FEATURES PIN CONFIGURATIONS Rail-to-rail input/output Low power: 625 µA typical Gain bandwidth product: 15.9 MHz at AV =100 typical Unity-gain crossover: 9.9 MHz typical −3 dB closed-loop bandwidth: 13.9 MHz typical at ±15 V Low offset voltage: 100 μV maximum (SOIC) Unity-gain stable High slew rate: 4.6 V/μs typical Low noise: 3.9 nV/√Hz typical at 1 kHz ADA4084-2 OUT A 1 8 V+ –IN A 2 7 OUT B +IN A 3 6 –IN B V– 4 5 +IN B TOP VIEW (Not to Scale) 08237-001 Data Sheet 30 V, Low Noise, Rail-to-Rail I/O, Low Power Operational Amplifier ADA4084-2 Figure 1. 8-Lead MSOP (RM) 8-Lead SOIC (R) APPLICATIONS Battery-powered instrumentation Power supply control and protection Telecommunications DAC output amplifier ADC input buffer GENERAL DESCRIPTION The ADA4084-2 is a dual, single-supply, 10 MHz bandwidth amplifier featuring rail-to-rail inputs and outputs. It is guaranteed to operate from 3 V to 30 V (or ±1.5 V to ±15 V). These amplifiers are well suited for single-supply applications requiring both ac and precision dc performance. The combination of wide bandwidth, low noise, and precision makes the ADA4084-2 useful in a wide variety of applications, including filters and instrumentation. Other applications for these amplifiers include portable telecommunications equipment, power supply control and protection, and use as amplifiers or buffers for transducers with wide output ranges. Sensors requiring a rail-to-rail input amplifier include Hall effect, piezoelectric, and resistive transducers. The ability to swing rail-to-rail at both the input and output enables designers to build multistage filters in single-supply systems and to maintain high signal-to-noise ratios. The ADA4084-2 is a member of a growing series of high voltage, low noise op amps offered by Analog Devices, Inc., (see Table 1). For a more complete selection table of low input voltage noise amplifiers, see the AN-940 Application Note, Low Noise Amplifier Selection Guide for Optimal Noise Performance, available at www.analog.com. Table 1. Low Noise Op Amps Voltage Noise 1.1 nV/Hz 1.8 nV/Hz 2.8 nV/Hz RRO1 2.8 nV/Hz 3.2 nV/Hz 3.9 nV/Hz RRIO2 1 2 Single AD8597 ADA4004-1 AD8675 AD8671 OP27/OP37 Dual AD8599 ADA4004-2 AD8676 AD8672 Quad ADA4004-4 AD8674 ADA4084-2 Rail-to-rail output. Rail-to-rail input/output. The ADA4084-2 is specified over the industrial temperature range of −40°C to +125°C. The dual ADA4084-2 is available in the 8-lead SOIC and MSOP surface-mount packages. Rev. A Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2011–2012 Analog Devices, Inc. All rights reserved. ADA4084-2 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 ±15 V Characteristics ................................................................ 15 Applications ....................................................................................... 1 Comparative Voltage and Variable Voltage Graphs ............... 19 General Description ......................................................................... 1 Applications Information .............................................................. 20 Pin Configurations ........................................................................... 1 Functional Description .............................................................. 20 Revision History ............................................................................... 2 Input Protection ......................................................................... 21 Specifications..................................................................................... 3 Output Phase Reversal ............................................................... 21 Electrical Characteristics ............................................................. 3 Absolute Maximum Ratings ............................................................ 6 Designing Low Noise Circuits in Single-Supply Applications ................................................................................ 21 Thermal Resistance ...................................................................... 6 Comparator Operation .............................................................. 22 ESD Caution .................................................................................. 6 Outline Dimensions ....................................................................... 23 Typical Performance Characteristics ............................................. 7 Ordering Guide .......................................................................... 23 ±1.5 V Characteristics.................................................................. 7 ±5 V Characteristics ................................................................... 11 REVISION HISTORY 2/12—Rev. 0 to Rev. A Changes to Data Sheet Title ............................................................ 