Stop of low-speed oscillation and high-speed oscillation (Operations of CPU and peripheral circuits are
stopped.)
− High-speed Clock gear: The frequency of high-speed system clock can be changed by software (1/1, 1/2, 1/4, 1/8 of the
oscillation clock)
− Block Control Function: Resets and completely turns circuits of unused peripherals off.
• Guaranteed operating range
− Operating temperature: −20°C to +70°C (P version: −40°C to +85°C)
− Operating voltage: VDD = 1.1V to 3.6V, AVDD = 2.2V to 3.6V
3/36
FEDL610Q411-04
ML610Q411/ML610Q412
• Product name – Supported Function
The line-up of the ML610Q411 and the ML610Q412 is below.
ROM type
Low-speed oscillation
stop detect reset
Operating
temperature
Product availability
ML610Q411-xxxWA
Flash ROM
Yes
-20°C to +70°C
Yes
ML610Q411P-xxxWA
Flash ROM
-40°C to +85°C
Yes
ML610Q411PA-xxxWA
Flash ROM
-40°C to +85°C
Yes
ML610Q412-xxxWA
Flash ROM
Yes
Selectable to disable
always
Yes
-20°C to +70°C
Yes
ML610Q412P-xxxWA
Flash ROM
Yes
-40°C to +85°C
Yes
- Chip (Die) -
-120-pin plastic
TQFP -
ROM type
Low-speed oscillation
stop detect reset
Operating
temperature
Product availability
ML610Q411-xxxTB
Flash ROM
Yes
-20°C to +70°C
Yes
ML610Q411P-xxxTB
Flash ROM
Yes
-40°C to +85°C
Yes
ML610Q411PA-xxxTB
Flash ROM
Selectable to disable
always
-40°C to +85°C
Yes
ML610Q412-xxxTB
Flash ROM
Yes
-20°C to +70°C
Yes
ML610Q412P-xxxTB
Flash ROM
Yes
-40°C to +85°C
Yes
xxx:ROM code number (xxx of the blank product is NNN)
Q:Flash ROM version
P:Wide range temperature version
A: Low-speed clock oscillation stop detection reset is selectable to disable always (See chapter3 and chapter4 in the
user’s manual for more detail).
WA:Chip (Die)
TB:TQFP
4/36
FEDL610Q411-04
ML610Q411/ML610Q412
BLOCK DIAGRAM
ML610Q411 Block Diagram
Figure 1 show the block diagram of the ML610Q411.
"*" indicates the secondary function of each port.
CPU (nX-U8/100)
EPSW1~3
GREG
0~15
PSW
Timing
Controller
On-Chip
ICE
TEST
Instruction
Decoder
IN0*
CS0*
RCT0*
RS0*
RT0*
RCM*
IN1*
CS1*
RS1*
RT1*
AIN0, AIN1
EA
PC
Instruction
Register
Program
Memory
(Flash)
16Kbyte
BUS
Controller
INT
1
RAM
1024byte
RESET &
TEST
Interrupt
Controller
INT
1
OSC
WDT
SCK0*
SIN0*
SOUT0*
UART
RXD0*
TXD0*
INT
1
INT
1
2
Power
INT
1
INT
1
TBC
RC-ADC
×2
INT
4
INT
5
BZ0*
NMI
P00 to P03
P10 to P11
8bit Timer
×4
GPIO
P20 to P22
P30 to P35
P40 to P47
PA0 to PA7
INT
1
12bit-ADC
BLD
PWM0*
INT
1
Buzzer
Capture
×2
SDA*
SCL*
INT
1
PWM
1kHzTC
VPP
SSIO
IC
INT
4
AVDD
AVSS
VREF
DSR/CSR
Data-bus
LSCLK*
OUTCLK*
VDDL
VDDX
LR
SP
XT0
XT1
OSC0*
ECSR1~3
ALU
VDD
VSS
RESET_N
ELR1~3
Display
register
144bit
LCD
Driver
COM0 to COM3
LCD
BIAS
VL1, VL2, VL3
SEG0 to SEG35
C1, C2
Figure 1 ML610Q411 Block Diagram
5/36
FEDL610Q411-04
ML610Q411/ML610Q412
ML610Q412 Block Diagram
Figure 2 show the block diagram of the ML610Q412.
"*" indicates the secondary function of each port.
CPU (nX-U8/100)
EPSW1~3
GREG
0~15
PSW
Timing
Controller
On-Chip
ICE
TEST
Instruction
Decoder
IN0*
CS0*
RCT0*
RS0*
RT0*
RCM*
IN1*
CS1*
RS1*
RT1*
VREF
EA
PC
Instruction
Register
Program
Memory
(Flash)
16Kbyte
BUS
Controller
INT
1
RAM
1024byte
RESET &
TEST
Interrupt
Controller
INT
1
OSC
WDT
SCK0*
SIN0*
SOUT0*
UART
RXD0*
TXD0*
INT
1
INT
1
2
Power
INT
1
INT
1
TBC
RC-ADC
×2
INT
4
PWM0*
INT
1
Melody
Capture
×2
SDA*
SCL*
INT
1
PWM
1kHzTC
VPP
SSIO
IC
INT
4
INT
5
MD0*
NMI
P00 to P03
P10 to P11
8bit Timer
×4
GPIO
P20 to P22
P30 to P35
AVDD
AVSS
AIN0, AIN1
DSR/CSR
Data-bus
LSCLK*
OUTCLK*
VDDL
VDDX
LR
SP
XT0
XT1
OSC0*
ECSR1~3
ALU
VDD
VSS
RESET_N
ELR1~3
INT
1
P40 to P47
12bit-ADC
BLD
Display
register
176bit
LCD
Driver
COM0 to COM3
LCD
BIAS
VL1, VL2, VL3
SEG0 to SEG43
C1, C2
Figure 2 ML610Q412 Block Diagram
6/36
FEDL610Q411-04
ML610Q411/ML610Q412
PIN CONFIGURATION
90pin
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
60pin
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
120pin
1pin
VPP
VSS
P20
P21
P22
P40
P41
RESET_N
P42
P43
P44
P45
P46
P47
P30
P31
P34
P32
P33
P35
TEST
VDD
VDDL
VSS
VDDX
XT1
XT0
AVSS
VREF
AVDD
SEG21
SEG22
SEG23
SEG24
SEG25
SEG26
SEG27
SEG28
SEG29
SEG30
SEG31
SEG32
SEG33
SEG34
SEG35
PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7
(NC)
(NC)
(NC)
(NC)
(NC)
(NC)
(NC)
61pin
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
91pin
SEG20
SEG19
SEG18
SEG17
SEG16
SEG15
SEG14
SEG13
SEG12
SEG11
SEG10
SEG9
SEG8
SEG7
SEG6
SEG5
SEG4
SEG3
SEG2
SEG1
SEG0
COM0
COM1
COM2
COM3
VL1
VL2
VL3
C1
C2
ML610Q411 TQFP120 Pin Layout
(NC)
(NC)
(NC)
(NC)
(NC)
(NC)
(NC)
(NC)
(NC)
(NC)
(NC)
(NC)
(NC)
VSS
VDD
VSS
P03
P02
P01
P00
NMI
P11
P10
(NC)
AIN1
AIN0
(NC)
(NC)
(NC)
(NC)
31pin
30pin
(NC): No Connection
Note:
The assignment of the P30 to P35 are not in order.
Figure 3 ML610Q411 TQFP120 Pin Configuration
7/36
FEDL610Q411-04
ML610Q411/ML610Q412
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
60pin
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
120pin
1pin
VPP
VSS
P20
P21
P22
P40
P41
RESET_N
P42
P43
P44
P45
P46
P47
P30
P31
P34
P32
P33
P35
TEST
VDD
VDDL
VSS
VDDX
XT1
XT0
AVSS
VREF
AVDD
SEG21
SEG22
SEG23
SEG24
SEG25
SEG26
SEG27
SEG28
SEG29
SEG30
SEG31
SEG32
SEG33
SEG34
SEG35
SEG43
SEG42
SEG41
SEG40
SEG39
SEG38
SEG37
SEG36
(NC)
(NC)
(NC)
(NC)
(NC)
(NC)
(NC)
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
91pin
61pin
71
70
69
68
67
66
65
64
63
62
61
90pin
SEG20
SEG19
SEG18
SEG17
SEG16
SEG15
SEG14
SEG13
SEG12
SEG11
SEG10
SEG9
SEG8
SEG7
SEG6
SEG5
SEG4
SEG3
SEG2
SEG1
SEG0
COM0
COM1
COM2
COM3
VL1
VL2
VL3
C1
C2
ML610Q412 TQFP120 Pin Layout
(NC)
(NC)
(NC)
(NC)
(NC)
(NC)
(NC)
(NC)
(NC)
(NC)
(NC)
(NC)
(NC)
VSS
VDD
VSS
P03
P02
P01
P00
NMI
P11
P10
(NC)
AIN1
AIN0
(NC)
(NC)
(NC)
(NC)
31pin
30pin
(NC): No Connection
Note:
The assignment of the P30 to P35 are not in order.
