HUF75345G3, HUF75345P3, HUF75345S3S Data Sheet June 1999 75A, 55V, 0.007 Ohm, N-Channel UltraFET Power MOSFETs These N-Channel power MOSFETs are manufactured using the innovative UltraFET™ process. This advanced process technology achieves the lowest possible on-resistance per silicon area, resulting in outstanding performance. This device is capable of withstanding high energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored charge. It was designed for use in applications where power efficiency is important, such as switching regulators, switching converters, motor drivers, relay drivers, lowvoltage bus switches, and power management in portable and battery-operated products. 4365.7 Features • 75A, 55V • Simulation Models - Temperature Compensated PSPICE® and SABER© Models - Thermal Impedance SPICE and SABER Models Available on the WEB at: www.Intersil.com/families/models.htm • Peak Current vs Pulse Width Curve • UIS Rating Curve • Related Literature - TB334, “Guidelines for Soldering Surface Mount Components to PC Boards” Symbol Formerly developmental type TA75345. Ordering Information PART NUMBER File Number D PACKAGE BRAND HUF75345G3 TO-247 75345G HUF75345P3 TO-220AB 75345P HUF75345S3S TO-263AB 75345S G S NOTE: When ordering, use the entire part number. Add the suffix T to obtain the TO-263AB variant in tape and reel, e.g., HUF75345S3ST. Packaging JEDEC STYLE TO-247 JEDEC TO-220AB SOURCE DRAIN GATE SOURCE DRAIN GATE DRAIN (FLANGE) DRAIN (TAB) JEDEC TO-263AB DRAIN (FLANGE) GATE SOURCE 148 CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. UltraFET™ is a trademark of Intersil Corporation. PSPICE® is a registered trademark of MicroSim Corporation. SABER is a Copyright of Analogy, Inc. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999 HUF75345G3, HUF75345P3, HUF75345S3S Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current Continuous (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg UNITS V V V 55 55 ±20 75 Figure 4 Figures 6, 14, 15 325 2.17 -55 to 175 A W W/oC oC 300 260 oC oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. TJ = 25oC to 150oC. Electrical Specifications TC = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS 55 - - V VDS = 50V, VGS = 0V - - 1 µA VDS = 45V, VGS = 0V, TC = 150oC - - 250 µA VGS = ±20V - - ±100 nA OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current Gate to Source Leakage Current BVDSS IDSS IGSS ID = 250µA, VGS = 0V (Figure 11) ON STATE SPECIFICATIONS Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 10) 2 - 4 V Drain to Source On Resistance rDS(ON) ID = 75A, VGS = 10V (Figure 9) - 0.006 0.007 Ω THERMAL SPECIFICATIONS Thermal Resistance Junction to Case RθJC (Figure 3) - - 0.46 oC/W Thermal Resistance Junction to Ambient RθJA TO-247 - - 30 oC/W TO-220, TO-263 - - 62 oC/W VDD = 30V, ID ≅ 75A, RL = 0.4Ω, VGS = 10V, RGS = 2.5Ω - - 145 ns - 20 - ns tr - 75 - ns td(OFF) - 45 - ns tf - 30 - ns tOFF - - 115 ns - 220 275 nC - 125 165 nC - 6.8 10 nC SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time tON Turn-On Delay Time td(ON) Rise Time Turn-Off Delay Time Fall Time Turn-Off Time GATE CHARGE SPECIFICATIONS Total Gate Charge Qg(TOT) VGS = 0V to 20V Gate Charge at 10V Qg(10) VGS = 0V to 10V Threshold Gate Charge Qg(TH) VGS = 0V