1 Changes to Voltage Range in General Description ...................... 1 Changes to Supply Current/Amplifier Parameter, Table 2.......... 3 Changes to Common-Mode Rejection Ratio Parameter, Table 3.. 4 Changes to Common-Mode Rejection Ratio Parameter, Table 4.. 5 Changes to Figure 2 .......................................................................... 6 Changes to Figure 24 ...................................................................... 10 Changes to Figure 32 ...................................................................... 12 Changes to Figure 47 ...................................................................... 14 Changes to Figure 55 ...................................................................... 16 Changes to Figure 62 ...................................................................... 17 Changes to Figure 73 ...................................................................... 20 10/11—Revision 0: Initial Version Rev. A | Page 2 of 24 Data Sheet ADA4084-2 SPECIFICATIONS ELECTRICAL CHARACTERISTICS VSY = 3 V, VCM =1.5 V, TA = 25°C, unless otherwise noted. Table 2. Parameter INPUT CHARACTERISTICS Offset Voltage 1 Offset Voltage Drift Offset Voltage Matching Input Bias Current Symbol Test Conditions/Comments VOS SOIC package −40°C ≤ TA ≤ +125°C MSOP package −40°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +125°C Channel A vs. Channel B, TA = 25°C ΔVOS/ΔT Min Typ 0.5 IB 140 –40°C ≤ TA ≤ +125°C Input Offset Current IOS –40°C ≤ TA ≤ +125°C Input Voltage Range Common-Mode Rejection Ratio CMRR Large Signal Voltage Gain AVO Input Impedance, Differential Input Impedance, Common-Mode OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low VOH VOL ISC Supply Current/Amplifier ISY 1 0 64 60 100 97 Unit 100 200 130 250 1.75 150 300 450 25 50 3 μV μV μV μV µV/°C μV nA nA nA nA V dB dB dB dB kΩ||pF MΩ||pF 80 104 100||1.1 80||2.9 Short-Circuit Current POWER SUPPLY Power Supply Rejection Ratio DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product Unity-Gain Crossover Phase Margin −3 dB Closed-Loop Bandwidth NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density VCM = 0 V to 3 V −40°C ≤ TA ≤ +125°C RL = 2 kΩ, 0.5 V ≤ VO ≤ 2.5 V RL = 2 kΩ, −40°C ≤ TA ≤ +125°C Max PSRR RL = 10 kΩ to VCM –40°C ≤ TA ≤ +125°C RL = 2 kΩ to VCM –40°C ≤ TA ≤ +125°C RL = 10 kΩ to VCM –40°C ≤ TA ≤ +125°C RL = 2 kΩ to VCM –40°C ≤ TA ≤ +125°C 2.85 2.8 2.8 2.7 2.95 2.9 10 20 40 50 75 −17/+10 VSY = ±1.25 V to ±1.75 V –40°C ≤ TA ≤ +125°C IO = 0 mA –40°C ≤ TA ≤ +125°C 100 90 SR GBP UGC ΦM −3 dB RL = 2 kΩ VIN = 5 mV p-p, RL = 10 kΩ, AV = 100 VIN = 5 mV p-p, RL = 10 kΩ, AV = 1 2.0 en p-p en in 110 565 650 950 V V V V mV mV mV mV mA dB dB µA µA AV = 1, VIN = 5 mV p-p 2.6 15.4 8.08 86 12.3 V/µs MHz MHz Degrees MHz 0.1 Hz to 10 Hz f = 1 kHz f = 1 kHz 0.14 3.9 0.55 μV p-p nV/√Hz pA/√Hz Offset voltage does not include solder heat resistance. Rev. A | Page 3 of 24 ADA4084-2 Data Sheet VSY = ±5.0 V, VCM = 0 V, TA = 25°C, unless otherwise noted. Table 3. Parameter INPUT CHARACTERISTICS Offset Voltage 1 Offset Voltage Drift Offset Voltage Matching Input Bias Current Symbol Conditions VOS SOIC package −40°C ≤ TA ≤ +125°C MSOP package −40°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +125°C Channel A vs. Channel B, TA = 25°C ΔVOS/ΔT Min Typ 0.5 IB 140 −40°C ≤ TA ≤ +125°C Input Offset Current IOS −40°C ≤ TA ≤ +125°C Input Voltage Range Common-Mode Rejection Ratio CMRR Large Signal Voltage Gain AVO Input Impedance, Differential Input Impedance, Common-Mode OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low VOH VOL ISC Supply Current/Amplifier ISY 1 −5 106 76 108 103 Unit 100 250 130 250 1.75 150 300 450 25 50 +5 μV μV μV μV μV/°C μV nA nA nA nA V dB dB dB dB kΩ||pF MΩ||pF 124 112 100||1.1 200||2.5 Short Circuit Current POWER SUPPLY Power Supply Rejection Ratio DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product Unity-Gain Crossover Phase Margin −3 dB Closed-Loop Bandwidth NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density VCM = ±4 V VCM = ±5 V, −40°C ≤ TA ≤ +125°C RL = 2 kΩ, −4 V ≤ VO ≤ 4 V RL = 2 kΩ, −40°C ≤ TA ≤ +125°C Max PSRR RL = 10 kΩ to VCM −40°C ≤ TA ≤ +125°C RL = 2 kΩ to VCM −40°C ≤ TA ≤ +125°C RL = 10 kΩ to VCM −40°C ≤ TA ≤ +125°C RL = 2 kΩ to VCM −40°C ≤ TA ≤ +125°C 4.9 4.8 4.8 4.7 4.95 4.85 −4.95 −4.95 −4.9 −4.8 −4.8 −4.7 −24/+17 VSY = ±2 V to ±18 V −40°C ≤ TA ≤ +125°C IO = 0 mA −40°C ≤ TA ≤ +125°C 110 105 SR GBP UGC ΦM −3 dB RL = 2 kΩ to VCM VIN = 5 mV p-p, RL = 10 kΩ, AV = 100 VIN = 5 mV p-p, RL = 10 kΩ, AV = 1 2.4 en p-p en in 0.1 Hz to 10 Hz f = 1 kHz AV = 1, VIN = 5 mV p-p Offset Voltage does not include solder heat resistance. Rev. A | Page 4 of 24 120 595 700 1000 V V V V V V V V mA dB dB µA µA 3.7 15.9 9.6 85 13.9 V/µs MHz MHz Degrees MHz 0.14 