Figure 4 ML610Q412 TQFP120 Pin Configuration
8/36
FEDL610Q411-04
ML610Q411/ML610Q412
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
SEG20
SEG19
SEG18
SEG17
SEG16
SEG15
SEG14
SEG13
SEG12
SEG11
SEG10
SEG9
SEG8
SEG7
SEG6
SEG5
SEG4
SEG3
SEG2
SEG1
SEG0
COM0
COM1
COM2
COM3
VL1
VL2
VL3
C1
C2
ML610Q411 Chip Pin Layout & Dimension
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
*
47
46
45
44
43
42
41
40
39
38
37
36
35
VSS
VDD
VSS
P03
P02
P01
P00
NMI
P11
P10
(NC)
AIN1
AIN0
2.636mm
XT0
AVSS
VREF
AVDD
VPP
VSS
P20
P21
P22
P40
P41
RESET_N
P42
P43
P44
P45
P46
P47
P30
P31
P34
P32
P33
P35
TEST
VDD
VDDL
VSS
VDDX
XT1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
*
27
28
29
30
SEG21
SEG22
SEG23
SEG24
SEG25
SEG26
SEG27
SEG28
SEG29
SEG30
SEG31
SEG32
SEG33
SEG34
SEG35
PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7
2.836mm
* Dummy pad
Note: These dummy pads are visible and do have any function, they are placed for a mechanical evaluation
in LAPIS Semiconductor. Please do NOT implement wire-bonding to the dummy pad.
Chip size:
PAD count:
Minimum PAD pitch:
PAD aperture:
Chip thickness:
Voltage of the rear side of chip:
2.836mm x 2.636mm
95 pins
80 µm
70 µm × 70 µm
350 µm
VSS level
Figure 5 ML610Q411 Chip Layout & Dimension
9/36
FEDL610Q411-04
ML610Q411/ML610Q412
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
SEG20
SEG19
SEG18
SEG17
SEG16
SEG15
SEG14
SEG13
SEG12
SEG11
SEG10
SEG9
SEG8
SEG7
SEG6
SEG5
SEG4
SEG3
SEG2
SEG1
SEG0
COM0
COM1
COM2
COM3
VL1
VL2
VL3
C1
C2
ML610Q412 Chip Pin Layout & Dimension
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
*
47
46
45
44
43
42
41
40
39
38
37
36
35
VSS
VDD
VSS
P03
P02
P01
P00
NMI
P11
P10
(NC)
AIN1
AIN0
2.636mm
XT0
AVSS
VREF
AVDD
VPP
VSS
P20
P21
P22
P40
P41
RESET_N
P42
P43
P44
P45
P46
P47
P30
P31
P34
P32
P33
P35
TEST
VDD
VDDL
VSS
VDDX
XT1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
*
27
28
29
30
SEG21
SEG22
SEG23
SEG24
SEG25
SEG26
SEG27
SEG28
SEG29
SEG30
SEG31
SEG32
SEG33
SEG34
SEG35
SEG43
SEG42
SEG41
SEG40
SEG39
SEG38
SEG37
SEG36
2.836mm
* Dummy pad
Note: These dummy pads are visible and do have any function, they are placed for a mechanical evaluation
in LAPIS Semiconductor. Please do NOT implement wire-bonding to the dummy pad.
Chip size:
PAD count:
Minimum PAD pitch:
PAD aperture:
Chip thickness:
Voltage of the rear side of chip:
2.836mm x 2.636mm
95 pins
80 µm
70 µm × 70 µm
350 µm
VSS level
Figure 6 ML610Q412 Chip Layout & Dimension
10/36
FEDL610Q411-04
ML610Q411/ML610Q412
ML610Q411 Pad Coordinates
Table 1 ML610Q411 Pad Coordinates
Chip Center: X=0,Y=0
PAD
No.
Pad
Name
X
(µm)
Y
(µm)
PAD
No.
Pad
Name
X
(µm)
Y
(µm)
PAD
No.
Pad
Name
X
(µm)
Y
(µm)
1
VPP
VSS
P20
P21
P22
P40
P41
RESET_N
P42
P43
P44
P45
P46
P47
P30
P31
P34
P32
P33
P35
TEST
VDD
VDDL
VSS
VDDX
XT1
Dummy
XT0
AVSS
VREF
AVDD
(NC)
(NC)
(NC)
(NC)
AIN0
AIN1
(NC)
P10
P11
NMI
P00
P01
P02
P03
VSS
VDD
VSS
(NC)
(NC)
(NC)
-1230
-1212
51
-
101
160
52
-
-
102
-1312
80
-1070
-1212
53
-
-
103
-990
-1212
54
-
-
104
-910
-1212
55
-
-
105
-830
-1212
56
-
-
106
-750
-1212
57
-
-
107
-670
-1212
58
-
-
108
-590
-1212
59
-
-
109
-510
-1212
60
-
-
110
-430
-1212
61
1220
1212
111
-350
-1212
62
1140
1212
112
-270
-1212
63
1060
1212
113
-190
-1212
64
980
1212
--
SEG31
SEG32
SEG33
SEG34
SEG35
PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7
Dummy
-1312
-1212
-110
-1212
65
-30
-1212
66
(NC)
(NC)
(NC)
(NC)
(NC)
(NC)
(NC)
(NC)
(NC)
(NC)
C2
C1
VL3
VL2
VL1
COM3
COM2
COM1
COM0
SEG0
SEG1
SEG2
SEG3
SEG4
SEG5
SEG6
SEG7
SEG8
SEG9
SEG10
SEG11
SEG12
SEG13
SEG14
SEG15
SEG16
SEG17
SEG18
SEG19
SEG20
SEG21
SEG22
SEG23
SEG24
SEG25
SEG26
SEG27
SEG28
SEG29
SEG30
-
-1150
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
50
-1212
67
130
-1212
68
210
-1212
69
290
-1212
70
370
-1212
71
450
-1212
72
530
-1212
73
610
-1212
74
690
-1212
75
770
-1212
76
850
-1212
77
930
-1212
78
1030
-1212
79
1110
-1212
80
1190
-1212
81
-
-
82
-
-
83
-
-
84
-
-
85
1312
-522
86
1312
-350
87
-
-
88
1312
-210
89
1312
-130
90
1312
-50
91
1312
30
92
1312
110
93
1312
190
94
1312
270
95
1312
350
96
1312
430
97
1312
510
98
-
-
99
-
-
100
-
-
900
1212
820
1212
740
1212
660
1212
580
1212
500
1212
420
1212
340
1212
260
1212
180
1212
100
1212
20
1212
-60
1212
-140
1212
-220
1212
-300
1212
-380
1212
-460
1212
-540
1212
-620
1212
-700
1212
-780
1212
-860
1212
-940
1212
-1020
1212
-1100
1212
-1312
960
-1312
880
-1312
800
-1312
720
-1312
640
-1312
560
-1312
480
-1312
400
-1312
320
-1312
240
-1312
0
-1312
-80
-1312
-160
-1312
-240
-1312
-320
-1312
-400
-1312
-480
-1312
-560
-1312
-640
-1312
-720
-1312
-800
-1312
-908
11/36
FEDL610Q411-04
ML610Q411/ML610Q412
ML610Q412 Pad Coordinates
Table 2 ML610Q412 Pad Coordinates
Chip Center: X=0,Y=0
PAD
No.
Pad
Name
X
(µm)
Y
(µm)
PAD
No.
Pad
Name
X
(µm)
Y
(µm)
PAD
No.