to 2V VDD = 30V, ID ≅ 75A, RL = 0.4Ω Ig(REF) = 1.0mA (Figure 13) Gate to Source Gate Charge Qgs - 14 - nC Reverse Transfer Capacitance Qgd - 58 - nC 149 HUF75345G3, HUF75345P3, HUF75345S3S TC = 25oC, Unless Otherwise Specified Electrical Specifications PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS - 4000 - pF - 1450 - pF - 450 - pF CAPACITANCE SPECIFICATIONS Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 12) Source to Drain Diode Specifications PARAMETER SYMBOL Source to Drain Diode Voltage MIN TYP MAX UNITS ISD = 75A - - 1.25 V trr ISD = 75A, dISD/dt = 100A/µs - - 110 ns QRR ISD = 75A, dISD/dt = 100A/µs - - 225 nC VSD Reverse Recovery Time Reverse Recovered Charge TEST CONDITIONS Typical Performance Curves 80 1.0 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 60 40 20 0.2 0 0 0 25 50 75 100 125 25 175 150 50 TC , CASE TEMPERATURE (oC) 75 100 125 150 175 TC, CASE TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 2 THERMAL IMPEDANCE ZθJC, NORMALIZED 1 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 150 100 101 HUF75345G3, HUF75345P3, HUF75345S3S Typical Performance Curves (Continued) 2000 TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: IDM, PEAK CURRENT (A) 1000 175 - TC I = I25 150 VGS = 20V VGS = 10V 100 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 50 10-5 10-4 10-3 10-2 10-1 100 101 t, PULSE WIDTH (s) FIGURE 4. PEAK CURRENT CAPABILITY 1000 1000 100µs 100 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) IAS, AVALANCHE CURRENT (A) ID, DRAIN CURRENT (A) TJ = MAX RATED TC = 25oC If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 100 1ms 10 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 10ms STARTING TJ = 25oC STARTING TJ = 150oC VDSS(MAX) = 55V 1 1 10 100 10 0.01 200 VDS, DRAIN TO SOURCE VOLTAGE (V) 0.1 1 10 tAV, TIME IN AVALANCHE (ms) 100 NOTE: Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 5. FORWARD BIAS SAFE OPERATING AREA FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY 150 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 20V VGS = 10V VGS = 7V VGS = 6V 120 VGS = 5V ID, DRAIN CURRENT (A) ID, DRAIN CURRENT (A) 150 90 60 30 0 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC 0 1 2 3 VDS, DRAIN TO SOURCE VOLTAGE (V) FIGURE 7. SATURATION CHARACTERISTICS 151 120 90 60 25oC 30 175oC 4 -55oC VDD = 15V 0 0 1.5 3.0 4.5 6.0 VGS, GATE TO SOURCE VOLTAGE (V) FIGURE 8. TRANSFER CHARACTERISTICS 7.5 HUF75345G3, HUF75345P3, HUF75345S3S Typical Performance Curves (Continued) 1.2 PULSE DURATION = 80µs, VGS = 10V, ID = 75A DUTY CYCLE = 0.5% MAX VGS = VDS, ID = 250µA NORMALIZED GATE THRESHOLD VOLTAGE NORMALIZED DRAIN TO SOURCE ON RESISTANCE 2.5 2.0 1.5 1.0 0.5 -80 -40 0 40 80 120 160 1.0 0.8 0.6 0.4 -80 200 -40 TJ, JUNCTION TEMPERATURE (oC) FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 200 FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE 7000 1.3 VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS ≈ CDS + CGD ID = 250µA 6000 1.2 C, CAPACITANCE (pF) NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) 1.1 1.0 0.9 5000 CISS 4000 3000 2000 COSS 1000 CRSS 0.8 -80 0 -40 0 40 80 120 160 TJ , JUNCTION TEMPERATURE (oC) 200 0 10 20 FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE VGS , GATE TO SOURCE VOLTAGE (V) VDD = 30V 8 6 4 0 WAVEFORMS IN DESCENDING ORDER: ID = 75A ID = 55A ID = 35A ID = 20A 0 25 50 75 Qg, GATE CHARGE (nC) 100 125 NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT 152 40 50 60 FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE 10 2 30 VDS , DRAIN TO SOURCE VOLTAGE (V) HUF75345G3, HUF75345P3, HUF75345S3S Test Circuits and Waveforms VDS BVDSS L tP VARY tP TO OBTAIN REQUIRED PEAK IAS IAS + RG VDS VDD VDD - VGS DUT tP 0V IAS 0 0.01Ω tAV FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 15. UNCLAMPED ENERGY WAVEFORMS VDS VDD RL Qg(TOT) VDS VGS = 20V VGS Qg(10) + VDD VGS = 10V VGS DUT VGS = 2V IG(REF) 0 Qg(TH) Qgs Qgd Ig(REF) 0 FIGURE 16. GATE CHARGE TEST CIRCUIT FIGURE 17. GATE CHARGE WAVEFORM VDS tON tOFF td(ON) td(OFF) tf tr RL VDS 90% 90% + VGS - VDD 10% 10% 0 DUT 90% RGS VGS VGS 0 FIGURE 18. SWITCHING TIME TEST CIRCUIT 153 10% 50% 50% PULSE WIDTH FIGURE 19. RESISTIVE SWITCHING WAVEFORMS HUF75345G3, HUF75345P3, HUF75345S3S PSPICE Electrical Model .SUBCKT HUF75345 2 1 3 ; rev 3 Feb 99 CA 12 8 5.55e-9 CB 15 14 5.55e-9 CIN 6 8 3.45e-9 LDRAIN DPLCAP DRAIN 2 5 10 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD RLDRAIN RSLC1 51 + RSLC2 5 51 EBREAK 11 7 17 18 56.7 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 DBREAK ESLC 11 - RDRAIN 6 8 ESG EVTHRES + 19 8 + LGATE GATE 1 IT 8 17 1 LDRAIN 2 5 1e-9 LGATE 1 9 2.6e-9 LSOURCE 3 7 1.1e-9 KGATE LSOURCE LGATE 0.0085 + 17 EBREAK 18 50 - EVTEMP RGATE + 18 22 9 20 21 DBODY - 16 MWEAK 6 MMED MSTRO RLGATE LSOURCE CIN 8 SOURCE 3 7 RSOURCE RLSOURCE MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD S1A 12 RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 1e-4 RGATE 9 20 0.36 RLDRAIN 2 5 10 RLGATE 1 9 26 RLSOURCE 3 7 11 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 3.15e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B S2A 13 8 14 13 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 CB 6 8 - - IT 14 + + EGS 19 VBAT 5 8 EDS - + 8 22 RVTHRES 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*500),3.5))} .MODEL DBODYMOD D (IS = 6e-12 RS = 1.4e-3 IKF = 20 XTI = 5 TRS1 = 2.75e-3 TRS2 = 5.0e-6 CJO = 5.5e-9 TT = 5.9e-8 M = 0.5 VJ = 0.75) .MODEL DBREAKMOD D (RS = 2.8e-2 IKF = 30 TRS1 = -4.0e-3 TRS2 = 1.0e-6) .MODEL DPLCAPMOD D (CJO = 6.75e-9 IS = 1e-30 M = 0.88 VJ = 1.45 FC = 0.5) .MODEL MMEDMOD NMOS (VTO = 2.93 KP = 13.75 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 0.36) .MODEL MSTROMOD NMOS (VTO = 3.23 KP = 96 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u Lambda = 0.06) .MODEL MWEAKMOD NMOS (VTO = 2.35 KP =0.02 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 3.6) .MODEL RBREAKMOD RES (TC1 = 8.0e-4 TC2 = 4.0e-6) .MODEL RDRAINMOD RES (TC1 = 1.5e-1 TC2 = 6.5e-4) .MODEL RSLCMOD RES (TC1 = 1.0e-4 TC2 = 1.05e-6) .MODEL RSOURCEMOD RES (TC1 = 1.0e-3 TC2 = 0) .MODEL RVTHRESMOD RES (TC1 = -1.5e-3 TC2 = -2.6e-5) .MODEL RVTEMPMOD RES (TC1 = -2.75e-3 TC2 = 1.45e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -9.00 VOFF= -4.00) VON = -4.00 VOFF= -9.00) VON = 0.00 VOFF= 0.50) VON = 0.50 VOFF= 0.00) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. 