3.9 0.55 µV p-p nV/√Hz pA/√Hz Data Sheet ADA4084-2 VSY = ±15.0 V, VCM = 0 V, TA = 25°C, unless otherwise noted. Table 4. Parameter INPUT CHARACTERISTICS Offset Voltage 1 Offset Voltage Drift Offset Voltage Matching Input Bias Current Symbol Conditions VOS SOIC package −40°C ≤ TA ≤ +125°C MSOP package −40°C ≤ TA ≤ +125°C Min ΔVOS/ΔT Typ 0.5 Channel A vs. Channel B, TA = 25°C IB 140 −40°C ≤ TA ≤ +125°C Input Offset Current IOS −40°C ≤ TA ≤ +125°C Input Voltage Range Common-Mode Rejection Ratio CMRR Large Signal Voltage Gain AVO Input Impedance, Differential Input Impedance, Common-Mode OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low VOH VOL ISC Supply Current/Amplifier ISY 1 −15 106 85 110 105 Unit 100 200 130 250 1.75 150 300 450 25 50 +15 μV μV μV μV μV/°C μV nA nA nA nA V dB dB dB dB kΩ||pF MΩ||pF 124 117 100||1.1 200||2.5 Short Circuit Current POWER SUPPLY Power Supply Rejection Ratio DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product Unity-Gain Crossover Phase Margin −3 dB Closed-Loop Bandwidth NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density VCM = ±14 V VCM = ±15 V, −40°C ≤ TA ≤ +125°C RL = 2 kΩ, −13.5 V ≤ VO ≤ +13.5 V −40°C ≤ TA ≤ +125°C Max PSRR RL = 10 kΩ to VCM −40°C ≤ TA ≤ +125°C RL = 2 kΩ to VCM −40°C ≤ TA ≤ +125°C RL = 10 kΩ to VCM −40°C ≤ TA ≤ +125°C RL = 2 kΩ to VCM −40°C ≤ TA ≤ +125°C 14.8 14.8 14.5 14.3 14.9 14.6 −14.95 −14.9 −14.9 −14.8 −14.8 −14.7 ±30 VSY = ±2 V to ±18 V −40°C ≤ TA ≤ +125°C IO = 0 mA −40°C ≤ TA ≤ +125°C 110 105 SR GBP UGC ΦM −3 dB RL = 2 kΩ VIN = 5 mV p-p, RL = 10 kΩ, AV = 100 VIN = 5 mV p-p, RL = 10 kΩ, AV = 1 2.4 en p-p en in 0.1 Hz to 10 Hz f = 1 kHz AV = 1, VIN = 5 mV p-p Offset Voltage does not include solder heat resistance. Rev. A | Page 5 of 24 120 625 750 1050 V V V V V V V V mA dB dB µA µA 4.6 15.9 9.9 86 13.9 V/µs MHz MHz Degrees MHz 0.1 3.9 0.55 µV p-p nV/√Hz pA/√Hz ADA4084-2 Data Sheet ABSOLUTE MAXIMUM RATINGS Table 5. Parameter Supply Voltage Input Voltage Differential Input Voltage1 Output Short-Circuit Duration to GND Storage Temperature Range Operating Temperature Range Junction Temperature Range Lead Temperature (Soldering 60 sec) 1 THERMAL RESISTANCE Rating ±18 V V− ≤ VIN ≤ V+ ±0.6 V Indefinite −65°C to +150°C −40°C to +125°C −65°C to +150°C 300°C θJA is specified for the device soldered on a 4-layer JEDEC standard printed circuit board (PCB) with zero airflow. Table 6. Thermal Resistance Package Type 8-Lead SOIC 8-Lead MSOP θJA 121 142 θJC 43 45 ESD CAUTION For input differential voltages greater than 0.6 V, the input current should be limited to less than 5 mA to prevent degradation or destruction of the input devices. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. VCC R4 R3 R6 Q24 D2 Q1 Q23 D1 Q2 MIRROR D100 Q4 D101 FOLDED CASCADE Q3 VOUT R7 C2 Q13 D5 VBIAS D4 R5 Q18 C1 R1 R2 Q21 D20 Figure 2. Simplified Schematic Rev. A | Page 6 of 24 VEE 08237-002 Q19 Unit °C/W °C/W Data Sheet ADA4084-2 TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted. ±1.5 V CHARACTERISTICS 500 120 ADA4084-2 VSY = ±1.5V TA = 25°C RL = ∞ 80 60 40 300 200 100 0 –100 –200 –300 ADA4084-2 VSY = ±1.5V TA = 25°C RL = ∞ 20 –400 –75 –25 –50 0 25 75 50 100 VOS (µV) –500 08237-003 0 –100 0 COMMON-MODE VOLTAGE (V) Figure 3. Input Offset Voltage Distribution, SOIC Figure 6. Input Offset Voltage vs. Common-Mode Voltage –50 50 ADA4084-2 VSY = ±1.5V TA = 25°C RL = ∞ 45 40 IB+ –100 35 INPUT BIAS (nA) 30 25 20 –150 IB– 15 –200 10 –75 –50 –25 0 25 50 75 100 VOS (µV) –250 –40 08237-004 0 –100 400 40 200 INPUT BIAS (nA) 50 30 20 0.2 0.4 0.6 0.8 1.0 1.2 1.4 TCVOS (µV/°C) 1.6 1.8 20 35 50 65 80 95 110 125 TA = +125°C 0 TA = +85°C –200 TA = +25°C ADA4084-2 VSY = ±1.5V TA = 25°C RL = ∞ –40° ≤ TA ≤ +125°C –400 TA = –40°C ADA4084-2 VSY = ±1.5V 2.0 08237-005 NUMBER OF AMPLIFIERS 600 0 5 Figure 7. Input Bias Current vs. Temperature 60 0 –10 TEMPERATURE (°C) Figure 4. Input Offset Voltage Distribution, MSOP 10 –25 08237-007 ADA4084-2 VSY = ±1.5V VCM = 0V RL = ∞ 5 –600 –1.5 –1.0 –0.5 0 0.5 1.0 VCM (V) Figure 8. Input Bias Current vs. VCM and Temperature Figure 5. TCVOS Distribution, SOIC Rev. A | Page 7 of 24 1.5 08237-008 NUMBER OF AMPLIFIERS 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 08237-006 INPUT OFFSET VOLTAGE (µV) NUMBER OF AMPLIFIERS 100 400 ADA4084-2 Data Sheet 60 1000 40 AV = +100 30 GAIN (dB) 100 VDO (mV) ADA4084-2 VSY = ±1.5V TA = 25°C 50 20 AV = +10 10 (V+) –VOH 0 ADA4084-2 VSY = ±1.5V TA = 25°C 0.01 0.1 1 –10 –20 10 08237-009 1 0.001 10 LOAD CURRENT (mA) AV = +1 100 1k 10k 100k 1M 10M 100M FREQUENCY (Hz) 08237-012 10 Figure 12. Closed-Loop Gain vs. Frequency Figure 9. Dropout Voltage vs. Source Current 1000 1000 AV = +10 100 ZOUT (Ω) 10 10 1 0.10 0.1 1 10 0.01 10 LOAD CURRENT (mA) 270 140 225 120 180 100 135 40 90 20 45 0 0 PSRR (dB) 60 PHASE (Degrees) ADA4084-2 