Pad
Name
X
(µm)
Y
(µm)
1
VPP
VSS
P20
P21
P22
P40
P41
RESET_N
P42
P43
P44
P45
P46
P47
P30
P31
P34
P32
P33
P35
TEST
VDD
VDDL
VSS
VDDX
XT1
Dummy
XT0
AVSS
VREF
AVDD
(NC)
(NC)
(NC)
(NC)
AIN0
AIN1
(NC)
P10
P11
NMI
P00
P01
P02
P03
VSS
VDD
VSS
(NC)
(NC)
(NC)
-1230
-1212
51
-
101
160
52
-
-
102
-1312
80
-1070
-1212
53
-
-
103
-990
-1212
54
-
-
104
-910
-1212
55
-
-
105
-830
-1212
56
-
-
106
-750
-1212
57
-
-
107
-670
-1212
58
-
-
108
-590
-1212
59
-
-
109
-510
-1212
60
-
-
110
-430
-1212
61
1220
1212
111
-350
-1212
62
1140
1212
112
-270
-1212
63
1060
1212
113
-190
-1212
64
980
1212
-
SEG31
SEG32
SEG33
SEG34
SEG35
SEG43
SEG42
SEG41
SEG40
SEG39
SEG38
SEG37
SEG36
Dummy
-1312
-1212
-110
-1212
65
(NC)
(NC)
(NC)
(NC)
(NC)
(NC)
(NC)
(NC)
(NC)
(NC)
C2
C1
VL3
VL2
VL1
COM3
COM2
COM1
COM0
SEG0
SEG1
SEG2
SEG3
SEG4
SEG5
SEG6
SEG7
SEG8
SEG9
SEG10
SEG11
SEG12
SEG13
SEG14
SEG15
SEG16
SEG17
SEG18
SEG19
SEG20
SEG21
SEG22
SEG23
SEG24
SEG25
SEG26
SEG27
SEG28
SEG29
SEG30
-
-1150
900
1212
820
1212
740
1212
660
1212
580
1212
500
1212
420
1212
340
1212
260
1212
180
1212
100
1212
20
1212
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
-30
-1212
66
50
-1212
67
130
-1212
68
210
-1212
69
290
-1212
70
370
-1212
71
450
-1212
72
530
-1212
73
610
-1212
74
690
-1212
75
770
-1212
76
850
-1212
77
930
-1212
78
1030
-1212
79
1110
-1212
80
1190
-1212
81
-
-
82
-
-
83
-
-
84
-
-
85
1312
-522
86
1312
-350
87
-
-
88
1312
-210
89
1312
-130
90
1312
-50
91
1312
30
92
1312
110
93
1312
190
94
1312
270
95
1312
350
96
1312
430
97
1312
510
98
-
-
99
-
-
100
-
-
-60
1212
-140
1212
-220
1212
-300
1212
-380
1212
-460
1212
-540
1212
-620
1212
-700
1212
-780
1212
-860
1212
-940
1212
-1020
1212
-1100
1212
-1312
960
-1312
880
-1312
800
-1312
720
-1312
640
-1312
560
-1312
480
-1312
400
-1312
320
-1312
240
-1312
0
-1312
-80
-1312
-160
-1312
-240
-1312
-320
-1312
-400
-1312
-480
-1312
-560
-1312
-640
-1312
-720
-1312
-800
-1312
-908
12/36
FEDL610Q411-04
ML610Q411/ML610Q412
PIN LIST
PAD
No.
Primary function
Secondary function
Tertiary function
Pin name
I/O
Function
Pin name
I/O
Function
Pin name
I/O
Function
VSS
⎯
Negative power supply pin
⎯
⎯
⎯
⎯
⎯
⎯
22, 46
VDD
⎯
⎯
⎯
⎯
⎯
⎯
⎯
23
VDDL
⎯
⎯
⎯
⎯
⎯
⎯
⎯
25
VDDX
⎯
⎯
⎯
⎯
⎯
⎯
⎯
1
VPP
⎯
⎯
⎯
⎯
⎯
⎯
⎯
28
AVSS
⎯
⎯
⎯
⎯
⎯
⎯
⎯
30
AVDD
⎯
⎯
⎯
⎯
⎯
⎯
⎯
65
VL1
⎯
⎯
⎯
⎯
⎯
⎯
⎯
64
VL2
⎯
⎯
⎯
⎯
⎯
⎯
⎯
63
VL3
⎯
⎯
⎯
⎯
⎯
⎯
⎯
62
C1
⎯
⎯
⎯
⎯
⎯
⎯
⎯
61
C2
⎯
Positive power supply pin
Power supply pin for
internal logic (internally
generated)
Power supply pin for
low-speed oscillation
(internally generated)
Power supply pin for Flash
ROM
Negative power supply pin
for successive
approximation type ADC
Positive power supply pin
for successive
approximation type ADC
Power supply pin for LCD
bias (internally generated)
Power supply pin for LCD
bias (internally generated)
Power supply pin for LCD
bias (internally generated)
Capacitor connection pin
for LCD bias generation
Capacitor connection pin
for LCD bias generation
⎯
⎯
⎯
⎯
⎯
⎯
21
TEST
I/O
Input/output pin for testing
⎯
⎯
⎯
⎯
⎯
⎯
Reset input pin
Low-speed clock oscillation
pin
Low-speed clock oscillation
pin
Reference power supply
pin for successive
approximation type ADC
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
2,
24,45,47
8
RESET_N
I
27
XT0
I
26
XT1
O
29
VREF
⎯
13/36
FEDL610Q411-04
ML610Q411/ML610Q412
PAD
No.
Pin name
I/O
35
AIN0
I
36
AIN1
I
NMI
I
40
41
42
43
44
38
Primary function
P00/EXI0/
CAP0
P01/EXI1/
CAP1
P02/EXI2/
RXD0
P03/EXI3
P10
OSC0
Secondary function
Tertiary function
Function
Pin name
Successive approximation
⎯
type ADC input
Successive approximation
⎯
type ADC input
Non-maskable interrupt pin
⎯
I/O
Function
Pin name
I/O
Function
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
I
Input port, External
interrupt 0, Capture 0 input
⎯
⎯
⎯
⎯
⎯
⎯
I
Input port, External
interrupt 1, Capture 1 input
⎯
⎯
⎯
⎯
⎯
⎯
I
Input port, External
interrupt 2, UART0 receive
⎯
⎯
⎯
⎯
⎯
⎯
I
Input port, External
interrupt 3
⎯
⎯
⎯
⎯
⎯
⎯
I
Input port
External clock input
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
Low-speed clock
output
High-speed clock
output
Melody output
RC type ADC0
oscillation input pin
RC type ADC0
reference capacitor
connection pin
RC type ADC0
resistor/capacitor
sensor connection
pin
RC type ADC0
reference resistor
connection pin
RC type ADC0
resistor sensor
connection pin
RC type ADC
oscillation monitor
2
I C data input/output
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
PWM0
O
PWM output
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
SIN0
I
SCK0
I/O
39
P11
I
Input port
3
P20/LED0
O
Output port
LSCLK
O
4
P21LED1
O
Output port
OUTCLK
O
5
P22/LED2
O
Output port
MD0
O
15
P30
I/O
Input/output port
IN0
I
16
P31
I/O
Input/output port
CS0
O
17
P34
I/O
Input/output port
RCT0
O
18
P32
I/O
Input/output port
RS0
O
19
P33
I/O
Input/output port
RT0
O
20
P35
I/O
Input/output port
RCM
O
6
P40
I/O
Input/output port
SDA
I/O
7
P41
I/O
Input/output port
SCL
I/O
9
P42
I/O
Input/output port
RXD0
I
UART data input
SOUT0
I
SSIO data input
SSIO synchronous
clock
SSIO data output
10
P43
I/O
Input/output port
Input/output port, Timer
0/Timer 2/PWM0 external
clock input
Input/output port, Timer
1/Timer 3 external clock
input
TXD0
O
UART data output
PWM0
O
PWM output
IN1
I
RC type ADC1
oscillation input pin
SIN0
I
SSIO0 data input
CS1
O
SCK0
I/O
SSIO0 synchronous
clock
SOUT0
O
SSIO0 data output
⎯
⎯
⎯
11
12
P44/T02P0
CK
P45/T13P1
CK
I/O
I/O
13
P46
I/O
Input/output port
RS1
O
14
P47
I/O
Input/output port
RT1
O
1
106
PA0(* )
2
SEG43(* )
1
107
PA1(* )
2
SEG42(* )
1
108
PA2(* )
2
SEG41(* )
1
109
PA3(* )
2
SEG40(* )
2
I C clock input/output
RC type ADC1
reference capacitor
connection pin
RC type ADC1
reference resistor
connection pin
RC type ADC1
resistor sensor
connection pin
I/O
Input/output port
⎯
⎯
⎯
⎯
⎯
⎯
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
I/O
Input/output port
⎯
⎯
⎯
⎯
⎯
⎯
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
I/O
Input/output port
⎯
⎯
⎯
⎯
⎯
⎯
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
I/O
Input/output port
⎯
⎯
⎯
⎯
⎯
⎯
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
14/36
FEDL610Q411-04
ML610Q411/ML610Q412
PAD
No.