154 HUF75345G3, HUF75345P3, HUF75345S3S SABER Electrical Model REV 3 February 1999 template huf75345 n2, n1, n3 electrical n2, n1, n3 { var i iscl d..model dbodymod = (is = 6e-12, xti = 5, cjo = 5.5e-9, tt = 5.9e-8, m=0.5, vj=0.75) d..model dbreakmod = () d..model dplcapmod = (cjo = 6.75e-9, is = 1e-30, m = 0.88, vj = 1.45,fc=0.5) m..model mmedmod = (type=_n, vto = 2.93, kp = 13.75, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 3.23, kp = 96, is=1e-30,tox=1, lambda = 0.06) DPLCAP m..model mweakmod = (type=_n, vto = 2.35, kp = 0.02, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -9, voff = -4) 10 sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -4, voff = -9) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = 0, voff = 0.5) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = 0) LDRAIN DRAIN 2 5 RSLC1 51 RLDRAIN RDBREAK RSLC2 72 ISCL c.ca n12 n8 = 5.55e-9 c.cb n15 n14 = 5.55e-9 c.cin n6 n8 = 3.45e-9 EVTHRES + 19 8 + LGATE GATE 1 i.it n8 n17 = 1 RDRAIN 6 8 ESG d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod DBREAK 50 - EVTEMP RGATE + 18 22 9 20 21 MWEAK DBODY EBREAK + 17 18 MMED MSTRO CIN 71 11 16 6 l.ldrain n2 n5 = 1e-9 RLGATE l.lgate n1 n9 = 2.6e-9 l.lsource n3 n7 = 1.1e-9 k.k1 i(l.lgate) i(l.lsource) = l(l.lgate), l(l.lsource), 0.0085 RDBODY - 8 LSOURCE 7 RSOURCE RLSOURCE m.mmed n16 n6 n8 n8 = model=mmedmod, l = 1u, w = 1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l = 1u, w = 1u m.mweak n16 n21 n8 n8 = model=mweakmod, l = 1u, w = 1u res.rbreak n17 n18 = 1, tc1 = 8e-4, tc2 = 4e-6 res.rdbody n71 n5 = 1.4e-3, tc1 = 2.75e-3, tc2 = 5e-6 res.rdbreak n72 n5 = 2.8e-2, tc1 = -4e-3, tc2 = 1e-6 res.rdrain n50 n16 = 1e-4, tc1 = 1.5e-1, tc2 = 6.5e-4 res.rgate n9 n20 = 0.36 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 26 res.rlsource n3 n7 = 11 res.rslc1 n5 n51 = 1e-6, tc1 = 1e-4, tc2 = 1.05e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 3.15e-3, tc1 = 1e-3, tc2 = 0 res.rvtemp n18 n19 = 1, tc1 = -2.75e-3, tc2 = 1.45e-6 res.rvthres n22 n8 = 1, tc1 = -1.5e-3, tc2 = -2.6e-5 S1A 12 S2A 13 8 S1B CA 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 - sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc = 1 equations { i (n51->n50) + = iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/500))** 3.5)) } } - IT 14 + + spe.ebreak n11 n7 n17 n18 = 56.7 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 155 RBREAK 15 14 13 VBAT 5 8 EDS - + 8 22 RVTHRES SOURCE 3 HUF75345G3, HUF75345P3, HUF75345S3S SPICE Thermal Model th REV 5 February 1999 JUNCTION HUF75345 CTHERM1 th 6 6.45e-3 CTHERM2 6 5 3.00e-2 CTHERM3 5 4 1.40e-2 CTHERM4 4 3 1.65e-2 CTHERM5 3 2 4.85e-2 CTHERM6 2 tl 12.55 RTHERM1 CTHERM1 6 RTHERM1 th 6 3.20e-3 RTHERM2 6 5 7.80e-3 RTHERM3 5 4 2.22e-2 RTHERM4 4 3 1.24e-1 RTHERM5 3 2 1.88e-1 RTHERM6 2 tl 2.64e-2 RTHERM2 CTHERM2 5 SABER Thermal Model RTHERM3 CTHERM3 SABER thermal model HUF75345 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 6.45e-3 ctherm.ctherm2 6 5 = 3.00e-2 ctherm.ctherm3 5 4 = 1.40e-2 ctherm.ctherm4 4 3 = 1.65e-2 ctherm.ctherm5 3 2 = 4.85e-2 ctherm.ctherm6 2 tl = 12.55 4 RTHERM4 CTHERM4 3 rtherm.rtherm1 th 6 = 3.20e-3 rtherm.rtherm2 6 5 = 7.80e-3 rtherm.rtherm3 5 4 = 2.22e-2 rtherm.rtherm4 4 3 = 1.24e-1 rtherm.rtherm5 3 2 = 1.88e-1 rtherm.rtherm6 2 tl = 2.64e-2 } RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 tl CASE All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com 156