VSY = ±1.5V TA = 25°C RL = 10kΩ 100 1k 10k 100k 1M 10M 100M –90 100k FREQUENCY (kHz) ADA4084-2 VSY = ±1.5V TA = 25°C 80 60 PSRR– 20 PSRR+ 0 08237-011 10 10k 40 –45 –20 1 1k Figure 13. Output Impedance vs. Frequency 120 80 100 FREQUENCY (Hz) Figure 10. Dropout Voltage vs. Sink Current 100 ADA4084-2 VSY = ±1.5V TA = 25°C 08237-013 0.01 08237-010 1 0.001 GAIN (dB) AV = +1 VOL – (V–) ADA4084-2 VSY = ±1.5V TA = 25°C –40 0.1 AV = +100 –20 10 100 1k 10k 100k 1M FREQUENCY (Hz) Figure 14. PSRR vs. Frequency Figure 11. Open-Loop Gain and Phase vs. Frequency Rev. A | Page 8 of 24 10M 100M 08237-014 VDO (mV) 100 Data Sheet ADA4084-2 2 ADA4084-2 VSY = ±1.5V TA = 25°C 110 100 INPUT 0 90 0.06 0.04 –2 VOLTAGE (V) CMRR (dB) 0.08 80 70 60 0.02 –4 OUTPUT –6 VOLTAGE (V) 120 0 50 ADA4084-2 VSY = ±1.5V TA = 25°C –8 30 100 1k 10k 100k 1M 10M 100M FREQUENCY (Hz) –10 –1 08237-015 20 10 –0.04 0 1 4 5 6 7 8 9 TIME (µs) Figure 18. Settling Time 1.5 10 0.5 0 –0.5 –1.0 –1.5 0 2 4 6 8 10 12 14 16 18 TIME (µs) ADA4084-2 VSY = ±1.5V TA = 25°C 1 08237-016 ADA4084-2 VSY = ±1.5V TA = 25°C RL = 2kΩ CL = 100pF 4 1 10 100 1k 10k FREQUENCY (Hz) 100k 08237-019 VOLTAGE NOISE DENSITY (nV/√Hz) 1.0 Figure 19. Voltage Noise Density Figure 16. Large Signal Transient Response 60 80 60 ADA4084-2 VSY = ±1.5V VIN = 100mV p-p RL = 2kΩ TA = 25°C 50 OVERSHOOT (%) 40 20 0 –20 ADA4084-2 VSY = ±1.5V TA = 25°C RL = 2kΩ CL = 100pF –60 –80 0 2 4 6 8 10 40 30 20 OS– 10 12 14 TIME (µs) 16 18 08237-017 –40 OS+ Figure 17. Small Signal Transient Response 0 1 10 100 CAPACITANCE (pF) Figure 20. Overshoot vs. Capacitance Rev. A | Page 9 of 24 1000 08237-020 VOLTAGE (V) 3 2 Figure 15. CMRR vs. Frequency VOLTAGE (mV) –0.02 08237-018 40 ADA4084-2 Data Sheet 0.01 80 60 20 THD + N (%) 0 –20 0.001 ADA4084-2 VSY = ±1.5V TA = 25°C –80 0 1 2 3 4 5 6 7 8 9 10 TIME (Seconds) 0.0001 10 08237-021 –60 100 Figure 21. Voltage Noise 0.1 Hz to 10 Hz 10k 100k Figure 24. THD + N vs. Frequency 0 2.0 ADA4084-2 VSY = ±1.5V TA = 25°C VIN = 1V p-p –20 –40 ADA4084-2 VSY = ±1.5V TA = 25°C 1.5 1.0 VOLTAGE (V) –60 –80 –100 0.5 OUTPUT 0 –0.5 INPUT –120 –1.0 –140 –1.5 –160 100 1k 10k 100k FREQUENCY (Hz) 08237-022 CHANNEL SEPARATION (dB) 1k FREQUENCY (Hz) 08237-024 ADA4084-2 RL = 2kΩ VIN = 0.4VRMS VSY = ±1.5V TA = 25°C 500kHz FILTER –40 Figure 22. Channel Separation THD + N (%) 0.1 0.01 0.1 AMPLITUDE (VRMS) 1 08237-023 ADA4084-2 VSY = ±1.5V TA = 25°C f = 1kHz 0.01 0 100 200 300 400 500 600 700 TIME (µs) Figure 25. No Phase Reversal 1 0.001 0.001 –2.0 Figure 23. THD + N vs. Amplitude Rev. A | Page 10 of 24 800 900 1000 08237-025 VOLTAGE NOISE (nV) 40 Data Sheet ADA4084-2 ±5 V CHARACTERISTICS 600 120 ADA4084-2 VSY = ±5V TA = 25°C RL = ∞ 500 400 80 60 40 300 200 100 0 –100 –200 –300 ADA4084-2 VSY = ±5V TA = 25°C RL = ∞ –400 20 –500 –75 –50 –25 0 25 50 75 100 VOS (µV) –600 –5 08237-026 0 –100 –3 –2 –1 0 1 2 4 5 Figure 29. Input Offset Voltage vs. Common-Mode Voltage –50 60 ADA4084-2 VSY = ±5V TA = 25°C RL = ∞ –100 INPUT BIAS (nA) 40 30 20 IB+ –150 IB– –200 ADA4084-2 VSY = ±5V VCM = 0V RL = ∞ 10 –75 –50 –25 0 25 50 75 100 VOS (µV) –250 –40 08237-027 0 –100 –25 –10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) 08237-030 50 Figure 30. Input Bias Current vs. Temperature Figure 27. Input Offset Voltage Distribution MSOP 50 800 45 600 40 400 30 25 20 15 5 0 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 TCVOS (µV/°C) 1.6 1.8 TA = +85°C 0 TA = +125°C –200 TA = +25°C –400 ADA4084-2 VSY = ±5V RL = ∞ –40° ≤ TA ≤ +125°C 10 200 ADA4084-2 VSY = ±5V –600 2.0 TA = –40°C –800 –5 –4 –3 –2 –1 0 1 2 3 4 VCM (V) Figure 31. Input Bias Current vs. VCM and Temperature Figure 28. TCVOS Distribution Rev. A | Page 11 of 24 5 08237-031 INPUT BIAS (nA) 35 08237-028 NUMBER OF AMPLIFIERS 3 COMMON-MODE VOLTAGE (V) Figure 26. Input Offset Voltage Distribution SOIC NUMBER OF AMPLIFIERS –4 08237-029 INPUT OFFSET VOLTAGE (µV) NUMBER OF AMPLIFIERS 100 ADA4084-2 Data Sheet 60 ADA4084-2 VSY = ±5V TA = 25°C 1000 50 40 30 100 GAIN (dB) VDO (mV) AV = +100 20 AV = +10 10 (V+) –VOH 0 ADA4084-2 VSY = ±5V TA = 25°C 0.01 0.1 1 –10 –20 10 08237-032 1 0.001 AV = +1 10 LOAD CURRENT (mA) 100 1k 10k 100k 1M 10M 100M FREQUENCY (Hz) Figure 32. Dropout Voltage vs. Source Current 08237-035 10 Figure 35. Closed-Loop Gain vs. Frequency 1000 1000 100 ZOUT (Ω) 10 1 VOL – (V–) ADA4084-2 VSY = ±5V TA = 25°C 0.01 0.1 1 0.01 10 08237-033 1 0.001 0.10 10 LOAD CURRENT (mA) 140 225 120 180 100 135 40 90 20 45 0 0 PSRR (dB) 60 100 1k 10k 100k 1M 10M 100M –90 100k FREQUENCY (kHz) ADA4084-2 VSY = ±5V TA = 25°C 80 60 PSRR– 20 PSRR+ 0 –45 –20 10 10k 40 08237-034 GAIN (dB) 270 PHASE (Degrees) ADA4084-2 VSY = ±5V TA = 25°C RL = 10kΩ 1 1k Figure 36. Output Impedance vs. Frequency 120 80 100 FREQUENCY (Hz) Figure 33. Dropout Voltage vs. Sink Current 100 ADA4084-2 VSY = ±5V TA = 