Primary function
Pin name
1
110
PA4(* )
2
SEG39(* )
1
111
PA5(* )
2
SEG38(* )
1
112
PA6(* )
2
SEG37(* )
I/O
Function
Secondary function
Tertiary function
Pin name
I/O
Function
Pin name
I/O
Function
I/O
Input/output port
⎯
⎯
⎯
⎯
⎯
⎯
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
I/O
Input/output port
⎯
⎯
⎯
⎯
⎯
⎯
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
I/O
Input/output port
⎯
⎯
⎯
⎯
⎯
⎯
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
I/O
Input/output port
⎯
⎯
⎯
⎯
⎯
⎯
SEG36(* )
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
69
COM0
O
LCD common pin
⎯
⎯
⎯
⎯
⎯
68
COM1
O
LCD common pin
⎯
⎯
⎯
⎯
⎯
67
COM2
O
LCD common pin
⎯
⎯
⎯
⎯
⎯
66
COM3
O
LCD common pin
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
70
SEG0
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
71
SEG1
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
72
SEG2
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
73
SEG3
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
74
SEG4
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
75
SEG5
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
76
SEG6
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
77
SEG7
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
78
SEG8
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
79
SEG9
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
80
SEG10
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
81
SEG11
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
82
SEG12
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
83
SEG13
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
84
SEG14
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
85
SEG15
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
86
SEG16
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
87
SEG17
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
88
SEG18
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
89
SEG19
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
90
SEG20
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
91
SEG21
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
92
SEG22
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
93
SEG23
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
94
SEG24
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
95
SEG25
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
96
SEG26
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
97
SEG27
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
98
SEG28
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
99
SEG29
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
100
SEG30
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
101
SEG31
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
102
SEG32
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
103
SEG33
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
104
SEG34
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
105
SEG35
O
LCD segment pin
⎯
⎯
⎯
⎯
⎯
⎯
1
113
PA7(* )
2
(*1) Pins on ML610Q411.
(*2) Pins on ML610Q412.
15/36
FEDL610Q411-04
ML610Q411/ML610Q412
PIN DESCRIPTION
Pin name
I/O
Description
Primary/
Secondary/
Tertiary
Logic
—
Negative
—
—
—
—
Secondary
—
Secondary
—
Secondary
—
Primary
Positive
Primary
Positive
Primary
Positive
Primary
Positive
Primary
Positive
Primary
Positive
System
Reset input pin. When this pin is set to a “L” level, system reset mode is
set and the internal section is initialized. When this pin is set to a “H” level
subsequently, program execution starts. A pull-up resistor is internally
connected.
XT0
I Crystal connection pin for low-speed clock.
XT1
O A 32.768 kHz crystal oscillator (see measuring circuit 1) is connected to
this pin. Capacitors CDL and CGL are connected across this pin and VSS
as required.
OSC0
I High-speed external clock input pin. This pin is used as the secondary
function of the P10.
LSCLK
O Low-speed clock output pin. This pin is used as the secondary function of
the P20 pin.
OUTCLK
O High-speed clock output pin. This pin is used as the secondary function of
the P21 pin.
General-purpose input port
RESET_N
I
General-purpose input port.
Since these pins have secondary functions, the pins cannot be used as a
port when the secondary functions are used.
P10-P11
I General-purpose input port.
Since these pins have secondary functions, the pins cannot be used as a
port when the secondary functions are used.
General-purpose output port
P20-P22
O General-purpose output port.
Since these pins have secondary functions, the pins cannot be used as a
port when the secondary functions are used.
General-purpose input/output port
P30-P35
I/O General-purpose input/output port.
Since these pins have secondary functions, the pins cannot be used as a
port when the secondary functions are used.
P40-P47
I/O General-purpose input/output port.
Since these pins have secondary functions, the pins cannot be used as a
port when the secondary functions are used.
PA0-PA7
I/O General-purpose input/output port.
These pins are for the ML610Q411, but are not provided in the
ML610Q412.
P00-P03
I
16/36
FEDL610Q411-04
ML610Q411/ML610Q412
Pin name
I/O
UART
TXD0
O
RXD0
I
Primary/
Secondary/
Tertiary
Logic
Secondary
Positive
Primary/Se
condary
Positive
Secondary
Positive
Secondary
Positive
Tertiary
—
Tertiary
Positive
Tertiary
Positive
Tertiary
Positive
Primary
—
External non-maskable interrupt input pin. An interrupt is generated on
both edges.
External maskable interrupt input pins. Interrupt enable and edge
selection can be performed for each bit by software. These pins are used
as the primary functions of the P00-P03 pins.
Primary
Positive/
negative
Positive/
negative
Capture trigger input pins. The value of the time base counter is captured
in the register synchronously with the interrupt edge selected by software.
These pins are used as the primary functions of the P00 pin(CAP0) and
P01 pin(CAP1).
Primary
Description
UART data output pin. This pin is used as the secondary function of the
P43 pin.
UART data input pin. This pin is used as the secondary function of the
P42 or the primary function of the P02 pin.
I2C bus interface
2
SDA
I/O I C data input/output pin. This pin is used as the secondary function of the
P40 pin. This pin has an NMOS open drain output. When using this pin as
2
a function of the I C, externally connect a pull-up resistor.
2
SCL
O I C clock output pin. This pin is used as the secondary function of the P41
pin. This pin has an NMOS open drain output. When using this pin as a
2
function of the I C, externally connect a pull-up resistor.
Synchronous serial (SSIO)
SCK0
SIN0
SOUT0
PWM
PWM0
T02P0CK
I/O Synchronous serial clock input/output pin. This pin is used as the tertiary
function of the P41 or P45 pin.
I Synchronous serial data input pin. This pin is used as the tertiary function
of the P40 or P44 pin.
O Synchronous serial data output pin. This pin is used as the tertiary
function of the P42 or P46 pin.
O
O
External interrupt
NMI
I
EXI0-3
I
Capture
CAP0
I
CAP1
I
Timer
T02P0CK
T13P1CK
I
I
PWM0 output pin. This pin is used as the tertiary function of the P43 or
P34 pin.
PWM0 external clock input pin. This pin is used as the primary function of
the P44 pin.
External clock input pin used for both Timer 0 and Timer 2. The clocks for
these timers are selected by software. This pin is used as the primary
function of the P44 pin.
External clock input pin used for both Timer 1 and Timer 3. The clocks for
these timers are selected by software. This pin is used as the primary
function of the P45 pin.
Buzzer
BZ0
O
Buzzer signal output pin. This pin is used as the secondary function of the
P22 pin.
LED drive
LED0-2
O
Nch open drain output pins to drive LED.
Primary
Primary
Positive/
negative
Positive/
negative
Primary
—
Primary
—
Secondary Positive/
negative
Primary
Positive/
negative
17/36
FEDL610Q411-04
ML610Q411/ML610Q412
Pin name
I/O
Description
RC oscillation type A/D converter
IN0
I Channel 0 oscillation input pin. This pin is used as the secondary function
of the P30 pin.
CS0
O Channel 0 reference capacitor connection pin. This pin is used as the
secondary function of the P31 pin.
RCT0
O Resistor/capacitor sensor connection pin of Channel 0 for measurement.
This pin is used as the secondary function of the P33 pin.
RS0
O This pin is used as the secondary function of the P32 pin which is the
reference resistor connection pin of Channel 0.
RT0
O Resistor sensor connection pin of Channel 0 for measurement. This pin is
used as the secondary function of the P34 pin.
RC
oscillation monitor pin. This pin is used as the secondary function of
RCM
O
the P35 pin.
IN1
I Oscillation input pin of Channel 1. This pin is used as the secondary
function of the P44 pin.
CS1
O Reference capacitor connection pin of Channel 1. This pin is used as the
secondary function of the P45 pin.
RS1
O Reference resistor connection pin of Channel 1. This pin is used as the
secondary function of the P46 pin.
RT1
O Resistor sensor connection pin for measurement of Channel 1. This pin is
used as the secondary function of the P47 pin.
Successive approximation type A/D converter
AVSS
— Negative power supply pin for successive approximation type A/D
converter.
AVDD
— Positive power supply pin for successive approximation type A/D
converter.
VREF
— Reference power supply pin for successive approximation type A/D
converter.
AIN0
I Channel 0 analog input for successive approximation type A/D converter.
AIN1
I Channel 1 analog input for successive approximation type A/D converter.
LCD drive signal
COM0-3
O
SEG0-35
O
Common output pins.
Segment output pins.
Segment output pin. These pins are for the ML610Q412, but are not
provided in the ML610Q411.
LCD driver power supply
VL1
— Power supply pins for LCD bias (internally generated). Capacitors Ca, Cb,
VL2
— and Cc (see measuring circuit 1) are connected between VSS and VL1, VL2,
VL3
— and VL3, respectively.
C1
— Power supply pins for LCD bias (internally generated). Capacitors C12 is
connected between C1 and C2.
C2
—
SEG36-43
O
For testing
TEST
I/O Input/output pin for testing. A pull-down resistor is internally connected.
Power supply
VSS
— Negative power supply pin.
VDD
— Positive power supply pin for I/O, internal regulator, battery low detector,
and power-on reset.
VDDL
— Positive power supply pin (internally generated) for internal logic.