25°C 08237-036 10 –40 0.1 AV = +1 AV = +100 Figure 34. Open-Loop Gain and Phase vs. Frequency –20 10 100 1k 10k 100k 1M FREQUENCY (Hz) Figure 37. PSRR vs. Frequency Rev. A | Page 12 of 24 10M 100M 08237-037 VDO (mV) 100 AV = +10 Data Sheet ADA4084-2 120 10 0.16 5 0.12 ADA4084-2 VSY = ±5V TA = 25°C 110 100 INPUT 70 60 50 0.04 –5 OUTPUT 0 –10 –15 –0.04 ADA4084-2 VSY = ±5V TA = 25°C 40 –20 100 1k 10k 100k 1M 100M 10M FREQUENCY (Hz) 08237-038 30 20 10 VOLTAGE (V) 80 –25 –2 –0.08 –0.12 0 4 2 6 8 10 12 14 16 08237-041 VOLTAGE (V) CMRR (dB) 0.08 0 90 18 TIME (µs) Figure 38. CMRR vs. Frequency Figure 41. Settling Time 5 10 3 1 0 –1 –2 ADA4084-2 VSY = ±5V TA = 25°C RL = 2kΩ CL = 100pF –3 –4 –5 0 2 4 6 8 10 12 14 16 18 TIME (µs) 4 ADA4084-2 VSY = ±5V TA = 25°C 1 08237-039 1 100 1k 10k FREQUENCY (Hz) 100k Figure 42. Voltage Noise Density Figure 39. Large Signal Transient Response 60 80 ADA4084-2 VSY = ±5V VIN = 100mV p-p RL = 2kΩ TA = 25°C 60 50 OVERSHOOT (%) 40 20 0 –20 ADA4084-2 VSY = ±5V TA = 25°C RL = 2kΩ CL = 100pF –40 –60 –80 0 1 2 3 4 5 OS+ 40 30 20 OS– 10 6 7 8 TIME (µs) 9 10 08237-040 VOLTAGE (mV) 10 Figure 40. Small Signal Transient Response 0 1 10 100 1000 CAPACITANCE (pF) Figure 43. Overshoot vs. Load Capacitance Rev. A | Page 13 of 24 08237-043 VOLTAGE (V) 2 08237-042 VOLTAGE NOISE DENSITY (nV/√Hz) 4 ADA4084-2 Data Sheet 1 80 60 0.1 20 THD + N (%) 0 –20 0.001 –40 1 2 3 4 5 6 7 8 9 10 TIME (Seconds) 0.0001 10 08237-044 0 100 Figure 44. Volage Noise 0.1 Hz to 10 Hz 100k 6 ADA4084-2 VSY = ±5V TA = 25°C VIN = 5V p-p –20 –40 ADA4084-2 VSY = ±5V TA = 25°C 4 2 –60 VOLTAGE (V) CHANNEL SEPARATION (dB) 10k Figure 47. THD + N vs. Frequency 0 –80 –100 0 OUTPUT –2 INPUT –120 –4 –160 100 1k 10k 100k FREQUENCY (Hz) 08237-045 –140 Figure 45. Channel Separation 0.1 0.01 ADA4084-2 VSY = ±5V TA = 25°C f = 1kHz 0.0001 0.001 0.01 0.1 AMPLITUDE (VRMS) 1 08237-046 0.001 –6 0 100 200 300 400 500 600 700 TIME (µs) Figure 48. No Phase Reversal 1 THD + N (%) 1k FREQUENCY (Hz) 08237-047 ADA4084-2 VSY = ±5V TA = 25°C –60 –80 0.01 Figure 46. THD + N vs. Amplitude Rev. A | Page 14 of 24 800 900 1000 08237-048 VOLTAGE NOISE (nV) 40 ADA4084-2 RL = 2kΩ VIN = 2.0VRMS VSY = ±5V TA = 25°C 500kHz FILTER Data Sheet ADA4084-2 ±15 V CHARACTERISTICS 600 100 ADA4084-2 VSY = ±15V TA = 25°C RL = ∞ 400 60 50 40 30 20 200 100 0 –100 –200 –300 ADA4084-2 VSY = ±15V TA = 25°C RL = ∞ –400 10 –500 –75 –50 –25 0 25 50 75 100 VOS (µV) –600 –15 08237-049 0 –100 –10 0 –5 5 10 Figure 52. Input Offset Voltage vs. Common-Mode Voltage –50 ADA4084-2 VSY = ±15V TA = 25°C RL = ∞ 50 IB+ –100 INPUT BIAS (nA) 40 30 20 –150 IB– –200 ADA4084-2 VSY = ±15V VCM = 0V RL = ∞ 10 –75 –50 –25 0 25 50 75 100 VOS (µV) –250 –40 08237-050 0 –100 800 40 400 INPUT BIAS (nA) 50 30 20 ADA4084-2 VSY = ±15V RL = ∞ –40° ≤ TA ≤ +125°C 0.4 0.6 0.8 1.0 1.2 1.4 TCVOS (µV/°C) 1.6 1.8 20 35 50 65 80 95 110 125 TA = +125°C TA = +85°C 0 TA = +25°C –400 –800 2.0 08237-051 NUMBER OF AMPLIFIERS 1200 0.2 5 Figure 53. Input Bias Current vs. Temperature 60 0 –10 TEMPERATURE (°C) Figure 50. Input Offset Voltage Distribution, MSOP 10 –25 08237-053 60 0 15 COMMON-MODE VOLTAGE (V) Figure 49. Input Offset Voltage Distribution, SOIC NUMBER OF AMPLIFIERS 300 08237-052 70 TA = –40°C ADA4084-2 VSY = ±15V –1200 –15 –10 –5 0 5 10 VCM (V) Figure 54. Input Bias Current vs. VCM and Temperature Figure 51. TCVOS Distribution Rev. A | Page 15 of 24 15 08237-054 NUMBER OF AMPLIFIERS 80 INPUT OFFSET VOLTAGE (µV) 90 500 ADA4084-2 Data Sheet 60 10000 ADA4084-2 VSY = ±15V TA = 25°C 50 40 1000 AV = +100 GAIN (dB) VDO (mV) 30 100 20 AV = +10 10 ADA4084-2 VSY = ±15V TA = 25°C 1 0.001 0.01 0.1 1 0 AV = +1 –10 –20 10 08237-055 10 10 LOAD CURRENT (mA) 100 1k 10k 100k 1M 10M 100M FREQUENCY (Hz) Figure 55. Dropout Voltage vs. Source Current 08237-058 (V+) –VOH Figure 58. Closed-Loop Gain vs. Frequency 1000 10000 100 AV = +10 ZOUT (Ω) 100 0.01 0.1 1 AV = +1 0.1 10 0.01 10 1 LOAD CURRENT (mA) 140 225 120 180 100 40 90 20 45 0 0 PSRR (dB) 135 10k 100k 1M 10M 100k 1M 10M 100M –90 100M FREQUENCY (Hz) ADA4084-2 VSY = ±15V TA = 25°C 80 60 PSRR– 20 –45 –20 1k 10k 40 PSRR+ 0 08237-057 GAIN (dB) 270 PHASE (Degrees) ADA4084-2 VSY = ±15V TA = 25°C RL = 10kΩ 60 –40 100 1k Figure 59. Output Impedance vs. Frequency 120 80 100 FREQUENCY (Hz) Figure 56. Dropout Voltage vs. Sink Current 100 ADA4084-2 VSY = ±15V TA = 25°C 08237-059 1 0.001 AV = +100 ADA4084-2 VSY = ±15V TA = 25°C 08237-056 VOL – (V–) 10 10 Figure 57. Open-Loop Gain and Phase vs. Frequency –20 10 100 1k 10k 100k 1M FREQUENCY (Hz) Figure 60. PSRR vs. Frequency Rev. A | Page 16 of 24 10M 100M 08237-060 VDO (mV) 1000 Data Sheet ADA4084-2 120 10 ADA4084-2 VSY = ±15V TA = 25°C INPUT 0.10 0 VOLTAGE (V) 90 80 70 60 50 0.05 –5 OUTPUT 0 –10 –15 –0.05 40 ADA4084-2 VSY = ±15V TA = 25°C –20 20 10 100 1k 10k 100k 1M 08237-061 30 100M 10M FREQUENCY (Hz) –25 –2 –0.15 0 4 2 8 10 12 14 16 18 TIME (µs) 15 5 0 –5 –10 –15 0 4 8 12 16 20 24 28 32 36 TIME (µs) ADA4084-2 VSY = ±15V TA = 25°C 1 08237-062 ADA4084-2 VSY = ±15V TA = 25°C RL = 2kΩ CL = 100pF 4 1 70 60 60 40 ADA4084-2 VSY = ±15V VIN = 100mV p-p RL = 2kΩ TA = 25°C OVERSHOOT (%) 50 20 0 –20 3 4 5 6 7 8 TIME (µs) 9 10 08237-063 2 100k OS+ 30 OS– 10 –80 1 10k 40 20 ADA4084-2 VSY = ±15V TA = 25°C RL = 2kΩ CL = 100pF 0 1k Figure 65. Voltage Noise Density 80 –60 100 FREQUENCY (Hz) Figure 62. Large Signal Transient Response –40 10 08237-065 VOLTAGE NOISE DENSITY (nV/√Hz) 10 10 VOLTAGE (V) 6 Figure 64. Settling Time Figure 61. CMRR vs. Frequency VOLTAGE (mV) –0.10 Figure 63. Small Signal Transient Response 0 1 10 100 1000 CAPACITANCE (pF) Figure 66. Overshoot vs. Load Capacitance Rev. A | Page 17 of 24 08237-066 CMRR (dB) 0.15 5 VOLTAGE (V) 100 08237-064 110 0.20 ADA4084-2 Data Sheet 1 60 ADA4084-2 VSY = ±15V TA = 25°C 500kHz FILTER 40 THD + N (%) VOLTAGE NOISE (nV) 0.1 20 0 0.01 –20 0.001 0 2 4 6 8 10 TIME (Seconds) 0.0001 10 08237-067 –60 100 100k 20 0 ADA4084-2 VSY = ±15V TA = 25°C VIN = 10V p-p –20 –40 ADA4084-2 VSY = ±15V TA = 25°C 15 10 –60 VOLTAGE (V) –80 –100 5 0 OUTPUT –5 INPUT –120 –10 –140 –15 –180 100 1k 10k 100k FREQUENCY (Hz) 08237-068 –160 1 0.1 0.01 0.001 0.1 1 AMPLITUDE (VRMS) 10 08237-069 ADA4084-2 VSY = ±15V TA = 25°C f = 1kHz 0.01 0 100 200 300 400 500 600 700 TIME (µs) Figure 71. No Phase Reversal Figure 68. Channel Sepatation 0.0001 0.001 –20 Figure 69. THD + N vs. Amplitude Rev. A | Page 18 of 24 800 900 1000 08237-071 CHANNEL SEPARATION (dB) 10k Figure 70. THD + N vs. Frequency Figure 67. Voltage Noise 0.1 Hz to 10 Hz THD + N (%) 1k FREQUENCY (Hz) 08237-070 ADA4084-2 VSY = ±15V TA = 25°C –40 Data Sheet ADA4084-2 COMPARATIVE VOLTAGE AND VARIABLE VOLTAGE GRAPH 1000 900 +125°C +85°C 700 +25°C 600 –40°C 500 400 300 200 ADA4084-2 TA = 25°C RL = ∞ 100 0 0 4 8 12 16 20 24 28 VSY (V) 32 36 08237-072 ISY/AMPLIFIER (µA) 800 Figure 72. Supply Current vs. Supply Voltage Rev. A | Page 19 of 24 ADA4084-2 Data Sheet APPLICATIONS INFORMATION FUNCTIONAL DESCRIPTION The ADA4084-2 is a precision single-supply, rail-to-rail operational amplifier. Intended for portable instrumentation, the ADA4084-2 combines the attributes of precision, wide bandwidth, and low noise to make it an ideal choice in single-supply applications that require both ac and precision dc performance. Other low supply voltage applications for which the ADA4084-2 is well suited are active filters, audio microphone preamplifiers, power supply control, and telecommunications. To combine all of these attributes with rail-to-rail input/output operation, novel circuit design techniques are used. R4 R3 important that the effective source impedances connected to the ADA4084-2 inputs be balanced for optimum dc and ac performance. To achieve rail-to-rail output, the ADA4084-2 output stage design employs a unique topology for both sourcing and sinking current. This circuit topology is illustrated in Figure 74. The output stage is voltage-driven from the second gain stage. The signal path through the output stage is inverting; that is, for positive input signals, Q13 provides the base current drive to Q19 so that it conducts (sinks) current. For negative input signals, the signal path via Q18 → mirror → Q24 provides the base current drive for Q23 to conduct (source) current. Both transistors provide output current until they are forced into saturation. VCC R6 D2 Q1 D1 Q2 Q24 Q23 D100 Q4 D101 Q3 MIRROR VOUT D5 D4 R7 C2 Q13 R1 R2 08237-073 VBIAS R5 Q18 C1 Q19 For example, Figure 73 illustrates a simplified equivalent circuit for the input stage of the ADA4084-2. It comprises a PNP differential pair, Q1 and Q2, and an NPN differential pair, Q3 and Q4, operating concurrently. Diode D100 and Diode D101 serve to clamp the applied differential input voltage to the ADA4084-2, thereby protecting the input transistors against Zener breakdown of the emitter-base junctions. Input stage voltage gains are kept low for input rail-to-rail operation. The two pairs of differential output voltages are connected to the second stage of the ADA4084-2, which is a modified compound folded cascade gain stage. It is also in the second gain stage, where the two pairs of differential output voltages are combined into a single-ended output signal voltage used to drive the output stage. Q21 D20 VEE 08237-074 Figure 73. ADA4084-2 Equivalent Input Circuit Figure 74. ADA4084-2 Equivalent Output Circuit Thus, the saturation voltage of the output transistors sets the limit on the ADA4084-2 maximum output voltage swing. Output short-circuit current limiting is determined by the maximum signal current into the base of Q13 from the second gain stage. The output stage