Capacitors CL0 and CL1 (see measuring circuit 1) are connected between
this pin and VSS.
VDDX
— Positive power supply pin (internally generated) for low-speed oscillation.
When using ML610Q411 and ML610Q412, connect capacitor Cx (see
measuring circuit 1) between this pin and VSS.
VPP
— Power supply pin for programming Flash ROM. A pull-down resistor is
internally connected.
Primary/
Secondary/
Tertiary
Secondary
Secondary
Secondary
Secondary
Secondary
Secondary
Secondary
Secondary
Secondary
Secondary
Logic
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
18/36
FEDL610Q411-04
ML610Q411/ML610Q412
TERMINATION OF UNUSED PINS
Table 3 shows methods of terminating the unused pins.
Table 3 Termination of Unused Pins
Pin
VPP
AVDD
AVSS
VREF
AIN0, AIN1
VL1, VL2, VL3
C1, C2
RESET_N
TEST
NMI
P00 to P03
P10 to P11
P20 to P22
P30 to P35
P40 to P47
PA0 to PA7
COM0 to 3
SEG0 to 43
Recommended pin termination
Open
VSS
VSS
VSS
Open
Open
Open
Open
Open
Open
VDD or VSS
VDD
Open
Open
Open
Open
Open
Open
Note:
It is recommended to set the unused input ports and input/output ports to the inputs with pull-down resistors/pull-up resistors or
the output mode since the supply current may become excessively large if the pins are left open in the high impedance input
setting.
19/36
FEDL610Q411-04
ML610Q411/ML610Q412
ELECTRICAL CHARACTERISTICS
ABSOLUTE MAXIMUM RATINGS
(VSS = AVSS = 0V)
Symbol
Condition
Rating
Unit
Power supply voltage 1
Parameter
VDD
Ta = 25°C
−0.3 to +4.6
V
Power supply voltage 2
AVDD
Ta = 25°C
−0.3 to +4.6
V
Power supply voltage 3
VPP
Ta = 25°C
−0.3 to +9.5
V
Power supply voltage 4
VDDL
Ta = 25°C
−0.3 to +3.6
V
Power supply voltage 5
VDDX
Ta = 25°C
−0.3 to +3.6
V
Power supply voltage 6
VL1
Ta = 25°C
−0.3 to +1.75
V
Power supply voltage 7
VL2
Ta = 25°C
−0.3 to +3.5
V
Power supply voltage 8
VL3
Ta = 25°C
−0.3 to +5.25
V
Input voltage
VIN
Ta = 25°C
−0.3 to VDD+0.3
V
Output voltage
VOUT
Ta = 25°C
−0.3 to VDD+0.3
V
Output current 1
IOUT1
Port3–A, Ta = 25°C
−12 to +11
mA
Output current 2
IOUT2
Port2, Ta = 25°C
−12 to +20
mA
Power dissipation
PD
Ta = 25°C
1.25
W
Storage temperature
TSTG
⎯
−55 to +150
°C
RECOMMENDED OPERATING CONDITIONS
(VSS = AVSS = 0V)
Parameter
Operating temperature
Operating voltage
Operating frequency (CPU)
Symbol
Condition
Range
ML610Q411, ML610Q412,
ML610Q411P, ML610Q411PA,
ML610Q412P
−20 to +70
TOP
VDD
⎯
1.1 to 3.6
AVDD
⎯
2.2 to 3.6
VDD = 1.1 to 3.6V
30k to 36k
46.9k to 78.1k
fOP
−40 to +85
Unit
°C
V
Hz
Capacitor externally connected to
VDDL pin
CL0
CL1
⎯
⎯
30k to 625k
23k to 625k
1.0±30%
0.1±30%
Capacitor externally connected to
VDDX pin
CX
⎯
0.1±30%
µF
Capacitors externally connected to
VL1, 2, 3 pins
C1, 2, 3
⎯
1.0±30%
µF
C12
⎯
1.0±30%
µF
VDD = 1.3 to 3.6V
Capacitors externally connected
across C1 and C2 pins
µF
20/36
FEDL610Q411-04
ML610Q411/ML610Q412
CLOCK GENERATION CIRCUIT OPERATING CONDITIONS
(VSS = 0V)
Parameter
Low-speed crystal oscillation
frequency
Recommended equivalent series
resistance value of low-speed
crystal oscillation
Symbol
Rating
Condition
Unit
Min.
Typ.
Max.
fXTL
⎯
⎯
32.768k
⎯
Hz
RL
⎯
⎯
⎯
40k
Ω
CL=6pF of
crystal
⎯
0
⎯
oscillation *2
CL=9pF of
CDL/CGL
crystal
⎯
6
⎯
Low-speed crystal oscillation
pF
external capacitor *1
oscillation
CL=12pF of
crystal
⎯
12
⎯
oscillation
⎯
⎯
24
⎯
CGH
*1
: The external CDL and CGL need to be adjusted in consideration of variation of internal loading capacitance CD and CG, and
other additional capacitance such as PCB layout.
*2
: When using a crystal oscillator CL = 6pF, there is a possibility that can not be adjusted by external CDL and CGL.
OPERATING CONDITIONS OF FLASH ROM
Parameter
Operating temperature
Operating voltage
Write cycles
Data retention
Symbol
TOP
VDD
VDDL
VPP
CEP
YDR
Condition
At write/erase
At write/erase*1
At write/erase*1
At write/erase*1
⎯
⎯
Range
0 to +40
2.75 to 3.6
2.5 to 2.75
7.7 to 8.3
80
10
(VSS = AVSS = 0V)
Unit
°C
V
cycles
years
*1
: Those voltages must be supplied to VDDL pin and VPP pin when programming and eraseing Flash ROM.
VPP pin has an internal pulldown resister.
21/36
FEDL610Q411-04
ML610Q411/ML610Q412
DC CHARACTERISTICS (1/5)
(VDD = 1.1 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, Ta = −40 to +85°C for P version,
unless otherwise specified) (1/5)
Measuring
Rating
Parameter
Symbol
Condition
Unit
circuit
Min.
Typ.
Max.
500kHz RC oscillation
frequency
VDD = 1.3
to 3.6V
fRC
Ta = 25°C
*3
Typ.
−10%
Typ.
−25%
500
500
Typ.
+10%
Typ.
+25%
kHz
kHz
Low-speed crystal oscillation
TXTL
⎯
⎯
0.3
2
s
start time*2
500kHz RC oscillation start
TRC
⎯
⎯
50
500
µs
1
time
Low-speed oscillation stop
TSTOP
⎯
0.2
3
20
ms
*1
detect time
Reset pulse width
PRST
⎯
200
⎯
⎯
µs
Reset noise elimination
⎯
⎯
⎯
0.3
PNRST
pulse width
Power-on reset activation
⎯
⎯
⎯
10
ms
TPOR
power rise time
1
* : When low-speed crystal oscillation stops for a duration more than the low-speed oscillation stop detect time, the system is
reset to shift to system reset mode.
2
* : Use 32.768KHz Crystal Oscillator C-001R (Epson Toyocom) with capacitance CGL/CDL=0pF.
3
* : Recommended operating temperature (Ta = −40 to +85°C for P version, Ta = −20 to +70°C for non-P version)
[Reset pulse width]
VIL1
RESET_N
VIL1
PRST
Reset pulse width (PRST)
[Power-on reset activation power rise time]
0.9xVDD
VDD
0.1xVDD
TPOR
Power-on reset activation power rise time (TPOR )
22/36
FEDL610Q411-04
ML610Q411/ML610Q412
DC CHARACTERISTICS (2/5)
Parameter
VL1 voltage
VL1 temperature
deviation *1
VL1 voltage
dependency *1
(VDD = 1.1 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, Ta = −40 to +85°C for P version,
unless otherwise specified) (2/5)
Measuring
Rating
Symbol
Condition
Unit
circuit
Min.
Typ.
Max.
VL1
VDD = 3.0V,
Tj = 25°C
CN4–0 = 00H
CN4–0 = 01H
CN4–0 = 02H
CN4–0 = 03H
CN4–0 = 04H
CN4–0 = 05H
CN4–0 = 06H
CN4–0 = 07H
CN4–0 = 08H
CN4–0 = 09H
CN4–0 = 0AH
CN4–0 = 0BH
CN4–0 = 0CH
CN4–0 = 0DH
CN4–0 = 0EH
CN4–0 = 0FH
CN4–0 = 10H
CN4–0 = 11H
CN4–0 = 12H
CN4–0 = 13H
CN4–0 = 14H
CN4–0 = 15H
CN4–0 = 16H
CN4–0 = 17H
CN4–0 = 18H
CN4–0 = 19H
CN4–0 = 1AH
CN4–0 = 1BH
CN4–0 = 1CH
CN4–0 = 1DH
CN4–0 = 1EH
CN4–0 = 1FH
0.89
0.91
0.93
0.95
0.97
0.99
1.01
1.03
1.05
1.07
1.09
1.11
1.13
1.15
1.17
1.19
1.21
1.23
1.25
1.27
1.29
1.31
1.33
1.35
1.37
1.39
1.41
1.43
1.45
1.47
1.49
1.51
0.94
0.96
0.98
1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14
1.16
1.18
1.20
1.22
1.24
1.26
1.28
1.30
1.32
1.34
1.36
1.38
1.40
1.42
1.44
1.46
1.48
1.50
1.52
1.54
1.56
0.99
1.01
1.03
1.05
1.07
1.09
1.11
1.13
1.15
1.17
1.19
1.21
1.23
1.25
1.27
1.29
1.31
1.33
1.35
1.37
1.39
1.41
1.43
1.45
1.47
1.49
1.51
1.53
1.55
1.57
1.59
1.61
V
1
∆VL1
VDD = 3.0V
⎯
−1.5
⎯
mV/°C
∆VL1
VDD = 1.3 to 3.6V
⎯
5
20
mV/V
VDD = 3.0V, Tj = 25°C
1MΩ load (VL3−VSS)
Typ.
−10%
Typ.
−10%
VL1×2
Typ.
+4%
Typ.
+4%
V
VL2 voltage
VL2
VL3 voltage
VL3
VL1×3
LCD bias voltage
TBIAS
⎯
⎯
⎯
600
ms
generation time
1
* :VL1 can not exceed VDD level. The maximum VL1 becomes VDD level when the VL1 calculated by the temperature deviation
and voltage dependency is going to exceed the VDD level.
23/36
FEDL610Q411-04
ML610Q411/ML610Q412
DC CHARACTERISTICS (3/5)
Parameter
BLD threshold
voltage
(VDD = 1.1 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, Ta = −40 to +85°C for P version,
unless otherwise specified) (3/5)
Measuring
Rating
Symbol
Condition
Unit
circuit
Min.
Typ.
Max.
VBLD
BLD threshold
voltage
temperature
deviation
∆VBLD
Supply current 1
IDD1
Supply current 2
Supply current 3
Supply current 4
Supply current 5
Supply current 6
IDD2
IDD3
IDD4
IDD5
IDD6
VDD = 1.35 to 3.6V
LD3–0 = 0H
LD3–0 = 1H
LD3–0 = 2H
LD3–0 = 3H
LD3–0 = 4H
LD3–0 = 5H
LD3–0 = 6H
LD3–0 = 7H
LD3–0 = 8H
LD3–0 = 9H
LD3–0 = 0AH
LD3–0 = 0BH
LD3–0 = 0CH
LD3–0 = 0DH
LD3–0 = 0EH
LD3–0 = 0FH
1.35
1.4
1.45
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.7
2.9
Typ.
+2%
⎯
0
⎯
⎯
0.15
0.5
*
⎯
⎯
2.5
Ta= 25°C
⎯
0.5
1.3
VDD = 1.35 to 3.6V
CPU: In STOP state.
Low-speed/high-speed RC500kHz
oscillation: stopped.
CPU: In HALT state (LTBC and WDT
are Operating. Low speed oscillation
3 4
stop detector is Stopped).* *
High-speed 500kHz oscillation:
Stopped.
LCD and BIAS circuits: Stopped.
CPU: In HALT state (LTBC and WDT
are Operating. Low speed
oscillation stop detector is
Stopped).*3
High-speed 500kHz oscillation:
Stopped.
2
LCD and BIAS circuits: Operating. *
CPU: In 32.768kHz operating
state.*1*3
High-speed 500kHz oscillation:
Stopped.
LCD and BIAS circuits: Operating. *2
CPU: In RC 500kHz operating state.
LCD and BIAS circuits: Operating. *2
CPU: In RC 500kHz operating
2
state.*
LCD and BIAS circuits: Operating. *2
A/D: In operating state.
VDD = AVDD = 3.0V
Ta= 25°C
5
Typ.
−2%
V
1
%/°C
µA
µA
5
*
⎯
⎯
3.5
Ta= 25°C
⎯
1.28
1.6
1
µA
*5
⎯
⎯
11
Ta= 25°C
⎯
5.5
7
µA
5
*
⎯
⎯
12
Ta= 25°C
⎯
80
90
*
⎯
⎯
100
Ta= 25°C
⎯
0.4
0.5
5
µA
1
mA
5
*
⎯
⎯
0.6
*1: When the CPU operating rate is 100% (No HALT state).
*2: All SEGs: off waveform, No LCD panel load, 1/3 bias, 1/3 duty, Frame frequency: Approx. 64 Hz, Bias voltage multiplying
clock: 1/128 LSCLK (256Hz)
3
* : Use 32.768KHz Crystal Oscillator C-001R (Epson Toyocom) with capacitance CGL/CDL=0pF.
4
* : Significant bits of BLKCON0~BLKCON4 registers are all “1”.
5
* : Recommended operating temperature (Ta = −40 to +85°C for P version, Ta = −20 to +70°C for non-P version)
24/36
FEDL610Q411-04
ML610Q411/ML610Q412
DC CHARACTERISTICS (4/5)
Parameter
(VDD = 1.1 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, Ta = −40 to +85°C for P version,
unless otherwise specified) (4/5)
Rating
Measuring
Symbol
Condition
Unit
circuit
Min.
Typ.
Max.
⎯
⎯
⎯
⎯
⎯
⎯
IOL1 = +0.5mA, VDD = 1.8 to 3.6V
IOL1 = +0.1mA, VDD = 1.3 to 3.6V
VDD
−0.5
VDD
−0.3
VDD
−0.3
⎯
⎯
⎯
⎯
0.5
0.5
IOL1 = +0.03mA, VDD = 1.1 to 3.6V
⎯
⎯
0.3
IOH1 = −0.5mA, VDD = 1.8 to 3.6V
VDD
−0.5
VDD
−0.3
VDD
−0.3
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
0.5
⎯
⎯
0.4
IOH1 = −0.5mA, VDD = 1.8 to 3.6V
Output voltage 1
nd
(P20–P22/2
function is
selected)
(P30–P36)
(P40–P47)
*1
(PB0–PB7)
Output voltage 2
nd
(P20–P22/2
function is Not
selected)
VOH1
IOH1 = -0.03mA, VDD = 1.1 to 3.6V
VOL1
VOH1
Output voltage 4
(COM0–3)
*1
(SEG0–35)
*2
(SEG0–43)
Output leakage
(P20–P22)
(P30–P35)
(P40–P47)
*1
(PA0–PA7)
Input current 1
(RESET_N)
Input current 1
(TEST)
VOL3
IOL2 = +5mA, VDD = 1.8 to 3.6V
IOL3 = +3mA, VDD = 2.0 to 3.6V
(when I2C mode is selected)
VOH4
IOH4 = −0.2mA, VL1=1.2V
VL3
−0.2
⎯
⎯
VOMH4
IOMH4 = +0.2mA, VL1=1.2V
⎯
⎯
VL2
+0.2
VOM4S
IOM4S = −0.2mA, VL1=1.2V
VL2
−0.2
⎯
⎯
VOML4
IOML4 = +0.2mA, VL1=1.2V
⎯
⎯
VL1
+0.2
VOML4S
IOML4S = −0.2mA, VL1=1.2V
VL1
−0.2
⎯
⎯
VOL4
IOL4 = +0.2mA, VL1=1.2V
⎯
⎯
0.2
IOOH
VOH = VDD (in high-impedance state)
⎯
⎯
1
IOOL
VOL = VSS (in high-impedance state)
−1
⎯
⎯
IIH1
VIH1 = VDD
VDD = 1.3 to 3.6V
VIL1 = VSS
VDD = 1.1 to 3.6V
VDD = 1.3 to 3.6V
VIH1 = VDD
VDD = 1.1 to 3.6V
VIL1 = Vss
VIH2 = VDD
VDD = 1.3 to 3.6V
(when pulled-down) VDD = 1.1 to 3.6V
VIL2 = VSS
VDD = 1.3 to 3.6V
(when pulled-up)
VDD = 1.1 to 3.6V
0
−600
−600
10
2
-1
0.2
0.01
−200
−200
⎯
−300
−300
300
300
⎯
30
30
−30
−30
1
-10
-2
600
600
⎯
200
200
-0.2
-0.01
IIH2Z
VIH2 = VDD (in high-impedance state)
⎯
⎯
1
IIL2Z
VIL2 = VSS (in high-impedance state)
−1
⎯
⎯
IIL1
IIH1
IIL1
Input current 2
(NMI)
(P00-P03)
(P10-P11)
(P30-P35)
(P40-P47)
(PA0-PA7) *1
IOH1 = -0.1mA, VDD = 1.3 to 3.6V
IOH1 = -0.03mA, VDD = 1.1 to 3.6V
VOL2
Output voltage 3
(P40–P41)
IOH1 = -0.1mA, VDD = 1.3 to 3.6V
IIH2
IIL2
V
2
µA
3
µA
4
*1: ML610Q411
*2: ML610Q412
25/36
FEDL610Q411-04
ML610Q411/ML610Q412
DC CHARACTERISTICS (5/5))
(VDD = 1.1 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, Ta = −40 to +85°C for P version,
unless otherwise specified) (5/5)
Rating
Measuring
Symbol
Condition
Unit
circuit
Min.