also exhibits voltage gain. This is accomplished by the use of common-emitter amplifiers, and, as a result, the voltage gain of the output stage (thus, the open-loop gain of the device) exhibits a dependence on the total load resistance at the output of the ADA4084-2. A key issue in the input stage is the behavior of the input bias currents over the input common-mode voltage range. Input bias currents in the ADA4084-2 are the arithmetic sum of the base currents in Q1 and Q4 and in Q2 and Q3. As a result of this design approach, the input bias currents in the ADA4084-2 not only exhibit different amplitudes; they also exhibit different polarities. This effect is best illustrated by Figure 7, Figure 8, Figure 30, Figure 31, Figure 53, and Figure 54. It is therefore Rev. A | Page 20 of 24 Data Sheet ADA4084-2 INPUT PROTECTION OUTPUT PHASE REVERSAL As with any semiconductor device, if conditions exist where the applied input voltages to the device exceed either supply voltage, the input overvoltage I-to-V characteristic of the device must be considered. When an overvoltage occurs, the amplifier may be damaged, depending on the magnitude of the applied voltage and the magnitude of the fault current. Some operational amplifiers designed for single-supply operation exhibit an output voltage phase reversal when their inputs are driven beyond their useful common-mode range. Typically, for single-supply bipolar op amps, the negative supply determines the lower limit of their common-mode range. With these devices, external clamping diodes, with the anode connected to ground and the cathode to the inputs, prevent input signal excursions from exceeding the negative supply of the device (that is, GND), preventing a condition that causes the output voltage to change phase. JFET input amplifiers can also exhibit phase reversal, and, if so, a series input resistor is usually required to prevent it. This input current is not inherently damaging to the device, provided that it is limited to 5 mA or less. If a fault condition causes more than 5 mA to flow, an external series resistor should be added at the expense of additional thermal noise. Figure 75 illustrates a typical noninverting configuration for an overvoltage-protected amplifier where the series resistance, RS, is chosen, such that RS = VIN ( MAX ) − VSUPPLY 5 mA For example, a 1 kΩ resistor protects the ADA4084-2 against input signals up to 5 V above and below the supplies. Note that the thermal noise of a 1 kΩ resistor at room temperature is 4 nV/√Hz, which exceeds the voltage noise of the ADA4084-2. For other configurations where both inputs are used, each input should be protected against abuse with a series resistor. Again, to ensure optimum dc and ac performance, it is recommended that source impedance levels be balanced. R2 1/2 VIN R1 VOUT 08237-075 ADA4084-2 Figure 75. Resistance in Series with Input Limits Overvoltage Currents to Safe Values To protect Q1-Q2 and Q3-Q4 from large differential voltages that may result in Zener breakdown of the emitter-base junction, D100 and D101 are connected between the two inputs. This precludes operation as a comparator. For a more complete description, see the MT-035 Tutorial, Op Amp Inputs, Outputs, Single-Supply, and Rail-to-Rail Issues; the MT-083 Tutorial, Comparators, the MT-084 Tutorial, Using Op Amps As Comparators; and the AN-849 Application Note, Using Op Amps as Comparators, at www.analog.com. The ADA4084-2 is free from reasonable input voltage range restrictions, provided that input voltages no greater than the supply voltages are applied. Although device output does not change phase, large currents can flow through the input protection diodes. Therefore, the technique recommended in the Input Protection section should be applied to those applications where the likelihood of input voltages exceeding the supply voltages is high. DESIGNING LOW NOISE CIRCUITS IN SINGLESUPPLY APPLICATIONS In single-supply applications, devices like the ADA4084-2 extend the dynamic range of the application through the use of rail-to-rail operation. Referring to the op amp noise model circuit configuration illustrated in Figure 76, the expression for an amplifier’s total equivalent input noise voltage for a source resistance level, RS, is given by e nT = 2 [(e nR ) 2 + (inOA × R S )2 ] + (e nOA )2 , units in V Hz where: RS = 2R, the effective, or equivalent, circuit source resistance. (enR)2 is the source resistance thermal noise voltage power (4kTR). k is the Boltzmann’s constant, 1.38 × 10–23 J/K. T is the ambient temperature in Kelvin of the circuit, 273.15 + TA (°C). (inOA)2 is the op amp equivalent input noise current spectral power (1 Hz bandwidth). (enOA)2 is the op amp equivalent input noise voltage spectral power (1 Hz bandwidth). R enR