Typ.
Max.
Parameter
Input voltage 1
(RESET_N)
(TEST)
(NMI)
(P00–P03)
(P10–P11)
(P31–P35)
(P40–P43)
(P45–P47)
*1
(PA0–PA7)
Hysteresis width
(RESET_N)
(TEST_N)
(NMI)
(P00–P03)
(P10–P11)
(P31–P35)
(P40–P43)
(P45–P47)
*1
(PA0–PA7)
Input voltage 2
(P30, P44)
Input pin
capacitance
(NMI)
(P00–P03)
(P10–P11)
(P30–P35)
(P40–P47)
*1
(PA0–PA7)
*1: ML610Q411
VDD = 1.3 to 3.6V
0.7
×VDD
⎯
VDD
VDD = 1.1 to 3.6V
0.7
×VDD
⎯
VDD
VDD = 1.3 to 3.6V
0
⎯
0.3
×VDD
VDD = 1.1 to 3.6V
0
⎯
0.2
×VDD
VDD = 2.0 to 3.6V
0.05
×VDD
0.18
×VDD
0.4
×VDD
VDD = 1.1 to 3.6V
0.02
×VDD
0.18
×VDD
0.4
×VDD
VIH2
⎯
0.7
×VDD
⎯
VDD
VIL2
⎯
0
⎯
0.3
×VDD
CIN
f = 10kHz
Vrms = 50mV
Ta = 25°C
⎯
⎯
5
VIH1
VIL1
V
5
pF
⎯
∆VT
HYSTERESIS WIDTH
∆VT
Input signal
VDD
VSS
Internal signal
VDDL
VSS
26/36
FEDL610Q411-04
ML610Q411/ML610Q412
MEASURING CIRCUITS
MEASURING CIRCUIT 1
XT0
32.768kHz crystal
XT1
C2
P10/OSC0
C12
C1
VDD AVDD VREFVDDL
VDDX VL1 VL2 VL3
VSS AVSS
1µF
CV:
CL0:
1µF
0.1µF
CL1:
0.1µF
CX:
Ca,Cb,Cc,Cd:
1µF
1µF
C12,C34:
32.768kHz crystal:
C-001R (Epson Toyocom)
A
CL1 CL0 CX Ca Cb Cc
CV
MEASURING CIRCUIT 2
(*2)
VIL
Input pins
(*1)
Output pins
VIH
VDD VDDL VDDX VL1
VL2
VL3
V
AVDDVREF VSSAVSS
(*1) Input logic circuit to determine the specified measuring conditions.
(*2) Measured at the specified output pins.
27/36
FEDL610Q411-04
ML610Q411/ML610Q412
MEASURING CIRCUIT 3
(*2)
VIL
Input pins
RS1
Output pins
VIH
VDD VDDL VDDX VL1
VL2
VL3
A
AVDDVREF VSSAVSS
*1: Input logic circuit to determine the specified measuring conditions.
*2: Measured at the specified output pins.
MEASURING CIRCUIT 4
Input pins
Output pins
(*3)
A
VDD VDDL VDDX VL1
VL2
VL3
AVDD VREF VSSAVSS
*3: Measured at the specified output pins.
VIL
Input pins
(*1)
Output pins
VIH
VDD VDDL VDDX VL1
VL2
VL3
Waveform monitoring
MEASURING CIRCUIT 5
AVDDVREF VSSAVSS
*1: Input logic circuit to determine the specified measuring conditions.
28/36
FEDL610Q411-04
ML610Q411/ML610Q412
AC CHARACTERISTICS (External Interrupt)
(VDD = 1.1 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, Ta = −40 to +85°C for P version,
unless otherwise specified)
Rating
Parameter
Symbol
Condition
Unit
Min.
Typ.
Max.
Interrupt: Enabled (MIE = 1),
External interrupt disable period
TNUL
76.8
CPU: NOP operation
⎯
106.8
µs
System clock: 32.768kHz
P00–P03
(Rising-edge interrupt)
tNUL
P00–P03
(Falling-edge interrupt)
tNUL
NMI, P00–P03
(Both-edge interrupt)
tNUL
AC CHARACTERISTICS (Serial Port)
(VDD = 1.3 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, Ta = −40 to +85°C for P version,
unless otherwise specified)
Rating
Parameter
Symbol
Condition
Unit
Min.
Typ.
Max.
Transmit baud rate
⎯
tTBRT
⎯
BRT*1
⎯
BRT*1
BRT*1
BRT*1
−3%
+3%
*1: Baud rate period (including the error of the clock frequency selected) set with the serial port baud rate register
(SIOBRTL,H) and the serial port mode register 0 (SIOMOD0).
Receive baud rate
⎯
tRBRT
s
s
tTBRT
TXD0*
tRBRT
RXD0*
*: Indicates the secondary function of the port.
29/36
FEDL610Q411-04
ML610Q411/ML610Q412
AC CHARACTERISTICS (Synchronous Serial Port)
(VDD = 1.3 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, Ta = −40 to +85°C for P version,
unless otherwise specified)
Rating
Parameter
Symbol
Condition
Unit
Min.
Typ.
Max.
When high-speed oscillation is
SCLK input cycle
10
⎯
⎯
µs
tSCYC
(slave mode)
not active
SCLK output cycle
tSCYC
⎯
⎯
SCLK*1
⎯
s
(master mode)
When high-speed oscillation is
SCLK input pulse width
4
⎯
⎯
µs
tSW
(slave mode)
not active
SCLK*1
SCLK*1
SCLK*1
SCLK output pulse width
s
⎯
tSW
(master mode)
×0.4
×0.5
×0.6
SOUT output delay time
tSD
⎯
⎯
⎯
500
ns
(slave mode)
SOUT output delay time
tSD
⎯
⎯
⎯
500
ns
(master mode)
SIN input
setup time
⎯
80
⎯
⎯
ns
tSS
(slave mode)
SIN input
setup time
⎯
500
⎯
⎯
ns
tSS
(master mode)
SIN input
tSH
⎯
300
⎯
⎯
ns
hold time
*1: Clock period selected with S0CK3–0 of the serial port 0 mode register (SIO0MOD1)
tSCYC
tSW
tSW
SCLK0*
tSD
tSD
SOUT0*
tSS
tSH
SIN0*
*: Indicates the secondary function of the port.
30/36
FEDL610Q411-04
ML610Q411/ML610Q412
AC CHARACTERISTICS (I2C Bus Interface: Standard Mode)
(VDD = 1.8 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, Ta = −40 to +85°C for P version,
unless otherwise specified)
Rating
Parameter
Symbol
Condition
Unit
Min.
Typ.
Max.
SCL clock frequency
fSCL
⎯
⎯
50
⎯
kHz
SCL hold time
tHD:STA
⎯
4.0
⎯
⎯
µs
(start/restart condition)
SCL ”L” level time
tLOW
⎯
4.7
⎯
⎯
µs
SCL ”H” level time
tHIGH
⎯
4.0
⎯
⎯
µs
SCL setup time
⎯
4.7
⎯
⎯
µs
tSU:STA
(restart condition)
SDA hold time
tHD:DAT
⎯
0
⎯
⎯
µs
SDA setup time
tSU:DAT
⎯
0.25
⎯
⎯
µs
SDA setup time
tSU:STO
⎯
4.0
⎯
⎯
µs
(stop condition)
Bus-free time
tBUF
⎯
4.7
⎯
⎯
µs
Start
condition
Restart
condition
Stop
condition
P40/SDA
P41/SCL
tHD:STA
tLOW
tHIGH
tSU:STA tHD:STA
tSU:DAT
tHD:DAT
tSU:STO
tBUF
31/36
FEDL610Q411-04
ML610Q411/ML610Q412
AC CHARACTERISTICS (RC Oscillation A/D Converter)
(VDD = 1.3 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, Ta = −40 to +85°C for P version,
unless otherwise specified)
Rating
Parameter
Symbol
Condition
Unit
Min.
Typ.
Max.
RS0, RS1,
Resistors for oscillation
RT0,
CS0, CT0, CS1 ≥ 740pF
1
⎯
⎯
kΩ
RT0-1,RT1
fOSC1
Resistor for oscillation = 1kΩ
209.4
330.6
435.1
kHz
Oscillation frequency
fOSC2
Resistor for oscillation = 10kΩ
41.29
55.27
64.16
kHz
VDD = 1.5V
Resistor for oscillation = 100kΩ
4.71
5.97
7.06
kHz
fOSC3
Kf1
RT0, RT0-1, RT1 = 1kHz
5.567
5.982
6.225
⎯
RS to RT oscillation frequency
ratio *1
Kf2
RT0, RT0-1, RT1 = 10kHz
0.99
1
1.01
⎯
VDD = 1.5V
Kf3
RT0, RT0-1, RT1 = 100kHz
0.104
0.108
0.118
⎯
fOSC1
Resistor for oscillation = 1kΩ
407.3
486.7
594.6
kHz
Oscillation frequency
fOSC2
Resistor for oscillation = 10kΩ
49.76
59.28
72.76
kHz
VDD = 3.0V
fOSC3
Resistor for oscillation = 100kΩ
5.04
5.993
7.04
kHz
Kf1
RT0, RT0-1, RT1 = 1kHz
8.006
8.210
8.416
⎯
RS to RT oscillation frequency
*1
ratio
Kf2
RT0, RT0-1, RT1 = 10kHz
0.99
1
1.01
⎯
VDD = 3.0V
Kf3
RT0, RT0-1, RT1 = 100kHz
0.100
0.108
0.115
⎯
*1: Kfx is the ratio of the oscillation frequency by the sensor resistor to the oscillation frequency by the reference resistor on the same
conditions.
fOSCX(RT0-1−CS0 oscillation)
fOSCX(RS0−CS0 oscillation)
,
IN0 CS0 RCT0
(*1)
VIL
*1: Input logic circuit to
determine the specified
measuring conditions.
VDDL
VDDX
RT1
RT0, RT0-1, RT1: 1kΩ /10kΩ/100kΩ
RS0, RS1: 10kΩ
CS0, CT0, CS1: 560pF
CVR0, CVR1: 820pF
IN1 CS1 RS1 RT1
RCM
VDD
CV
RT0
RS0
RS0 RT0
Input pins
VIH
,
fOSCX(RT1−CS1 oscillation)
fOSCX(RS1−CS1 oscillation)
CVR1
RT0-1
CT0
CS0
CVR0
RS1
fOSCX(RT0−CS0 oscillation)
fOSCX(RS0−CS0 oscillation)
(x = 1, 2, 3)
CS1
Kfx =
Frequency measurement (fOSCX)
AVDD VREFVSS AVSS
CL1 CL0 CX
Note:
- Please have the shortest layout for the common node (wiring patterns which are connected to the external capacitors, resistors
and IN0/IN1 pin), including CVR0/CVR1. Especially, do not have long wire between IN0/IN1 and RS0/RS1. The coupling
capacitance on the wires may occur incorrect A/D conversion. Also, please do not have signals which may be a source of noise
around the node.
- When RT0/RT1 (Thermistor and etc.) requires long wiring due to the restricted placement, please have VSS(GND) trace next to
the signal.
- Please make wiring to components (capacitor, resisteor and etc.) necessory for objective measurement. Wiring to reserved
components may affect to the A/D conversion operation by noise the components itself may have.
32/36
FEDL610Q411-04
ML610Q411/ML610Q412
Electrical Characteristics of Successive Approximation Type A/D Converter
(VDD = 1.8 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, Ta = −40 to +85°C for P version,
unless otherwise specified)
Rating
Parameter
Symbol
Condition
Unit
Min.
Typ.
Max.
Resolution
n
⎯
⎯
⎯
12
bit
2.7V ≤ VREF ≤ 3.6V
−4
⎯
+4
Integral non-linearity error
IDL
2.2V ≤ VREF ≤ 2.7V
−6
⎯
+6
2.7V ≤ VREF ≤ 3.6V
−3
⎯
+3
Differential non-linearity error
LSB
DNL
2.2V ≤ VREF ≤ 2.7V
−5
⎯
+5
Zero-scale error
VOFF
⎯
−6
⎯
+6
Full-scale error
FSE
⎯
−6
⎯
+6
Reference voltage
VREF
⎯
2.2
⎯
AVDD
V
Conversion time
⎯
tCONV
⎯
23*1
⎯
φ/CH
φ: Period of high-speed clock (HSCLK)
1
* : 2φ / CH is required as an interval time for each conversion in the case of consecutive A/D conversion.
AVDD
Reference
voltage
VREF
VDD
VDDL
10µF
1µF
A
0.1µF
−
1µF
RI≤5kΩ
+
Analog input
0.1µF
VDDX
AIN0,
AIN1
0.1µF
VSS
AVSS
33/36
FEDL610Q411-04
ML610Q411/ML610Q412
PACKAGE DIMENSIONS
(Unit: mm)
Notes for Mounting the Surface Mount Type Package
The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore,
before you perform reflow mounting, contact a ROHM sales office for the product name, package name, pin number, package
code and desired mounting conditions (reflow method, temperature and times).
34/36
FEDL610Q411-04
ML610Q411/ML610Q412
REVISION HISTORY
Document No.
Date
FEDL610Q411-01
Jul.17,2010
FEDL610Q411-02
Mar.23,2011
FEDL610Q411-03
FEDL610Q411-04
Apr.15,2015
July.13,2015
Page
Previous Current
Edition
Edition
–
3, 4, 21
–
3, 4, 21
34
34
All
1~3
5
7
9
11
13
15
16
18~20
21
23
24
25
27
All
1~3
5
7
9
11
13
15
16
18~20
22
24
25
26
27
4
4
–
21
21
22
36
36
14
14
Description
Formally edition 1
Add the explanation of ML610Q411PC.
Replace the package dimension (Only the format is changed.
Package size and material are not changed.)
Change header and footer.
Delete ML610Q415 and ML610Q411PC
Change from "Shipment" to "Product name - Supported
Function"
Add CLOCK GENERATION CIRCUIT OPERATING
CONDITIONS
Change "RESET" to "Reset pulse width (PRST) " and
"Power-on reset activation power rise time (TPOR) ".
Change description in Note.
Corrected a typo.
-PAD No,”37” is corrected to “36”.
-PAD No,”36” is corrected to “35”.
35/36
FEDL610Q411-04
ML610Q411/ML610Q412
Notes
1) The information contained herein is subject to change without notice.
2) Although LAPIS Semiconductor is continuously working to improve product reliability and quality, semiconductors can
break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure,
please take safety measures such as complying with the derating characteristics, implementing redundant and fire
prevention designs, and utilizing backups and fail-safe procedures. LAPIS Semiconductor shall have no responsibility for
any damages arising out of the use of our Products beyond the rating specified by LAPIS Semiconductor.
3) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate
the standard usage and operations of the Products.The peripheral conditions must be taken into account when designing
circuits for mass production.
4) The technical information specified herein is intended only to show the typical functions of the Products and examples of
application circuits for the Products. No license, expressly or implied, is granted hereby under any intellectual property
rights or other rights of LAPIS Semiconductor or any third party with respect to the information contained in this
document; therefore LAPIS Semiconductor shall have no responsibility whatsoever for any dispute, concerning such rights
owned by third parties, arising out of the use of such technical information.
5) The Products are intended for use in general electronic equipment (i.e. AV/OA devices, communication, consumer systems,
gaming/entertainment sets) as well as the applications indicated in this document.
6) The Products specified in this document are not designed to be radiation tolerant.
7) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and
consult with a LAPIS Semiconductor representative: transportation equipment (i.e. cars, ships, trains), primary
communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and
power transmission systems.
8) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power
control systems, and submarine repeaters.
9) LAPIS Semiconductor shall have no responsibility for any damages or injury arising from non-compliance with the
recommended usage conditions and specifications contained herein.
10) LAPIS Semiconductor has used reasonable care to ensure the accuracy of the information contained in this document.
However, LAPIS Semiconductor does not warrant that such information is error-free and LAPIS Semiconductor shall have
no responsibility for any damages arising from any inaccuracy or misprint of such information.
11) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive.
For more details, including RoHS compatibility, please contact a ROHM sales office. LAPIS Semiconductor shall have no
responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
12) When providing our Products and technologies contained in this document to other countries, you must abide by the
procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US
Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
13) This document, in part or in whole, may not be reprinted or reproduced without prior consent of LAPIS Semiconductor.
Copyright 2010 – 2015 LAPIS Semiconductor Co., Ltd.
2-4-8 Shinyokohama, Kouhoku-ku,
Yokohama 222-8575, Japan
http://www.lapis-semi.com/en/
36/36
Similar pages