NOISELESS R NOISELESS enOA inOA enR inOA IDEAL NOISELESS OP AMP RS = 2R 08237-076 The D1, D2, D4, and D5 diodes conduct when the input commonmode voltage exceeds either supply pin by a diode drop. This varies with temperature and is in the range of 0.3 V to 0.8 V. As illustrated in the simplified equivalent circuit shown in Figure 73, the ADA4084-2 does not have any internal current limiting resistors; thus, fault currents can quickly rise to damaging levels. Figure 76. Op Amp Noise Circuit Model Used to Determine Total Circuit Equivalent Input Noise Voltage and Noise Figure Rev. A | Page 21 of 24 ADA4084-2 Data Sheet ADA4084-2 TOTAL EQUIVALENT NOISE 10 RESISTOR THERMAL NOISE ONLY 1 100 1k 10k 100k TOTAL SOURCE RESISTANCE, RS (Ω) Figure 77. ADA4084-2 Equivalent Thermal Noise vs. Total Source Resistance Because circuit SNR is the critical parameter in the final analysis, the noise behavior of a circuit is sometimes expressed in terms of its noise figure, NF. The noise figure is defined as the ratio of a circuit’s output signal-to-noise to its input signal-to-noise. Noise figure is generally used for RF and microwave circuit analysis in a 50 Ω system. This is not very useful for op amp circuits where the input and output impedances can vary greatly. For a more complete description of noise figure, see the MT-052 Tutorial, Op Amp Noise Figure: Don’t be Mislead, available at www.analog.com. COMPARATOR OPERATION Although op amps are quite different from comparators, occasionally an unused section of a dual or a quad op amp can be used as a comparator; however, this is not recommended for any rail-to-rail output op amps. For rail-to-rail output op amps, the output stage is generally a ratioed current mirror with bipolar or MOSFET transistors. With the part operating open loop, the second stage increases the current drive to the ratioed mirror to close the loop. However, it cannot, which results in an increase in supply current. With the op amp configured as a comparator, the supply current can be significantly higher (see Figure 76). An unused section should be configured as a voltage follower with the noninverting input connected to a voltage within the input voltage range. The ADA4084-2 has unique second stage and output stage designs that greatly reduce the excess supply current when the op amp is operating open loop. 800 COMPARATOR OUTPUT LOW 700 Signal levels in the application invariably increase to maximize circuit SNR, which is not an option in low voltage, single-supply applications. Therefore, to achieve optimum circuit SNR in single-supply applications, it is recommended that an operational amplifier with the lowest equivalent input noise voltage be chosen, along Rev. A | Page 22 of 24 600 BUFFER COMPARATOR OUTPUT HIGH 500 400 300 200 ADA4084-2 TA = 25°C RL = ∞ 100 0 0 4 8 12 16 20 24 28 VSY (V) Figure 78. Supply Current vs. Supply Voltage 32 36 08237-078 FREQUENCY = 1kHz TA = 25°C 08237-077 EQUIVALENT THERMAL NOISE (nV/ Hz) 100 with source resistance levels that are consistent with maintaining low total circuit noise. SUPPLY CURRENT (µA) As a design aid, Figure 77 shows the total equivalent input noise of the ADA4084-2 and the total thermal noise of a resistor for comparison. Note that for source resistance less than 1 kΩ, the equivalent input noise voltage of the ADA4084-2 is dominant. Data Sheet ADA4084-2 OUTLINE DIMENSIONS 3.20 3.00 2.80 8 3.20 3.00 2.80 5.15 4.90 4.65 5 1 4 PIN 1 IDENTIFIER 0.65 BSC 0.95 0.85 0.75 15° MAX 1.10 MAX 0.80 0.55 0.40 0.23 0.09 6° 0° 0.40 0.25 10-07-2009-B 0.15 0.05 COPLANARITY 0.10 COMPLIANT TO JEDEC STANDARDS MO-187-AA Figure 79. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters 5.00 (0.1968) 4.80 (0.1890) 1 5 4 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) COPLANARITY 0.10 SEATING PLANE 6.20 (0.2441) 5.80 (0.2284) 1.75 (0.0688) 1.35 (0.0532) 0.51 (0.0201) 0.31 (0.0122) 0.50 (0.0196) 0.25 (0.0099) 45° 8° 0° 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) COMPLIANT TO JEDEC STANDARDS MS-012-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. 012407-A 8 4.00 (0.1574) 3.80 (0.1497) Figure 80. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches) ORDERING GUIDE Model1 ADA4084-2ARMZ ADA4084-2ARMZ-R7 ADA4084-2ARMZ-RL ADA4084-2ARZ ADA4084-2ARZ-R7 ADA4084-2ARZ-RL 1 Temperature Range −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C Package Description 8-Lead Mini Small Outline Package [MSOP] 8-Lead Mini Small Outline Package [MSOP] 8-Lead Mini Small Outline Package [MSOP] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] Z = RoHS Compliant Part. Rev. A | Page 23 of 24 Package Option RM-8 RM-8 RM-8 R-8 R-8 R-8 Branding A2Q A2Q A2Q ADA4084-2 Data Sheet NOTES ©2011–2012 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D08237-0-2/12(A) Rev. A | Page 24 of 24